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1. Approximate predictive distribution
Given the approximate posterior and a new test input x∗,
we wish to make a prediction about the test output y∗. That
is to find p(y∗|x∗,X,Y) ≈

∫
du p(y∗|x∗,u) q(u|X,Y).

This predictive distribution is not analytically tractable, but
fortunately, we can approximate it by a Gaussian in a sim-
ilar fashion to the method described in the main text. That
is, a single forward pass is performed, in which each layer
takes in a Gaussian distribution over the input, incorporates
the approximate posterior of the inducing outputs and ap-
proximates the output distribution by a Gaussian. An alter-
native to obtain the prediction is to forward sample from the
model, but we do not use this approach in the experiments.

2. Extra experimental results
2.1. Regression

Due to the page limitation of the main text, we include
here several figures and tables showing the full experimen-
tal results and analyses from the regression experiments on
10 UCI datasets. Note that the results for DGPs reported
here could be improved further by increasing the number
of pseudo datapoints. We choose 50 and 100 pseudo dat-
apoints (or 100 and 200 for the big datasets) so that the
training time and prediction time are comparable across
all methods. Next we show the full results for the im-
plemented methods and the their average rank across all
train/test splits.

• Figures 1 and 2 show the full MLL results for all meth-
ods and all datasets. Part of these results have been
included in the main text. These figures show that
DGPs with our approximation scheme is superior as
measured by the MLL metric, obtaining the top spot
in the average ranking table.

• Figures 3 and 4 show the full RMSE results for all

methods. Surprisingly, though not doing well on the
MLL metric, i.e. providing inaccurate predictive un-
certainty, BNN-SGLD with one and two layers are
very good at predicting the mean of the test set. DGPs,
on average, rival or perform better than this approxi-
mate sampling scheme and other methods.

• Figures 5 and 6 show the subset of the MLL results
above, for GP architectures, and their average rank-
ing. This again demonstrate that DGPs are more flex-
ible than GPs, hence always obtain better predictive
performance. The only exception is the network with
a one dimensional hidden layer or a warped GP which
performs poorly relative to other architectures.

• Similarly, Figures 7 and 8 show evidence that increas-
ing the number of layers and hidden dimensions helps
improving the accuracy of the predictions.

• We include a similar analysis for approximate infer-
ence methods for BNNs in Figures 9, 10, 11 and
12. This set of results demonstrates that VI(KW)
and SGLD with two hidden layers provide good per-
formance on the test sets, outperforming other meth-
ods in shallower architectures. HMC with one hid-
den layer performs well overall, but its running time
is much larger compared to other methods. Other de-
terministic approximations [VI(G), PBP and Dropout]
perform poorly overall.

Tables 3 and 4 show the average test log-likelihood and
error respectively for all datasets. The best deterministic
method for each dataset is bolded, the best method overall
(deterministic and sampling) is underlined and emphasised
in italic. The average ranks of the methods across the 10
datasets are also included.
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Figure 1. Average test log likelihood for all methods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MLL Average Rank

PBP−1
Dropout−1
SGLD−1
DGP−1 50
SGLD−2
VI(KW)−1
GP 50

DGP−3 100
DGP−2 100

DGP−3 50
DGP−2 50

GP 100
HMC−1

VI(KW)−2
DGP−1 100

CD

Figure 2. The average rank based on the test MLL of all methods across the datasets and their train/test splits, generated based on
(Demšar, 2006). See the main text for more details.

2.2. Binary and multiclass classification

We test our approximate inference scheme for DGPs with
non-Gaussian noise models. However, as shown in Tables
1 and 2, DGPs often obtain a marginal gain over GPs, as

compared to some substantial improvement in the regres-
sion experiments above. We speculate that this is due to our
current initialisation strategy and our diagonal Gaussian ap-
proximation at last layer for multiclass classification. We
will follow this up in future work.
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Figure 3. Average test RMSE for all methods
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Figure 4. The average rank based on the test RMSE of all methods across the datasets and their train/test splits, generated based on
(Demšar, 2006). See the main text for more details.
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Figure 5. Average test log likelihood for GP methods
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Figure 6. The average rank based on the test MLL for GP/DGP models across the datasets and their train/test splits, generated based on
(Demšar, 2006). See the main text for more details.
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Figure 7. Average test RMSE for GP methods
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Figure 8. The average rank based on the test RMSE for GP/DGP models across the datasets and their train/test splits, generated based
on (Demšar, 2006). See the main text for more details.
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Figure 10. The average rank based on the test MLL for methods on BNNs across the datasets and their train/test splits, generated based
on (Demšar, 2006). See the main text for more details.
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on (Demšar, 2006). See the main text for more details.
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2.3. Comparison to the Nested Variational approach

Recent work by Hensman and Lawrence (2014) pro-
posed using a nested variational scheme (Nested VI)
to perform inference in DGPs. There is an error in
the final bound in (Hensman & Lawrence, 2014), and
hence a corresponding error in the implementation pro-
vided here https://github.com/SheffieldML/
deepGPy [visited on 25/05/2016]. However, we still use
this version of the code to run the comparion below.

We compare the proposed method using approximate EP
(AEP) against Nested VI on 4 UCI regression datasets us-
ing Deep GPs with two GP layers and a one-dimensional
hidden layer. We vary the number of pseudo points M
and measure the performances using two metrics, RMSE
and NLL as described in the main text. The results are in-
cluded in figs. 13 and 14, demonstrating that the proposed
approach, AEP outperforms Nested VI by a large margin.
We also note that Nested VI often consistently performs
poorly and does not improve as more pseudo points are
added.

3. EP and SEP
In this section, we summarise the EP and SEP itera-
tive procedures. The EP algorithm is often mistaken to
be optimising KL(p(u|X,y)||q(u)); however, this objec-
tive function is intractable. Instead, EP updates one ap-
proximate factor at a time by the following procedure:
1. remove the factor t̃n(u) to form the leave-one-out or
cavity distribution q\n(u) ∝ q(u)/t̃n(u), 2. minimise
KL(q\n(u)p(yn|u,Xn)||q(u)), resulting in a new approx-
imate factor t̃newn (u) which can be 3. combined with the
cavity to form the new approximate posterior. This proce-
dure is iteratively performed for each datapoint, and often
requires several passes through the training set for conver-
gence. One disadvantage of the EP algorithm is the need
to store the approximate factors in memory, which costs
O(NM2).

To sidestep this expensive memory requirement, the SEP
algorithm proposes tying the approximate data factors, that
is to make some or all factors the same. The simplest
case is q(u) ∝ p(u)g(u)N where g(u) is the average data
factor. The SEP algorithm, similar to EP, involves itera-
tively finding the new approximate factor gnew(u), as fol-
lows: 1. remove the factor g̃(u) to form the leave-one-out
or cavity distribution q\1(u) ∝ q(u)/g̃(u), 2. minimise
KL(q\1(u)p(yn|u,Xn)||q(u)), resulting in a new approx-
imate factor g̃new(u) which can be 3. combined with the
cavity to form the new approximate posterior, and in ad-
dition to EP, 4. perform an explicit update to the average
factor g(u): g(u) ← g1−β(u)gβnew(u), where β is a small
learning rate.

4. EP/SEP moment matching step
We have proposed using the EP approximate marginal like-
lihood for direct optimisation of the approximate posterior
over the pseudo datapoints and the hyperparameters. An al-
ternative is to run SEP/EP to obtain the approximate poste-
rior, and once this is done, obtain the approximate marginal
likelihood for hyperparameter tuning and repeat.

As we use Gaussian EP/SEP, the deletion, the update step
and the explicit update step in the case of SEP are straight-
forward. The moment matching step is equivalent to the
following updates to the mean and covariance of the ap-
proximate posterior:

m = m\1 +V\1
d logZ
dm\1

V = V\1 −V\1
[
d logZ
dm\1

(
d logZ
dm\1

)ᵀ

− 2
d logZ
dV\1

]
V\1,

where q\1(u) = N (u;m\1,V\1) is the cavity distribution,
obtained by the deletion step.

The inference scheme therefore reduces to evaluating the
normalising constant Z and its gradient. Fortunately, we
can approximately compute logZ and its gradients using
the probabilistic propagation algorithm, in exactly the same
way as discussed in the main text.

5. Computing the gradients of logZ
Letml and vl be the mean and variance of the output Gaus-
sian at the l-th layer in the forward propagation step, as we
have shown in the main text,

ml = ψl,1Al (1)

vl = σ2
l + ψl,0 + tr (Blψl,2)−m2

l (2)

where

ψl,0 = Eq(h1)[Khl,hl ] (3)
ψl,1 = Eq(hl−1)[Khl,ul ] (4)

ψl,1 = Eq(hl−1)[Kul,hlKhl,ul ] (5)

Al = K−1
ul,ul

m
\1
l (6)

Bl = K−1
ul,ul

(V
\1
l +m

\1
l m

\1,T
l )K−1

ul,ul
−K−1

ul,ul
(7)

In the forward propagation step, we need to compute the
gradients ofml and vl w.r.t. αl, the parameters of the model
and ml−1 and vl−1, the mean and variance of the distribu-
tion over the input. Let βl = {αl,ml−1, vl−1} As Al and
Bl are shared between datapoints, one trick to reduce the
computation required for each datapoint is to compute the
gradients w.r.t. A and B first, then combine them at the end
of each minibatch. If we assume that Al and Bl are fixed,

https://github.com/SheffieldML/deepGPy
https://github.com/SheffieldML/deepGPy
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Figure 13. The test RMSE of the proposed approach and the Nested VI approach in (Hensman & Lawrence, 2014). The lower the better.
AEP outperforms Nested VI by a large margin.

the gradients of ml and vl are as follows

dml

dβl
=

dψl,1

dβl
Al (8)

dvl
dβl

=
dσ2

l

dβl
+

dψl,0

dβl
+ tr

(
Bl

dψl,2

dβl

)
− 2ml

dml

dβl
(9)

dml

dAl
= ψᵀ

l,1 (10)

dml

dBl
= 0 (11)

dvl
dAl

= −2ml
dml

dAl
(12)

dvl
dBl

= ψᵀ
l,2 (13)

At the end of the forward step, we can obtain Z = q(y) =

N (y;mL, vL), leading to,

logZ = −1

2
log(2πvL)−

1

2

(y −mL)
2

vL
(14)

d logZ
dmL

=
y −mL

vL
(15)

d logZ
dvL

= − 1

2vL
+

1

2

(y −mL)
2

v2L
. (16)

We are now ready to perform the backpropagation step, that
is we compute the gradients of logZ w.r.t. parameters at a
layer αl using the chain rule,

d logZ
dαl

=
d logZ
dml

dml

dαl
+

d logZ
dvl

dvl
dαl

. (17)

Similarly, we can compute the gradients w.r.t. the mean and
variance of the input distribution, ml−1 and vl−1, and Al

and Bl.
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Figure 14. The test NLL of the proposed approach and the Nested VI approach in (Hensman & Lawrence, 2014). The lower the better.
AEP outperforms Nested VI by a large margin.

6. Computing the gradients of the
approximate marginal likelihood

The approximate marginal likelihood as discussed in the
main text is as follows,

F = −(N − 1)φ(θ) +Nφ(θ\1)− φ(θprior) +
N∑

n=1

logZn

(18)

where θ, θ\1 and θprior are the natural parameters of q(u),
q\1(u) and p(u) respectively, φ(θ) is the log normaliser or
log partition function of a Gaussian distribution with natu-
ral parameters θ or mean m and covariance V,

φ(θ) =
1

2
log |V|+ 1

2
mᵀV−1m, (19)

α is the model hyperameters that we need to tune, and
logZn = log

∫
q\n(u)p(yn|u,Xn)du. Consider the gra-

dient of this objective function w.r.t. one parameter αi,

dF
dαi

= −(N − 1)
dφ(θ)

dαi
+N

dφ(θ\1)

dαi

− dφ(θprior)

dαi
+

N∑
n=1

d logZn
dαi

= −(N − 1)
dφ(θ)

dθ

dθ

dαi
+N

dφ(θ\1)

dθ\1
dθ\1

dαi

− dφ(θprior)

dθprior

dθprior
dαi

+

N∑
n=1

d logZn
dαi

= −(N − 1)ηᵀ
dθ

dαi
+Nη\1,ᵀ

dθ\1

dαi

− ηᵀprior
dθprior
dαi

+

N∑
n=1

d logZn
dαi
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where η, η\1 and ηprior are the expected sufficient statistics
under the q(u), q\1(u) and p(u) respectively. Specifically,
for Gaussian approximate EP as discussed in the main pa-
per, the natural parameters are as follows,

q(u) : θ = θprior +Nθg

q\1(u) : θ\1 = θprior + (N − 1)θg

p(u) : θprior

leading to

dF
dαi

=
[
−(N − 1)ηᵀ +Nη\1,ᵀ − ηᵀprior

] dθprior
dαi

+N(N − 1)
[
−ηᵀ + η\1,ᵀ

] dθg
dαi

+

N∑
n=1

d logZn
dαi

7. Dealing with non-Gaussian likelihoods
In this section, we discuss how to compute the log of
Z =

∫
du q\1(u) p(y|u,x) when we have a non-Gaussian

likelihood p(y|u,x). For example, if the observations
are binary, we can use the probit likelihood, that is
p(y|fL, hL−1) = φ(yfL) where φ is the Gaussian cdf. We
now need to compute,

Z =

∫
q\1(u)p(y|u,x)du

=

∫
q\1(u)p(fL|hL−1,uL)p(y|fL)dudhL−1dfL

≈
∫
N (fL;mf , vf)p(y|fL)dfL

where we can find q(fL) = N (fL;mf , vf) using the for-
ward pass of the probabilistic backpropagation. The final
integral above can be computed exactly, leading to,

Z ≈ φ
(

ymf√
vf + 1

)
If we have a different likelihood and there is no simple
approximation available as above, we can evaluate Z by
Monte Carlo averaging, that is to draw samples from q(fL),
evaluate the likelihood, then sum and normalise accord-
ingly. However, as we are interested in logZ and its gradi-
ents, the objective and gradients obtained by Monte Carlo
will be slightly biased. This bias is, however, can be signif-
icantly reduced by using more samples.

8. Improving the Gaussian approximation
In this section, we discuss how to obtain a non-diagonal
Gaussian approximation for the hidden variables from the
second layer and above, when computing logZ . Consider
a DGP with two GP layer, a one dimensional hidden layer

and two dimensional observations y = [y1, y2]. Following
the derivation in the main text, we can exactly marginalise
out the inducing outputs for each GP layer:

Z =

∫
dh1q(y|h1)q(h1) (20)

where q(h1) = N (h1;m1, v1) and

q(y|h1) = N (y|h1;my|h1
,Vy|h1

)

= N
(
y|h1;

[
my1|h1

my2|h1

]
,

[
vy1|h1

0
0 vy2|h1

])
since we assume that there are two independent GPs in the
second layer, and the distribution above is a conditional
given the input to the second layer, h1. Importantly, we
need to integrate out h1 in eqn. (20). As such, the result-
ing distribution over y become a complicated distribution
in which y1 and y2 are strongly correlated. Consequently,
any approximation that breaks this dependency could be
poor. We aim to approximate this distribution by a non-
diagonal Gaussian with the same moments, that is in words,
the approximating Gaussian will have the mean being the
expected mean, and the new covariance being the expected
covariance plus the covariance of the mean,

my = Eq(h1)[my|h1
] (21)

Vy = Eq(h1)[Vy|h1
] + covarq(h1)[my|h1

] (22)

Substitute the mean and covariance of the conditional
q(y|h1) into the above expressions gives us,

my =

[
Eq(h1)[my1|h1

]
Eq(h1)[my2|h1

]

]
(23)

and

Vy =

[
Eq(h1)[vy1|h1

] 0
0 Eq(h1)[vy2|h1

]

]
+

[
Eq(h1)[m

2
y1|h1

] Eq(h1)[my1|h1
my2|h1

]

Eq(h1)[my1|h1
my2|h1

] Eq(h1)[m
2
y2|h1

]

]
−mym

ᵀ
y (24)

Note that the diagonal elements of Vy are identical to the
expression for the variance in the main text for the single
dimensional case.
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