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Abstract. People spend most of their time at a few key locations, such as home

and work. Being able to identify how the movements of people cluster around

these “important places” is crucial for a range of technology and policy deci-

sions in areas such as telecommunications and transportation infrastructure de-

ployment. In this paper, we propose new techniques based on clustering and re-

gression for analyzing anonymized cellular network data to identify generally

important locations, and to discern semantically-meaningful locations such as

home and work. Starting with temporally sparse and spatially coarse location in-

formation, we propose a new algorithm to identify important locations. We test

this algortihm on arbitrary cellphone users, including those with low call rates,

and find that we are within 3 miles of ground truth for 88% of volunteer users.

Further, after locating home and work, we achieve commute distance estimates

that are within 1 mile of equivalent estimates derived from government census

data. Finally, we perform carbon footprint analyses on hundreds of thousands of

anonymous users as an example of how our data and algorithms can form an

accurate and efficient underpinning for policy and infrastructure studies.

1 Introduction

While people travel further and faster than ever before, it is still the case that they spend

much of their time at a few important places. Identifying these key locations is thus

central to understanding human mobility and social patterns. Such understanding can,

in turn, inform solutions to large-scale societal problems in fields as varied as telecom-

munications, ecology, epidemiology, and urban planning. As an example, knowing how

large populations of people move about would help determine their carbon footprint

and in turn help guide policies intended to reduce that footprint.

Wireless cellular networks hold great potential for providing the necessary infor-

mation to identify important places in people’s lives. The growing ubiquity of cellular

phones means that a large percentage of people keep a phone with them most of the

time. In addition, the networks need to know roughly where each phone is in order to

provide the phones with voice and data services.

In this work, we explore the use of anonymized Call Detail Records (CDRs) from

a cellular network to estimate the locations of important places in the lives of large



populations of people. CDRs are routinely collected by cellular network providers to

help operate their networks, for example to identify congested cells in need of additional

bandwidth. Each CDR contains information such as the time a voice call was placed or

a text message was received, as well as the identity of the cell tower with which the

phone was associated at that time. This information can serve as sporadic samples of

the approximate locations of the phone’s owner.

CDRs are an attractive source of location information for two main reasons. One,

they are collected for all active cellular phones, which number in the hundreds of mil-

lions in the US and in the billions worldwide. Two, they are already being collected

to help operate the networks, so that additional uses of CDR data incur little marginal

cost. Contrast this low cost, for example, with the expense of carrying out surveys to

ask people where they spend their time. This high expense generally limits other data

collection methods to orders of magnitude fewer participants.

However, CDRs have two significant limitations as a source of location information.

One, they are sparse in time because they are generated only when a phone engages in a

voice call or text message exchange. Two, they are coarse in space because they record

location only at the granularity of a cell tower. It is an interesting research question

whether CDRs can be used to identify important places in people’s lives.

In this paper, we show that applying clustering and regression techniques to CDR

data can indeed identify important places in people’s lives. First, we present an al-

gorithm for identifying important places. Then, we describe two other algorithms for

selecting home and work locations from among those important places. We validate all

three algorithms by comparing their results to ground truth provided by a group of vol-

unteers. We then apply these algorithms to much larger anonymous populations in the

Los Angeles (LA) and New York City (NY) areas. Our LA and NY dataset spans two

months of activity for hundreds of thousands of phones, yielding hundreds of millions

of location samples.

Finally, we present two example applications of these techniques. We start by using

the home and work locations identified by our algorithms to calculate the distribution

of commute distances per postal code in our Los Angeles and New York dataset. We

then estimate the carbon footprints of those commutes, also aggregated by postal code.

Overall, the contributions of our work are as follows.

– We propose and evaluate a model based on logistic regression of volunteers’ lo-

cations for Important Places analysis. In our first algorithm, we demonstrate an

accurate and efficient method for identifying Important Places from CDRs. Our

algorithm is the first to operate on the majority of cellular phone users, rather than

relying either on more continuous and fine-grained tracking (e.g. GPS) or focusing

on high-call-rate users whose mobility is easier to analyze.

– We propose and evaluate two other algorithms for applying semantic meaning to

important locations, namely Home and Work, using other models also derived via

logistic regression. Our algorithms identify these key sites with median errors under

one mile.

– We test our approaches on a dataset that is more universal than prior work in several

ways. First, it is simply larger than prior work in terms of CDRs and number of

users. Second, it covers multiple distinct geographic areas. Third, it considers users
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with a wide variety of call/text rates, from as low as a few calls/texts per week up

to dozens of calls/texts per day.

– Finally, we provide examples of how technology providers and policy makers might

use our data and algorithms in their work. In particular, we calculate home-to-work

commute distances and combine them with publicly available data to estimate the

carbon footprints of those commutes in two major metropolitan areas. Our average

commute distances for the LA and NY areas are within 1 mile of the equivalent

averages computed from US Census data.

In summary, our work extends prior research in location identification and cellphone

mobility to create effective algorithms and solid foundations for technological and soci-

etal problem-solving. The rest of this paper is organized as follows. Section 2 describes

the data we obtained from volunteers as well as the much larger set of anonymous

CDRs, including the measures we have taken to preserve individual privacy. Section 3

presents our algorithm for identifying important locations, Section 4 our algorithms

for selecting home and work locations, and Section 5 our estimates of commuting dis-

tances and carbon footprints. Section 6 discusses related work, and Section 7 offers

conclusions.

2 Data Collection Methodology and Characteristics

2.1 Anonymized Call Detail Records

We collected anonymized Call Detail Records (CDRs) from a random set of cellular

phones whose billing addresses lie within specific geographic regions.

Defining Geographic Regions of Interest: We first developed a target set of 891

postal (ZIP) codes located in the Los Angeles and New York metropolitan areas. In the

LA area, the ZIP codes cover the counties of Los Angeles, Orange, and Ventura. In the

NY area, these ZIP codes cover the five New York City boroughs (Manhattan, Brook-

lyn, Bronx, Queens, and Staten Island) and ten New Jersey counties that are close to

New York City (Essex, Union, Morris, Hudson, Bergen, Somerset, Passaic, Middlesex,

Sussex, and Warren). Figure 7 shows maps of the regions studied as part of carbon foot-

print results presented in Section 5. Our selected ZIP codes cover similarly sized areas

in LA and NY.

Anonymized CDR Contents: We then obtained anonymized CDRs for a random

sample of phones in each ZIP code. The CDRs contain information about two types

of events involving these phones: voice calls and text messages. In place of the phone

number, each CDR contains an anonymous identifier consisting of the 5-digit billing

ZIP code and a unique integer. Each CDR also contains the starting time of the voice

or text event, the duration of the event, the locations of the starting and ending cell

towers associated with the event, and an indicator of whether the phone was registered

to an individual or a business. It is important to note that we collect CDRs for these

phones wherever in the US they travel, not only when they contact cell towers within

their billing ZIP codes.

Excluded Categories of Phones: Our goal is to understand aggregate mobility pat-

terns of people in particular regions of the country, and to compare them analytically

3



where possible. As such, our study omits from consideration two sets of phones from

the original CDRs.

First, we omitted phones registered to businesses, retaining only phones registered

to individuals. This step avoids, for example, the situation where a cellular service re-

seller based in a ZIP code of interest would cause us to study large numbers of phones

that are not representative of that ZIP code.

Second, we removed from our sample those phones that appeared in their base ZIP

code fewer than half the days they had voice or text activity. We assumed that the owners

of such phones now live in other parts of the country but have retained their old billing

addresses (e.g., they are college students). Therefore, their daily travel patterns may not

be representative of the geographical areas we are interested in.

After these two filtering steps, our CDRs are a useful representation of mobility and

telephone usage in the regions of interest. While there will always be some people using

personal phones for business (and vice versa), we have compared our filtered CDRs

against US Census data for the regions of interest [22] and found a strong correlation

between the expected and actual number of users in each ZIP code.

Dataset Characteristics: Our data collection methodology resulted in location data

for hundreds of thousands of phones split roughly evenly between LA and NY, with

the number of phones in each ZIP code proportional to the population in that ZIP code.

We collected data for 78 consecutive days from November 15, 2009, to January 31,

2010. Table 1 offers some general characteristics of this dataset. As shown, it contains

hundreds of millions of location samples, with on the order of 10 location samples per

phone per day.

Metric LA NY

Total Unique Phones 97K 71K

Total Unique CDRs 247M 161M

Median Calls Per Day 8 9

Median Texts per Day 4 3

Table 1. General characteristics of our Call Detail Record dataset.

Privacy Measures: Given the sensitivity of the data, we took several steps to ensure

the privacy of individuals represented in our CDR dataset.

First, only anonymous records were used in this study. In particular, personally

identifying characteristics were removed from our CDRs. CDRs for the same phone

are linked using an anonymous unique identifier, rather than a telephone number. No

demographic data is linked to any user or CDR.

Second, all our results are presented as aggregates. That is, no individual anony-

mous identifier was singled out for the study. By observing and reporting only on the

aggregates, we protect the privacy of individuals.

Finally, each CDR only included location information for the cellular towers with

which a phone was associated at the beginning and end of a voice call or at the time of

a text message. The phones were effectively invisible to us aside from these events. In

addition, we could estimate the phone locations only to the granularity of the cell tower
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coverage radius. Although the effective radius depends upon tower height, radio power,

antenna angle, and terrain, these radii average about a mile, giving an uncertainty of

about 3 square miles for any event [21].

2.2 Ground Truth Data from Volunteers

In order to validate our work, we recruited a group of 37 volunteers who provided us

the true locations of important places in their lives, as well as permission to inspect their

CDRs for the purposes of this study. The group is composed of graduate students and

professionals, all of which are personal or professional acquaintances of the authors.

Of the 37 volunteers, 29 are male and 8 are female. Geographically, 31 recruits live in

the states of New York or New Jersey and the remaining 6 live in Ohio, Georgia, or

Arizona. The majority of the volunteers work at high-tech jobs.

Each volunteer filled out a survey on a website. The survey form asked them to list

up to 10 important places in their lives, defined as places where they had spent a sig-

nificant amount of time and/or visited frequently in the previous 60 days. It specifically

requested that they include home and work in the list, and expressed the hope that they

would list additional places such as a gym or the destination of an overnight trip.

The volunteers also provided us with the latitude and longitude of each place they

listed. The survey website included a tool to help them find this information. Volunteers

could either enter a street address, or drop a pin on a map after panning and zooming

the map to the appropriate location. The tool would convert this input into a latitude-

longitude pair that the volunteer could cut and paste into the survey form.

In the work described in the rest of this paper, we used the ground truth data from

18 of our volunteers as a training set for our algorithms, and data from the remaining

19 volunteers as a testing set. The 18 training volunteers were chosen arbitrarily and

without regard for their mobility or calling patterns. For both our training and testing

volunteers, we collected CDRs for the same 60 days covered by their survey responses.

3 Identifying Important Places

Intuitively, we know that human mobility involves moving to and from a set of places,

some of which are recurringly important to us and some of which are visited less often

or only fleetingly. Being able to discern significant places in people’s lives is an impor-

tant aspect of characterizing human mobility. Identifying important places can be used

to support location-based services, improve understanding of general human movement

patterns, and support the creation of realistic and practical models of human mobility.

We define an important place as a geographic location where a person spends a signif-

icant amount of time and/or which she visits frequently. Examples of important places

include: home, work, gym, grocery store, and a house of worship.

In this section, we show how mobile network events can be used to identify impor-

tant places in people’s lives. We identify important places based on the mobile network

events that correspond to CDR entries. Thus, making or receiving a phone call or send-

ing or receiving a text message generates an event. For each event (CDR), we know its

time of occurrence and the location of the first and last cell towers associated with it.

We refer to the list of events that were generated by a user’s phone as the user’s trace.

If a cell tower appears in the user’s trace on a given day, we say that the cell tower was

contacted on that day.
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Our algorithm for identifying important places has two stages. In the first stage,

we spatially cluster the cell towers that appear in a user’s trace. In the second stage,

we identify which of the clusters are important using a model derived from a logistic

regression of volunteers’ CDRs. In the rest of this section, we describe these two stages

in detail, present our validation results based on the important locations of our 19 testing

volunteers, and compare the results characteristics for our NY and LA populations.

While in this paper we use cellular phone activity collected in the form of CDRs,

our algorithms for identifying important locations, and for assigning semantic meaning

to these locations such as “home” or “work”, are quite general. They could also be

applied to location traces collected via GPS, WiFi, or other techniques.

3.1 Clustering Cell Towers

Clustering cell towers that appear in a user’s trace has two steps. In the first step, we

sort the cell towers in descending order based on the total number of days they were

contacted. Thus, the cell tower that was contacted on the most days will be ranked

first. Sorting the cell towers serves as a modest optimization but is not required. An

on-line algorithm could easily be developed by removing the sorting phase, resulting

in an average change in error of less than 0.1 miles. However, sorting by the number

of days the cell tower was contacted (“call-days”) rather than by the total number of

events associated with the cell tower is both important and novel. In particular, sorting

by call-days rather than total calls helps to decrease the influence of cell towers that

were contacted only on a few days, but that had a burst of events on those days. A flurry

of calls from one location on a single day is not as indicative of location importance

as a similar number of calls spread over many days at a location that recurs. Consider,

for example, work travel to a distant location. Though the trip may be short in duration,

one might make many calls back home to family and friends. These calls would then

unduly increase the perceived importance of the location. This distinction helps us to

maintain good location accuracy for users across a wide range of calls-per-day.

In the second step, the sorted list of cell towers is clustered according to Hartigan’s

leader algorithm [10]. We chose the leader algorithm because it doesn’t require pre-

specifying the desired number of clusters and because it works in a single pass, which

is important for practical use on very large datasets such as ours (4GB, compressed).

The leader algorithm starts with the first cell tower in the sorted list and makes this

tower the centroid of the first cluster. Then, for each subsequent cell tower, it checks

to see whether the tower falls within a threshold radius of the centroid of any existing

cluster. If it does not, the tower becomes the centroid of a new cluster. If it does fall

within the threshold radius of an existing cluster, the algorithm adds the tower to the

cluster and moves the centroid of the cluster to be the weighted average of the locations

of all the cell towers in the cluster. The cell tower locations, in our case, are weighted

by the number of call-days. The algorithm completes once every cell tower has been

assigned to a cluster.

Choosing a particular threshold radius around cell towers helps equalize for the fact

that in urban areas towers might be as dense as 200 meters apart, while in suburban

areas, spacings of 1-3 miles are more common. We experimented with a range of radii

and found that 1 mile works well in practice.
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Fig. 1. Our clustering algorithm applied to a volunteer. Cell towers are clustered into groups

according to Hartigan’s leader algorithm. Cell towers are added to a cluster if they are within a

mile of the cluster’s centroid. Clusters are depicted as circles and cell towers as diamonds. A line

connects each cell tower to the centroid of its cluster. Circle size is proportional to the number of

days on which any cell tower in the cluster was contacted.

Figure 1 illustrates the result of running the clustering algorithm on a volunteer’s

trace with a threshold radius of 1 mile. We can see that although the volunteer connected

to the network through many cell towers, there are only three clusters. Note again that

the size of a cluster is proportional to the number of days on which any cell tower in

the cluster was contacted, and not necessarily proportional to the number of cell towers

that belong to the cluster. For instance, the middle cluster in Figure 1 is the largest even

though it contains fewer cell towers than the southernmost cluster. Although for this

volunteer there are many cell towers belonging to each of the clusters, it is common for

people to have clusters comprising only one or two cell towers.

3.2 Determining Importance

Clustering cell towers typically results in dozens to hundreds of clusters, most of which

may have little importance to the user. In this section, we describe how our algorithm

determines which clusters are important.

We developed an algorithm for identifying important clusters by studying the be-

havior of our 18 training volunteers and then testing the algorithm on a set of 19 testing

volunteers. Studying the data of our training volunteers revealed the following five ob-

servable factors that are considered in determining whether a cluster is important:

– Days: The number of days on which any cell tower in the cluster was contacted. If

two or more cell towers were contacted on the same day, the day is counted only

once. This factor gives a sense of the regularity of activity in the cluster.

– Tower Days: The sum of the number of days cell towers in the cluster were con-

tacted. Thus, each cell tower in the cluster adds its Days value to the sum. This

factor gives a sense of both the number of cell towers in the cluster as well as the

number of days on which cell towers in the cluster were contacted.

– Duration: The number of days that elapse between the first contact with any cell

tower in the cluster and the last contact with any cell tower in the cluster. (For

example, a cluster with one cell tower that was contacted only on the first day and
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on the seventh day of the user’s trace has a duration value of 6.) Duration gives a

sense of how long a user is in the area of the cluster, even if network events were

not generated from this cluster on a daily basis.

– Work Hour Events : The number of times any cell tower in the cluster was contacted

on weekdays between 1pm and 5pm. We experimented with various ranges of hours

and found that 1pm to 5pm works well in practice because it is a core set of hours

for both early and late workers.

– Home Hour Events : The number of times any cell tower in the cluster was con-

tacted on weekends or weekdays between 7pm and 7am.

The algorithm identifies a cluster as important if the cluster satisfies each of the

following three conditions. First, cell towers in the cluster should have been contacted

on more than 5% of the total days in the study. In our case, this translates to the Days

factor being higher than 2. This condition filters out transitional clusters that are rarely

contacted. Second, the cluster should have a Duration of more than 14. This helps to

remove vacations and other locations that may generate a large number of events in

a short period of time but that are not consistently used throughout the trace. Third,

the cluster should have a higher than 20% chance of being important according to the

regression analysis discussed below. While we derived all the thresholds experimentally

based on the data from the 18 training volunteers, our tests on other volunteers and on

the larger dataset point to their general applicability.

To determine the likelihood of a cluster being important, we use logistic regression.

We considered the five observable factors described above as well as several derived

variables. Specifically, we added the rank and the percentage of each of the observ-

able factors. Rank is calculated by ordering the clusters based on the observable factor

and then assigning each cluster a sequential number. For example, the cluster with the

largest Duration gets a ranking of 1 and the cluster with the second largest Duration

gets a ranking of 2. Percentage is calculated by dividing the value of a given observable

factor of a cluster by the sum of these values in all clusters. For instance, if the Days

value of the current cluster is 5 and there are two more clusters with Days values of 20

and 25, the percentage of the Days factor of the current cluster is 5 divided by 50, or

0.1. In total, we ended up with 15 observable and derived factors.

Prob(x1, ..., xn) =
1

(1 + eβ0+β1x1+···+βnxn)
(1)

Equation 1 shows the general form of the logistic regression formula that we use to

estimate the likelihood of the importance of a cluster. In this formula, Prob(x1, ..., xn)
is the probability that a cluster with factors xi is the closest cluster to an important

location and βjs are coefficients that are discovered during the regression.

To discover the coefficients, we used the important locations of our 18 training

volunteers. First, we marked clusters of each of the volunteers as either being important

or not. A cluster is marked as being important if its centroid is the closest to any of

the important locations specified by the volunteer. The importance of a cluster is the

dependent binary variable in our regression analysis and the 15 observable and derived

factors are the independent variables. Once the statistically insignificant factors were

eliminated, only three factors were left: the percentage of Tower Days, the Duration,
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and the ranking of a cluster based on Days. The percentage of Tower Days and the

ranking based on Days prefers clusters with many cell towers contacted on many days.

The Duration indicates that for a cluster to be considered important its cell towers must

be contacted during a large fraction of the trace. Including the Duration feature reduces

the importance of transitionary calls made during travel by giving a higher weight to the

locations where a user made phone calls many days apart. We conjecture that Duration

was selected as one of the main features because people tend to return to places that

are important to them often and tend to visit transitionary places infrequently. Once the

training is complete, we estimate the importance of a new cluster by feeding these three

statistically significant factors of the cluster into the regression formula.

Fig. 2. True important locations vs. discovered important clusters for four volunteers. Paddles rep-

resent the important locations provided by the volunteers. Circles represent the important clusters

discovered by our algorithm, with their radii signifying days of use. The four examples are drawn

to the same scale.

Figure 2 plots the true important locations and the discovered important clusters of

four volunteers. The figure confirms that the discovered important clusters match well

with the volunteer-provided important locations. However, one important location in

the bottom right figure was not matched by any discovered important cluster. This is

because the volunteer made almost no calls from that location. It is worth noting that

the algorithm performed well despite the significant difference in patterns of of im-

portant locations for different volunteers (e.g., different number of important locations,

different spatial distributions, different rate of calls, etc.)

3.3 Validation of Important Places Algorithm

We further validate our algorithm for determining important places by comparing to

other approaches. Recall that each important cluster contains one or more cell towers.

The location of an important place is then the weighted centroid of the geographic

locations of these cell towers. To measure how well our Important Places algorithm

works we calculate the error between each important location provided to us by our

19 testing volunteers and the nearest important place identified by our algorithm. We

also compare our results to two additional algorithms: Nearest Cluster and Nearest
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Important Places refers to the clusters identified as important by our algorithm. Nearest Cluster

shows the best possible outcome with clustering performed. Nearest Tower demonstrates the best

that can be done without clustering.

Tower. The Nearest Cluster algorithm considers all clusters identified in Section 3.1

and identifies an important place as the weighted centroid of a cluster that is the nearest

to an actual important location. This algorithm acts as an upper bound on our Important

Places algorithm since it operates on all discovered clusters, without restricting the pool

of clusters to choose from. The Nearest Tower algorithm determines an important place

at the location of the cell tower that is the closest to the actual important location. This

algorithm shows the limit of the accuracy we can achieve if we limit our clusters to just

a single cell tower.

Figure 3 plots a CDF of the error between the actual important locations and the

identified important places for the Important Places, Nearest Cluster and Nearest Tower

algorithms. The figure shows that the Important Places algorithm performs very well,

even though it reduces the total number of identified clusters by up to 90% for some

volunteers. The median error of the Important Places algorithm is 0.9 miles, which is

close to the performance of the upper bound algorithms. Nearest Cluster and Nearest

Tower achieve 0.62 and 0.5 miles median error, respectively. The reason for the slightly

higher error for the Important Places algorithm is that some people do not use their cell

phone frequently at their important locations. Viewing the results more broadly, we find

our approach maintains within-3-miles accuracy for 88% of the users, which suffices

for the types of policy and planning applications we envision.

3.4 Important Places in Los Angeles and New York
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Fig. 4. Histogram of the number of important places of people in Los Angeles and New York.
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In this section, we use our full CDR data set to compare the number of important

places of Angelenos and New Yorkers, as identified by our Important Places algorithm.

Without user-provided surveys, we do not know the actual number of important places

of people in the LA and NY dataset, but our results allow us to roughly compare the

behavior of people in the two areas. Figure 4 plots the histograms of the number of

important places for the two populations. We draw three conclusions from our results.

First, our algorithm succeeds in finding important locations for 97.5% of the user pop-

ulation, which is a very high percentage. For the remaining 2.5%, our algorithm cannot

find any important places, mostly due to people not using their cell phones frequently

enough for our algorithm to work. Second, about a quarter of people in both areas have

exactly 5 important places and more than three quarters of people have between 3 to 6

important places. This is similar to results found in other work [2, 9]. Third, New York-

ers have a higher percentage of people with 1 to 4 important places, whereas Angelenos

have a higher percentage of people with 5 to 8 places. Overall, the implications are

that although typical cellphone users have dozens or hundreds of towers contacted in a

multi-month event trace, their main locus of mobility is concentrated on a much smaller

set of places.

4 Identifying Home and Work

In this section, we move beyond identifying generally important places in people’s

lives, to inferring where people live and work. The knowledge of where people live

and work can be used for a detailed analysis of mobility prediction models, workday

patterns, commuter carbon footprints, and a variety of context-aware applications, such

as location-based reminders [20].

We developed algorithms that compute estimates of where a cellphone user lives and

works, given a list of important clusters identified in Section 3.2. We call these estimated

locations Home and Work, respectively. Of course, not everyone will have distinct home

and work locations: some people work at home, others have no fixed work site, and still

others may not use their cell phones at home and/or work. Nevertheless, our validation

work confirms that our algorithms produce good approximations of the true home and

work locations of volunteers.

4.1 Home and Work Algorithms

Our Home and Work algorithms select, among all important clusters identified by the

Important Places algorithm described in Section 3.2, the clusters that correspond to

where a person lives and works, respectively. The algorithms are independent and may

end up selecting the same cluster as both Home and Work.

To select Home or Work, the relevant algorithm (i.e., either the Home or Work al-

gorithm) calculates a score for each important cluster using coefficients obtained from

a logistic regression. The algorithm then assigns the cluster with the highest score to

be Home or Work. To calculate a score for a cluster, we use the logistic regression

formula shown in Equation 1. In this case, Prob(x1, ..., xn) is the score calculated for

each cluster, xi is the value of the ith factor and βjs are regression coefficients fitted

during training. To train our regression formulae, we repeated the procedure described

in Section 3.2 using the reported home and work locations of the 18 training volun-
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Percentile 25
th

50
th

75
th

95
th

Home Error 0.53 0.90 1.28 3.86

Work Error 0.62 0.83 2.30 21.23

Table 2. Errors in miles from true home and work locations to those found using our Home and

Work algorithms.

teers. Home and Work, then, are chosen as the clusters with the highest probability as

computed by the coefficients given by the logistic regression.

Recall that in this study we define “home” hours to be weekends and weekdays

between 7PM and 7AM, whereas “work” hours are weekdays between 1pm and 5pm.

For the Home algorithm, the single most dominating factor was the Home Hour Events.

That is, the cluster with the largest number of events during the “home” hours is selected

as Home. For the Work algorithm, there are two dominating factors. The first factor is

the rank of the Work Hour Events. In other words, after ranking all clusters based on

the number of events occurring during “work” hours, a cluster with a higher ranking

is assigned a higher score than a cluster with a lower ranking. The second factor is the

percentage of the Home Hour Events. Recall that this percentage is calculated as the

number of events occurring during “home” hours in the cluster, divided by the total

number of events occurring during “home” hours in all clusters. A cluster is assigned a

higher score by the Work algorithm if the percentage of the Home Hour Events in the

cluster is low.

4.2 Validation of Home and Work Algorithms

Table 2 shows the 25th, 50th, 75th and 95th percentile errors between the Home and

Work locations as estimated by our Home and Work algorithms and the actual home and

work locations as reported by our 19 testing volunteers. Both algorithms perform well,

achieving median errors of 0.9 miles and 0.83 miles, respectively. We also calculated

the distance between the actual home and work locations and the nearest cell tower,

finding them to be 0.61 miles (home) and 0.5 miles (work). Moving out to the 95th per-

centile, the Home algorithm continued to work well, with 3.86 miles of error, whereas

the “best-case” algorithm that chooses the cell tower nearest to the user-provided lati-

tude/longitude has 1.12 miles of error. At the 95th percentile error, the Work algorithm’s

error increases to 21.2 miles, and studying these few cases in more detail revealed that

the errors were due to our volunteers not using their cell phone much at work. Given

that the majority of our volunteers did use their cell phones at work and given the in-

creasing trend of dropping landlines at both home and work locations, we believe that

our Home and Work algorithms are an increasingly useful tool for estimating home and

work locations for the general population at large.

5 Example Applications: Commute Distances and Car-

bon Footprints

In this section, we show how we can apply our algorithms to larger-scale data analysis

and policy planning. In one example, we compute home-to-work commute distances

for populations of cell phone users aggregated by ZIP code. In another example, we
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combine cellular network data with US Census data to estimate the commuting carbon

footprints of the same populations.

5.1 Calculating Commute Distances

We define commute distance as the geographic distance between a person’s home and

work locations. Our HomeWork algorithm estimates commute distance by calculating

the distance between the two locations identified by the Home and Work algorithms

described in Section 4.1. Here we evaluate our HomeWork algorithm by comparing

its results to those of three other approaches for estimating commute distance: Oracle,

TopTwo, and TimeBased.

The Oracle algorithm, given a set of important-location clusters identified by the

Important Locations algorithm described in Section 3.2, estimates a volunteer’s com-

mute distance as the distance between the two clusters closest to the true home and work

locations reported by that volunteer. The Oracle algorithm represents an upper bound on

the accuracy of the HomeWork algorithm and is not realizable. We include the remain-

ing two algorithms, TopTwo and TimeBased, to show HomeWork’s accuracy relative

to simpler algorithms. TopTwo estimates commute distance as the distance between the

two important locations with the largest number of network events. The TimeBased al-

gorithm estimates where a person lives as the cluster with the largest number of events

on weekends and weekdays between 7PM and 7AM, and it estimates where a person

works as the cluster with the largest number of events on weekdays between 1PM and

5PM. To estimate commute distance, TimeBased then calculates the distance between

these home and work clusters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

C
D

F

Error (miles)

Oracle
HomeWork

Top Two
Time Based

Fig. 5. Error in commute distance for volunteers. The plot is cut at 100 miles for clarity, but the

extreme errors for TopTwo extends beyond 200 miles.

Figure 5 plots the CDF of the commute distance error in miles for the Oracle, Home-

Work, TopTwo and TimeBased algorithms. The HomeWork algorithm performs very

well, estimating the commute distance within 3 miles for 82% of the volunteers. Home-

Work not only significantly outperforms both the TopTwo and TimeBased algorithms,

which achieve 19.9 miles and 14.2 miles for 82%, respectively, but also is close to

Oracle, which achieves 1.23 miles error. The median errors for Oracle, HomeWork,

TopTwo and TimeBased are 0.67, 1.16, 2.10 and 1.24 miles, respectively.
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Fig. 6. Box plots of commute distances for Los Angeles and New York.

5.2 Commute Distances in Los Angeles and New York

As an additional check on our work, we compare commute distances as calculated by

our HomeWork algorithm to those derived from US Census statistics. In particular,

HomeWork estimates the average commute distance for residents of the ZIP codes in

our CDR dataset to be 21 and 20 miles for the Los Angeles and New York areas, re-

spectively. Using tables of where people live and work published by the US Bureau

of Transportation Statistics [4], we calculate the average commute for residents of the

same ZIP codes to be 21 and 19 miles for the Los Angeles and New York areas, respec-

tively. This very close match between HomeWork and census results further validates

our approach.

We now summarize our commute-distance results with the help of boxplots. Box-

plots depict five-number summaries of the complete empirical distributions of interest.

The “box” represents the 25th, 50th, and 75th percentiles, while the “whiskers” indi-

cate the 5th and 95th percentiles. The horizontal axes show miles on a logarithmic scale.

Nearly any difference between our medians is statistically significant due to our large

sample sizes.

Figure 6 plots the daily commute distances for Angelenos and New Yorkers. For the

greater NY and LA regions, the commute distances are similar, with the median com-

mutes at 3.2 and 3.3 miles, respectively. We also looked in detail at the data from city

centers, namely Manhattan (ZIP codes 100xx) and downtown LA (ZIP codes 900xx).

We make two observations from the data. First, although the commute distances of city

center residents are shorter than that of the general population in both areas, the Man-

hattanites have a significantly shorter median commute distance compared to all NY

(28% smaller) than residents of downtown LA compared to all LA (3% smaller). This

is likely because the Los Angeles area is more evenly spread out than NY area. As a re-

sult, people who live in the downtown LA commute farther more often than residents of

Manhattan. Second, although the median commute distance of Manhattanites is shorter

than that of downtown LA residents, 2.3 miles in Manhattan vs. 3.2 miles in down-

town LA, the 95th percentile commute distance of Manhattanites is 222% larger at 71.9

miles. These numbers show that when Manhattanites commute far, they commute much

farther than Angelenos. Such long commutes may be due in part to the extensive com-
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muter rail network radiating from Manhattan, which may make such long commutes

more feasible.

5.3 Carbon Footprint Estimation

Our final example application makes the extension from commute estimates to carbon

footprints. To accurately calculate the carbon footprint of a person’s commute, we need

to know the length of the commute and the mode of transportation the person uses.

Although we can estimate the commute distance of a person using the HomeWork al-

gorithm, the sparsity of our data does not allow us to determine a commuter’s mode

of transportation. Instead, we determine the mode of transportation of commuters at

the ZIP code level using US census data. Specifically, we used Table P30 from the

2000 US census (Summary File 3): “Means of Transportation to Work for Workers 16+

Years.” [22] to calculate the percentage of commuters that uses a particular mode of

transportation per ZIP code.

The next step is to assign each commuter a mode of transportation that fits her

commute pattern best. The intuition behind our approach is that walkers and bikers in

each ZIP code are likely to be the people with the shortest commutes. To assign a mode

of transportation to each commuter, we first sort the users in each ZIP code according to

the length of their commute. If the census reports that P% of commuters in the ZIP code

walk or bike to work, then the lowest P% of ranked users in that ZIP code are treated as

walkers/bikers with zero carbon emissions. The remaining commuters are assigned the

average of the remaining modes of transportation in that ZIP code. For example, assume

that we have two commuters in a ZIP code with 50% walkers, 25% drivers, and 25%

train passengers. In this example, the commuter with the shorter commute distance is

assigned to be a walker and the other user is assigned as driving half the time and taking

a train the other half.

Finally, combining this information with the amount of carbon dioxide emitted per

person by each mode of transportation [3] allows us to compute the rough amount of

carbon dioxide emitted per commuter. Aggregating commuters at the ZIP code level

allows us to generate a distribution of carbon dioxide emissions per commuter in each

ZIP code.

(a) Los Angeles (b) New York

Fig. 7. Heat maps of median carbon emitted per person for each direction of a commute in the

ZIP codes in our study. Darker ZIP codes denote larger carbon footprint. Note that all NY and

LA ZIP codes are colored according to the same scale.
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Figure 7 shows heat maps of LA and NY, where shading corresponds to the median

carbon emission per person in each ZIP code in each direction of a commute. In the

New York area, increasing distance from Manhattan correlates with increasing carbon

footprint. In contrast, Los Angeles is fairly uniform throughout, with the exception of

certain parts of Antelope Valley (in the northeast part of the map), which are separated

from downtown LA by a mountain range that must be driven around. These patterns

match well with what would be expected from both cities. Popular knowledge indicates

that in New York, many people commute into the city center, while in Los Angeles,

there is no specific region where people live or work. Manhattan ZIP codes have the

lowest carbon footprints of all ZIP codes studied. Specifically, a median amount of

carbon dioxide emitted per person is 0.5 kg per trip in Manhattan, 1.07 kg per trip in

downtown LA, and 3.7 kg per trip in Antelope Valley.

Generating carbon footprint estimates is a good example of how our technique for

computing commuting distances can be combined with already available data to pro-

duce new and previously difficult to obtain information.

6 Related Work

There are two broad categories of work closely related to ours. One, there is a body of

work that seeks to determine people’s important locations based on GPS traces or WiFi

beacons. Two, there have been a number of efforts to use cellular network data to find

patterns of human mobility. We next survey these two categories of work and contrast

them with our own.

Recently, Hightower et al. [11] and then Kim et al. [14] presented algorithms for

determining semantically meaningful places based on continuous tracking of GSM and

WiFi beacons. Kang et al. [13] explored how clustering locations obtained through WiFi

beacons can be used for identifying places people visit. Previous work [1, 16–18] has

also explored how semantically meaningful places can be discovered based on series

of GPS coordinates. Similarly, Mun et al. [19] estimate the environmental impact of

individual travel using GPS traces. Although accurate, these efforts require much finer

granularity of data than is available from Call Detail Records. In contrast, we operate

on a much larger data set composed of relatively sparse and coarse location samples,

which requires a different approach to determining important places in people’s lives. In

addition, these other approaches collect data using software running on users’ devices,

which consumes power on those devices and may inhibit large-scale data collection. In

contrast, our data is collected by the network for all devices, and does not consume any

power on those devices beyond what is consumed by normal use.

There is also a growing body of work attempting to discover patterns of human

mobility from cellular network data. González et al. [9] used cellphone records from an

unnamed European country to create models of people’s movement patterns. Our own

recent work [12] characterized the daily range of movement of people in two cities in

the United States. Other work has developed algorithms for predicting where a user will

travel next [2, 5, 15]. In contrast to the work presented in this paper, that earlier body of

work did not seek to attribute importance to any particular location.

Previous attempts to measure the predictability of cell phone users restrict their

datasets to highly active users [21] or force phones to provide more frequent location

updates than would normally occur [23]. We demonstrate in our work that these steps
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are not necessary. We show that we are able to accurately determine important locations

across a wide range of usage modes, from highly connected individuals to users that

make only a few calls a week.

Finally, Girardin et al. used cell phone usage within cities to determine locations of

users in Rome [6], New York City [8], and Florence [7]. They were able to find where

people clustered in these cities and the major paths people tended to take. In a sense,

they explored the converse of our question. While we ask “to how many locations does

this person travel?”, they ask “how many people travel to this location?”. Furthermore,

their work is restricted to a view of a single city, while our work captures travel over a

whole country for the subjects in our dataset.

7 Conclusions

This paper has described our work to identify important personal places and movement

patterns based on cellular network data. As the central focus of our research, we have

proposed and evaluated three algorithms derived from a logistic regression-based analy-

sis of volunteers. The first of these algorithms identifies Important Places based on call

and text message records. The other two, Home and Work, narrow down these important

places to identify the most likely home and work locations, allowing for the case when

they may be one and the same. We validated our algorithms by comparing our results

to ground truth from volunteers and to US census data.

Estimating and modeling human mobility is important for many technical and pol-

icy reasons. Previously, however, significant challenges have lain in gathering large-

scale, comprehensive, and accurate data on which to base such estimates and models.

Our work demonstrates that call and text records from cellular networks represent an

unobtrusive and accurate way to gather large-scale mobility data. Furthermore, the large

degree of aggregation and anonymization allows us to usefully employ this data without

unduly impinging on the privacy of any individual.

Viewed broadly, our clustering and location algorithms form a foundation for a

range of accurate, low-overhead analyses of human movement and social patterns. As

specific examples, this paper demonstrates how we can use home and work identifi-

cation to perform analyses of commute distances and estimates of commuting carbon

footprints. We demonstrate that we can find users’ important locations to within 3 miles

88% of the time. We further estimate commute distances within 3 miles of ground truth

82% of the time. In fact, our commute distance estimation errors are quite close to that

of an oracle technique, with a median difference from the oracle of only 0.5 miles. Our

work is the first to show accurate home and work location estimates and apply them to

find carbon emissions from traces that include not just heavy daily cellular phone users,

but a nearly universal sample of the user population.
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