
CryptAttackTester: formalizing attack analyses
Daniel J. Bernstein∗

University of Illinois at Chicago
USA

Ruhr University Bochum
Germany

Tung Chou∗
Academia Sinica

Taiwan

Abstract
Quantitative analyses of the costs of cryptographic attack algo-
rithms play a central role in comparing cryptosystems, guiding the
search for improved attacks, and deciding which cryptosystems
to standardize. Unfortunately, these analyses often turn out to be
wrong.

Formally verifying complete proofs of attack performance is a
natural response but crashes into an insurmountable structural
problem: there are large gaps between the best proven cost among
known attack algorithms and the best conjectured cost among
known attack algorithms. Ignoring conjectured speedups would be
a security disaster.

This paper presents a case study demonstrating the feasibility
and value of successfully formalizing what state-of-the-art attack
analyses actually do. The input to this formalization is not a proof,
and the output is not a formally verified proof; the formalization pro-
cess nevertheless enforces clear definitions, systematically accounts
for all algorithm steps, simplifies review, improves reproducibility,
and reduces the risk of error.

Concretely, this paper’s CryptAttackTester (CAT) software in-
cludes formal specifications of (1) a general-purpose model of com-
putation and cost metric, (2) various attack algorithms, and (3) for-
mulas predicting the cost and success probability of each algorithm.
The software includes general-purpose simulators that systemati-
cally compare the predictions to the observed attack behavior in
the same model. The paper gives various examples of errors in the
literature that survived typical informal testing practices and that
would have been immediately caught if CAT-enforced links had
been in place.

The case study in CAT is information-set decoding (ISD), the top
attack strategy against the McEliece cryptosystem. CAT formalizes
analyses of many ISD algorithms, covering interactions between (1)
high-level search strategies from Prange, Lee–Brickell, Leon, Stern,
Dumer, May–Meurer–Thomae, and Becker–Joux–May–Meurer; (2)
randomwalks fromOmura, Canteaut–Chabaud, Canteaut–Sendrier,
and Bernstein–Lange–Peters; and (3) speedups in core subroutines
such as linear algebra and sorting.

1 Introduction
There is a long history of critical flaws in analyses of the perfor-
mance of algorithms to attack cryptosystems. For example:

• The 1984 Schnorr–Lenstra factorization algorithm [109]
was, in the words of 1992 Lenstra–Pomerance [79, page
484], “the first factoring algorithm of which the expected
running time was conjectured to be 𝐿𝑛 [12 , 1 + 𝑜 (1)], and it
is now also the first algorithm for which that conjecture
must be withdrawn”.

• 2010 Howgrave-Graham–Joux [67] claimed “we can solve
1/2-unbalanced knapsacks in time 𝑂̃ (20.3113𝑛)”, and backed
this up with a detailed algorithm analysis [67, Section 4].
However, in 2011, Becker–Coron–Joux [15, Section 2] re-
ported that May and Meurer had found a mistake in [67],
and that correcting this mistake changed 0.3113 to 0.337.

• 2017 Chailloux–Naya-Plasencia–Schrottenloher [44] stated
that a generic quantum algorithm to find 𝑛-bit collisions
had “a time-space product of 𝑂̃ (212𝑛/25)”, outperforming
the well-known 𝑛/2 exponent for non-quantum parallel
algorithms. However, Bernstein [21] pointed out that this
12𝑛/25 was a calculation error: the time-space product for
the algorithm actually has exponent 13𝑛/25, above 𝑛/2.

• 2019 Esser–May [56] claimed subset-sum exponent 0.255,
improving upon the best previous exponent (namely 0.291
from [15], improving upon the aforementioned 0.337). Three
months later, a comment “Issue with counting duplicate
representations” was added and the paper was withdrawn.

• 2019 Ducas–Plançon–Wesolowski [53, Figure 5] graphed
performance of an asymptotically useful quantum algo-
rithm to attack Ideal-SVP, and drew the “reassuring” con-
clusion that “the cross-over point with BKZ-300 should not
happen before ring rank 𝑛 ≈ 6000”. In 2021, an online up-
date of [53] radically revised the graph and changed “6000”
to “2000”, crediting a six-person team for discovering a
critical sign error inside the underlying attack analysis.

For [56], the error was caught at the preprint stage. For each of
the other examples, the error was in a peer-reviewed paper in a
high-profile publication venue. Many more examples are known.

The positive view is that each of these examples shows the
scientific community successfully identifying and correcting an
error. It is nevertheless concerning to see one example after another
of an error playing a critical role in an announced attack analysis
and not being caught until later, sometimes years later. Even more
concerning is that today’s processes for catching these errors are
informal and haphazard; presumably the known error rate is an
underestimate of the actual error rate. This procedural deficiency
leaves real-world cryptography vulnerable to an important class of
attacks; see Appendix A.

1Both authors contributed equally to this research. Author list in alphabetical order; see
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf. This work
was funded by the Intel Crypto Frontiers Research Center; by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) as part of the Excellence Strategy
of the German Federal and State Governments—EXC 2092 CASA—390781972 “Cyber
Security in the Age of Large-Scale Adversaries”; by the U.S. National Science Foun-
dation under grant 1913167; by the Taiwan’s Executive Yuan Data Safety and Talent
Cultivation Project (AS-KPQ-109-DSTCP); and by the Taiwan’s National Science and
Technology Council (NSTC) grant 109-2222-E-001-001-MY3. Date of this document:
2023.06.14.

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

Daniel J. Bernstein and Tung Chou

1.1. The obvious path to high assurance, and why the path
fails for cryptanalysis. See [14] for a survey of exciting progress
in formalization and automated verification of proofs, including
security proofs for cryptographic protocols and correctness proofs
for cryptographic software. It is natural to ask whether formally
verified proofs can also address the deluge of errors in security
analysis of the underlying mathematical primitives.

The obvious strategy to formally verify a proof of the effective-
ness of any particular attack, where effectiveness is defined as the
pair (success probability, cost), is as follows:

• Fully specify the model of computation and a cost metric.
• Fully specify the problem under attack.
• Fully specify the attack algorithm in the model of computa-

tion.
• Fully specify the formula for the predicted cost of the algo-

rithm.
• Fully specify the formula for the predicted success proba-

bility of the algorithm.
• Fully specify the proof that the algorithm matches these

predictions.
• Have a computer verify each step in the proof.

The first five steps are formally stating the claim of attack effec-
tiveness. The sixth step takes the existing informal proof of the
claim and turns it into a formal proof. The last step eliminates
errors more reliably than humans do; this step requires all of the
specifications to be in languages whose semantics are understood
by the computer.

But what happens if the existing attack analysis isn’t an informal
proof, but merely a conjecture? The analyses mentioned above from
[109], [67], [15], [56], and [53], for factorization and subset sum and
Ideal-SVP, never claimed to be theorems: they are a different kind
of science, relying on estimates and heuristics and experiments.
Some fragments of the analyses had proofs (see, e.g., [67, Corollary
5]), but the errors were outside these fragments.

Similar comments apply to state-of-the-art attacks against many
other cryptographic problems. The best proven effectiveness among
known attacks is usually far worse than the best conjectured ef-
fectiveness among known attacks: see, e.g., [67] saying that 0.385
is the best exponent “for which we can prove the algorithm” but
conjecturing that the algorithm reaches 0.3113. Focusing on proven
effectiveness would, conjecturally, overestimate security levels—
and would do so in a way that varies from one cryptosystem to
another. Readers not familiar with these patterns should see Ap-
pendix B for many examples.

1.2. Formalizing and automating attack simulations. A proof
is only one way to link a model of computation, a cost metric,
an attack algorithm, a cost prediction, a problem, and a success-
probability prediction. Another way is to simulate the attack in
that model against that problem, comparing its observed success
probability (over multiple simulation runs) to the prediction, and
comparing its observed cost in the model to the prediction.

Formalizing and automating this process for a list of attacks
would work as follows:

• Fully specify the model of computation and a cost metric.
• Fully specify the problem under attack.

defn:
model of

computation

defn:
cost metric

defn:
attack

algorithm

defn:
cost

prediction

defn:
probability
prediction

defn:
problem

prediction for
cryptographic

sizes

formal spec:
model of

computation

formal spec:
problem

formal spec:
cost metric

formal spec:
attack

algorithm

formal spec:
cost

prediction

formal spec:
probability
prediction

prediction
matches
simulated
cost?

prediction
matches
simulated
probability?

formalized
prediction for
cryptographic

sizes

Figure 1: Data flow when an informal attack analysis
(rounded dashed boxes) is supplemented with a formaliza-
tion. Dotted edges are informal processes.

• Fully specify each attack algorithm in the model of compu-
tation.

• Fully specify the formula for the predicted cost of each
algorithm.

• Fully specify the formula for the predicted success proba-
bility of each algorithm.

• Have a computer simulate each algorithm, comparing the
observed cost to the prediction.

• Have a computer simulate each algorithm, comparing the
observed success probability to the prediction.

Note that the model of computation, the cost metric, and the sim-
ulator can and should be attack-independent tools, for reusability
and reviewability.

Attack simulations are already the central tool used in the liter-
ature to check conjectural attack analyses. Formalizing complete
attack analyses would catch further errors, and would provide a
clear structure for splitting reviews and risk analyses into simpler
components. See Figure 1.

As examples of how attack simulations are already used, [67]
tried its subset-sum algorithm, and [53] simulated its quantum
Ideal-SVP algorithm. See Appendix C for how the aforementioned
errors in [67] and [53] slipped past the experiments in those papers,
but would have been stopped if the complete attack analyses had
been formalized.

The literature sometimes presents what can be viewed as compo-
nents of this type of formalization, at least for simple examples. Any
software that computes predictions for cost and success probability

CryptAttackTester: formalizing attack analyses

can be viewed as fully specifying formulas, modulo any relevant
ambiguities in the programming language. The literature presents
simulations checking some simple algorithms in clearly defined
models of computation, and sometimes also checking cost formulas
in clearly defined cost metrics. For example, [106] presents and
checks a gate-level algorithm for reversible scalar multiplication,
the main work inside an elliptic-curve version of Shor’s algorithm.

However, this level of specification rapidly disappears as one
moves to more complicated attack algorithms. It is not at all clear
from the literature that it is feasible to formalize state-of-the-art
cryptanalysis of unbroken cryptosystems.

1.3. The case of ISD. This paper focuses on one case study, called
“information-set decoding” (ISD). This is the state-of-the-art attack
strategy against a broad class of code-based cryptosystems, notably
the well-known McEliece cryptosystem.

This paper’s CryptAttackTester (CAT) software demonstrates
feasibility, for this case study, of carrying out the entire linked series
of formalization steps explained in Section 1.2. CAT includes formal
specifications of (1) a general-purpose model of computation and
cost metric, (2) the problem under attack, (3) a spectrum of ISD
algorithms in this model, (4) formulas predicting the cost of each
algorithm in this metric, and (5) formulas predicting the success
probability of each algorithm. This paper carefully tunes the details
of its ISD algorithms for performance in this metric.

CAT includes a general-purpose simulator for this model of com-
putation. This paper reports what this simulator says about these
cost and probability formulas for these ISD algorithms. In short, the
cost predictions are perfect, and the success-probability predictions
are close to perfect. This paper also quantifies the predicted effec-
tiveness of these ISD algorithms for proposed McEliece parameters.

This simulator provides a clear framework for evaluating fur-
ther ISD algorithms: add specifications of the algorithms and their
cost/probability formulas, make sure the formulas are accurate in
the simulations, and then use the formulas to compare to other
algorithms. See Section 3. The framework is not limited to some
preconceived notion of how ISD algorithms should be built: the
same simulator can run arbitrary attack algorithms.

1.4. Reasons to take ISD as a case study. Among all proposed
post-quantum public-key encryption systems, the McEliece cryp-
tosystem has the strongest security track record. ISD was already
known when the cryptosystem was introduced in 1978, and has
always driven evaluations of the McEliece security level. Other
known attack strategies have always been much slower than ISD,
avoiding the worrisome situation of security being damaged by an
improvement in any one of multiple competing lines of attack. Im-
provements in ISD since 1978 have made zero change in asymptotic
McEliece exponents (for this asymptotic analysis see [31], [30, Sec-
tion 1], and [119]), and have made only small changes in concrete
exponents for security levels of interest (as Table 1 illustrates).

The fact that actual attack improvements are small is not a reason
to expect analysis errors to be correspondingly small. For example,
if an analysis misses an attack step, the magnitude of the error
depends on how the cost of that step compares to the cost of other
steps. If two different cost metrics are conflated, the magnitude of
the error depends on the gap between the cost metrics. If there is a

calculation error, the magnitude of the error can be arbitrarily large.
These effects have no obvious connection to how stable attacks are.

When actual security levels are converging while errors are not,
it becomes more and more likely for a claimed algorithm improve-
ment to be the result of an error. This confuses readers regarding
security risks, and warps the scientific process of searching for
better attacks.

Appendix N gives examples of the magnitude of numerical vari-
ations among estimates of ISD attack costs, especially as a result
of undocumented variations in which steps are counted and how
costs are assigned to those steps. This paper’s formalization system-
atically enforces counting all steps in a clearly defined cost metric,
making it much easier to see actual algorithm improvements.

2 Choosing a model of computation and a cost
metric

The literature contains many different definitions of the word “algo-
rithm”, and many different definitions of cost metrics for algorithms.
Often two choices are polynomially equivalent in the sense that
cost𝐶 under the first definition implies cost𝐶𝑂 (1) under the second
definition and vice versa, making the definitions interchangeable
for, e.g., proving reductions among polynomial-time adversaries;
but more precision is required when one wants to see, e.g., the
difference between an attack taking time 20.3𝑛 and an attack taking
time 20.5𝑛 .

This section selects a particular model of computation and cost
metric for this paper’s case study. In short, the model is a conven-
tional Boolean-circuit model, specifically with every ≤2-bit-to-1-bit
function allowed as a cost-1 gate. Bit 0 and bit 1 and bit copying are
free. The model and metric have a simple definition (see Section 2.1)
and a straightforward formalization (see Section 3.6).

Conceptually, this paper’s formalization process can start with
other fully defined models of computation and cost metrics. There
are many possibilities in the literature beyond this particularly
easy Boolean-circuit model. Appendix E summarizes other com-
mon Boolean-circuit models. Appendix F considers validation of
the particular model used here. Appendix G considers the more
complicated possibility of using random-access-machine models
(RAM models) rather than Boolean-circuit models.

2.1. The selected circuit model and cost metric. The following
model of computation has two parameters: nonnegative integers 𝐴
and 𝐵. The model expresses algorithms as circuits that map 𝐴 bits
of input to 𝐵 bits of output.

An𝑨-bit-to-𝑩-bit circuit is a sequence (𝐶𝐴,𝐶𝐴+1, . . . ,𝐶𝐴+𝐿−1)
such that (1) 𝐿 is an integer with 𝐿 ≥ 𝐵 and (2) 𝐶𝑘 , for each 𝑘 ∈
{𝐴,𝐴 + 1, . . . , 𝐴 + 𝐿 − 1}, has the form (ℓ, 𝐹 , 𝑖0, . . . , 𝑖ℓ−1) where

• ℓ ∈ {0, 1, 2};
• 𝐹 is a function from {0, 1}ℓ to {0, 1}; and
• 𝑖0, . . . , 𝑖ℓ−1 ∈ {0, 1, . . . , 𝑘 − 1}.

The cost of the circuit is the number of 𝑘 for which𝐶𝑘 has the form
(2, . . .) or (1, (𝑥 ↦→ 1 − 𝑥), 𝑖).

The circuit is run as follows. The input bits, in order, are labeled
𝑥0, . . . , 𝑥𝐴−1. The circuit computes successively 𝑥𝐴, . . . , 𝑥𝐴+𝐿−1 by
defining each 𝑥𝑘 as 𝐹 (𝑥𝑖0 , . . . , 𝑥𝑖ℓ−1) where 𝐶𝑘 = (ℓ, 𝐹 , 𝑖0, . . . , 𝑖ℓ−1).
The output consists of the bits 𝑥𝐴+𝐿−𝐵, . . . , 𝑥𝐴+𝐿−1 in that order.

Daniel J. Bernstein and Tung Chou

3 Structure of the formalization
The output of this paper’s process of formalizing ISD analyses is
the CryptAttackTester (CAT) software package available from [24].
This section explains what CAT contains and how it relates to
informal ISD analyses. See Appendix H for limitations in CAT.

3.1. External interface. The external interface of CAT consists of
various functions that are automated: i.e., the software package in-
cludes software that computes these functions upon request. There
are three classes of functions: predictors, simulators, and explorers.

The predictors are functions predictedcost, predictedprob,
and predictedcp. Each function takes three inputs:

• A list of parameters for the problem under attack. For this
ISD case study, a parameter list is a tuple (𝑛, 𝑘, 𝑡), and the
problem is to recover a secret weight-𝑡 vector 𝑒 ∈ F𝑛2 given a
matrix𝐻 ∈ F(𝑛−𝑘)×𝑛2 and given𝐻𝑒 . See Sections 3.4 and 3.5
for how this problem is formalized.

• An attack name. For this ISD case study, attacks are named
by high-level search strategies (see Section 4): isd0, isd1,
and isd2. There are also straightforward bruteforce and
bruteforce2 attacks as a baseline.

• A list of parameters for the attack: for example, the number
of attack iterations. Each attack has its own list of parameter
names.

The predictedcp function outputs the predicted cost and probabil-
ity of that attack, with those attack parameters, against those prob-
lem parameters. The functions predictedcost and predictedprob
output cost and probability separately, saving time in some appli-
cations of predictedcp.

The simulators are functions circuitcost, circuitprob, and
circuitexample. These take the same inputs as predicted*, but
also output the observed cost and success probability of the attack
circuits for comparison to the predictions, or an input-output ex-
ample for circuitexample. All of these simulators are internally
built from a single unified simulator.

For example, if these functions are asked about attack=isd0
L=0 P=0 I=1 for (𝑛, 𝑘, 𝑡) = (48, 36, 2), they report that the predicted
circuit cost is 12325, the observed circuit cost is 12325, the predicted
circuit success probability is slightly above 0.058, and the circuit
was observed to succeed in 984 out of 16227 trials. The observed
success probability in this example is almost 0.061; this is not a
surprising deviation from the prediction for this number of trials.

If the observed success probability is outside [0.9𝑝, 1.1𝑝], where 𝑝
is the predicted success probability, then circuitprob also returns
an alert. The number of trials, 16227 in this example, is automatically
chosen by circuitprob as 1000 for 𝑝 > 1/2 or ⌈1000(1 − 𝑝)/𝑝⌉ for
𝑝 ≤ 1/2, so alerts are rare when predictions are accurate. Increasing
the 1000 (“trialfactor”) inside circuitprob carries out more
trials; this has the disadvantage of more run time but the advantage
of being able to detect smaller-scale inaccuracies in the predictions.

The explorers formalize various procedures for exploring the
space of circuits:

• problemparams generates a sequence of problem parame-
ters to use for tests (not necessarily the full space of problem
parameters). For ISD, this sequence includes examples of

cryptographic interest such as (3488, 2720, 64) and various
scaled-down examples such as (48, 36, 2).

• attackparams, given problem parameters, returns a list of
pairs, where each pair consists of an attack name and an at-
tack parameter list applicable to those problem parameters.

• searchparams uses heuristics to search for improved attack
parameters, as measured by the ratio between predicted
cost and predicted probability.

Note that, as in the literature, there is no guarantee that optimal
attack parameters have been found (except when parameter spaces
are very small). Perhaps there are large tradeoffs between the per-
formance of an attack and the time spent finding the attack, as
in the examples in [27]. The point of searchparams is to clearly
specify a typical search process, not to claim that this process is
optimal.

3.2. Comparison to previous ISD analyses. Estimates in the
previous ISD literature come from “estimators” having the same ba-
sic data flow as the predictors in CAT: see, e.g., [97], [13], [55], and
[57]. These estimators convert problem parameters, attack names,
and attack parameters (found by search processes with varying
levels of documentation) into predictions of cost and success prob-
ability.

One advantage of the predictors in CAT is that there are com-
plete definitions of algorithms all the way down through the model
of computation and cost metric, giving clear semantics to the predic-
tions. Another advantage is that the details of the analyses of cost
and probability account for various effects that the literature does
not account for. Various highlights of these analyses are explained
later in this paper, and the full analyses are formalized inside the
predictors in CAT.

Both of these advantages follow from the central structural ad-
vantage of CAT: namely, CAT also includes a simulator, with the
simulator results compared to the predictions. The simulator en-
forces clarity in definitions of cost metrics, and clarity in the defini-
tions of the attacks under consideration. The comparisons provide
reasons to believe that the attack analyses used the same clear cost
metrics, accounted for all attack steps, and accounted for all major
probability factors.

As noted in Section 1, these are not proofs. Perhaps an algorithm-
analysis inaccuracy is (1) invisible in small simulations but (2) much
larger at cryptographic sizes. However, this type of formalization
would have rapidly caught all of the peer-reviewed errors listed in
Section 1; see Appendix C for details of two examples. For the case
of ISD (see Appendix N), a large underestimate in [13] would have
been rapidly caught by small simulations, and smaller underesti-
mates that this paper points out in [55] and [57] were caught by
earlier stages in this paper’s formalization process.

The ISD literature includes software for some slices of the space
of ISD algorithms. The critical advantage of this paper’s software is
that it measures every attack in the same clearly defined cost met-
ric used for cost predictions, allowing direct comparisons between
measurements and predictions. For comparison, [29] includes pre-
dictions and software, but notes that “optimizing CPU cycles is
different from, and more difficult than, optimizing the simplified
notion of ‘bit operations’ ” used in the predictions; [29] does not
attempt to close the gap.

CryptAttackTester: formalizing attack analyses

This paper’s software also includes many more ISD algorithms
than previous software. For example, Stern’s algorithm [114], a
specific example of isd1, was improved using random walks in
[42] and more advanced randomwalks in [29]; but the literature has
not analyzed the impact of random walks upon subsequent search
strategies such as isd2. In this paper, every high-level ISD search
strategy is systematically combined with the full space of random-
walk strategies. As another example, this paper’s collision searches
systematically support tradeoffs between buffer sizes, collision-
checking effort, and collision-finding probability; see the QU, PE,
and WI parameters in Section 5.

3.3. The process of adding more attacks. Algorithm designers
go beyond looking at the effectiveness of existing attacks: they
consider the details of how attacks work, and search for more
effective attacks. The internal structure of CAT is designed to assist
in inspection of attack details and in adding further attacks to the
same framework.

For example, the attack named isd2 is defined by a function
named isd2. This is accompanied by an isd2_cost function that
predicts the attack cost, an isd2_prob function that predicts the
attack probability, and an isd2_params_valid function that de-
fines which parameter lists are valid for this attack. There is also
an isd2_params function that generates a sequence of parameter
lists for this attack; the first parameter list is the starting point for
searchparams, and all parameter lists are output by attackparams.

Adding another attack and its analysis to the same framework
means writing a function that constructs the circuit for the attack,
along with functions for cost predictions etc., and adding these new
functions to the list of attacks in CAT.

Attacks do not have to be built from scratch. Often an attack can
be built as a simple modification of another attack. Many compo-
nents of the attacks and analyses inside CAT are already provided
as general-purpose subroutines, such as sorting to build a sort-
ing circuit, sorting_cost to return the cost of that circuit, and
collision_average to return a heuristic estimate for the number
of collisions found by sorting two lists under a limit on the collision
distance; this limit is the WI parameter in Section 5.11.

3.4. Formalizing the problem. A problem is formalized in CAT
as a function psgen that, given a parameter list, returns a pair (𝑃, 𝑠),
where each of 𝑃 and 𝑠 is a bit vector of length determined by the
parameter list. A problem is also accompanied by functions params
(used inside problemparams) and num{inputs,outputs} (which
are used as explained in Appendix K).

A trial in circuitprob, for any particular problem and any par-
ticular attack circuit, uses psgen to generate a pair (𝑃, 𝑠), and asks
whether input 𝑃 to the circuit produces output 𝑠 . Informally, the
problem is to find the “secret” information 𝑠 given the “public”
information 𝑃 .

This class of problems includes, for example, the one-wayness
(“OW-CPA”) problem for any public-key-encryption system (PKE)
equipped with bit-vector encodings. In the OW-CPA problem, a
public key is generated as specified by the PKE; a plaintext is cho-
sen uniformly at random from the plaintext space; a ciphertext is
obtained by encrypting the plaintext under that public key; the
attacker’s goal is to recover the plaintext, given the public key and
the ciphertext. This fits straightforwardly into CAT, with the public

bit vector 𝑃 encoding the public key and the ciphertext, and the
secret bit vector 𝑠 encoding the plaintext.

For interesting problems, psgen is randomized, so there aremany
choices of (𝑃, 𝑠). Currently randomness comes from a DRBG with
known seeds for reproducibility. The DRBG is the mt19937_64
DRBG built into the C++ programming language, not a DRBG de-
signed to be cryptographically strong. The DRBG is isolated inside
a small random module in CAT so that it can be easily replaced.
Preliminary experiments with other DRBGs have not detected any
influence of the DRBG choice upon any of the attacks in CAT. It
would also be possible to run simulations using a hardware RNG.

3.5. An example of a problem. The uniformmatrix problem in
CAT has integer parameters (𝑛, 𝑘, 𝑡) where 𝑛 ≥ 8; 0.7𝑛 ≤ 𝑘 ≤ 0.8𝑛;
and 𝑘 = 𝑛 − 𝑡

⌈
log2 𝑛

⌉
. The secret information is an 𝑛-bit vector

𝑒 ∈ F𝑛2 generated uniformly at random subject to the constraint
of having Hamming weight 𝑡 . The public information is a uniform
random matrix 𝑇 ∈ F(𝑛−𝑘)×𝑘2 and a ciphertext 𝐻𝑒 , where 𝐻 ∈
F
(𝑛−𝑘)×𝑛
2 is defined as an identity matrix followed by 𝑇 .
This problem has the virtue of simplicity, and the virtue of match-

ing what is considered in typical ISD analyses. This problem is
identical to the OW-CPA problem for a PKE where key genera-
tion returns public key 𝑇 and an empty secret key; encryption of
plaintext 𝑒 produces ciphertext 𝐻𝑒; and decryption always fails.
Decryption does not appear in the OW-CPA definition and is not
used in CAT.

For small parameters, public keys in this PKE are easily dis-
tinguishable from public keys in the McEliece PKE (which uses a
key-generation procedure different from this PKE and a decryption
procedure different from this PKE), and in particular plaintexts
often collide under encryption in this PKE while they never do
in the McEliece PKE. Appendix K analyzes how these collisions
reduce attack success probabilities. For large parameters, all known
methods of distinguishing the two PKEs are much slower than
known OW-CPA attacks; see generally [8].

The choice of putting an identity matrix before 𝑇 matches [8].
Internally, the attacks in CAT rearrange input columns (at cost
0) to put the identity matrix after 𝑇 , and rearrange output bits
accordingly (also at cost 0). This makes some attack steps slightly
easier to describe.

Structurally, CAT is not limited to the uniformmatrix problem.
See Appendix I for another problem already included in CAT, an
AES-128 key-search problem.

3.6. Formalizing the model of computation. Informally, each
attack is an algorithm that, given problem parameters and attack
parameters, constructs a circuit as in Section 2.1. The circuit is
applied to a problem instance to produce an output. The algorithm
that generates a circuit is called a “meta-circuit” in the following
paragraphs, to avoid confusion with the algorithm expressed by
the circuit per se.

The meta-circuit is formalized as a function in C++. The func-
tion arguments are problem parameters, attack parameters, and a
problem instance. The problem instance consists of a bit vector (𝑃
above) of length determined by the parameters. Each bit uses a bit
class defined centrally by bit.h. The function returns an output,

Daniel J. Bernstein and Tung Chou

namely a vector of bit values, where again the vector length is
determined by the parameters.

To construct a circuit, the meta-circuit simply carries out opera-
tions on bit values; bit.h automatically tracks the circuit cost. For
example, one of the lowest-level subroutines is a half_adder sub-
routine that adds two bits a and b to obtain a two-bit sum, namely
a bottom bit s and a carry bit c. The code for the subroutine says
s = a ^ b and c = a & b.

The usual C/C++ notation is supported for AND (&), OR (|), XOR
(^), and NOT (~); the half_adder example used this notation for
XOR and AND. All 2-bit operations are supported with conventional
gate names such as a.andn(b). Constructing bit(0) and bit(1)
is free, as is copying.

(Section 2.1 also allows uninteresting cost-1 2-input gates that
output 0, 1, or a copy of an input. For completeness of the formal-
ization of the model, note that these gates can be computed as
bit(0)&bit(0), bit(1)&bit(1), or b&b respectively.)

As another low-level example, there is a bit_vector_ixor func-
tion that XORs a vector w into a vector v:

static inline void bit_vector_ixor(vector<bit> &v,
const vector<bit> &w)

{
assert(v.size() == w.size());
for (bigint i = 0; i < v.size(); i++)

v.at(i) = v.at(i) ^ w.at(i);
}

Here .at(i) is bounds-checked C++ array access, which is used
systematically throughout CAT to avoid the well-known risk of
accidents from non-bounds-checked [i]. (Protection against acci-
dents should not be confused with protection against malice: adding
malicious attack code to CAT can exploit the known DRBG seeds,
overwrite results, destroy files, etc.)

CAT provides an abstract integer type, bigint, to shield formal-
izations from the limited-size “integral” types in C++ (and from
the resulting ambiguities: the size limits are compiler-dependent).
Internally, CAT implements bigint via GMP, and GMP’s overhead
creates a considerable circuit* slowdown,2 presumably increas-
ing the risk that prediction errors will be missed.3 It is not easy to
compare this risk to the risk of error arising from using, e.g., a 64-bit
integral type for inner loops. It is well known that languages can in
principle make bigint much faster, with multiple code paths and
range analysis to automatically replace bigint with a fast fixed-
width type in most cases, but so far this has received less compiler
support than analogous hoisting of bounds checks.

Meta-circuits do not inspect the values of the bits that they are
operating upon, so the circuits that they build are independent of the
inputs, as in the informal description of an attack. The probability
simulator circuitprob automatically runs circuits on many inputs
at once in bitsliced form.

2An experiment that modified CAT to instead use long long for vector indices in
meta-circuits reduced the time for CAT’s isdsims.py script (see Section 6) by an order
of magnitude and produced the same output.
3Faster simulations allow a larger limit on the simulation size that the user can afford
for any given amount of CPU time spent on simulations. Perhaps this larger limit
makes a prediction error visible. See generally Appendix L.

4 ISD variants
This section and Section 5 describe the attacks covered in CAT
against the problem defined in Section 3.5. This section emphasizes
the central mathematical objects computed in these ISD variants.
Section 5 emphasizes the construction and optimization of circuits
for subroutines to compute those objects.

See Section 6 for examples of choosing ISD variants to attack
specific problem sizes. These choices depend on costs and success
probabilities for the complete ISD circuits, including the layers in
this section and in Section 5. A closer look at the details shows
interactions across layers: for example, understanding the cost of
linear-algebra circuits is important for seeing the benefit of the
new random-walk parameter 𝑌 introduced below. These choices
are also influenced by the model of computation and cost metric:
for example, the literature already indicates that accounting for
two-dimensional or three-dimensional communication costs tends
to favor fewer levels of collision search and a smaller 𝑝 parameter.

4.1. Relationship to the literature. Before presenting the at-
tacks, this section summarizes how these attacks relate to previous
work.

After Prange’s original ISD algorithm in 1962 [102], ISD variants
developed in two major directions. One direction is improvements
in linear-algebra costs; this includes random walks through infor-
mation sets (credited in [46] to Omura), combinatorial searches to
reuse linear algebra for many tests (Lee–Brickell [75]), and testing
only a limited number of bits (Leon [80]).

Omura’s random walks changed one position in an information
set to obtain a new information set. Canteaut–Chabaud [41] and
Canteaut–Sendrier [42] considered an analogous modification of
Stern’s algorithm, and used Markov chains to analyze the impact.
Bernstein–Lange–Peters [29] showed that changing multiple posi-
tions at a time further improves Stern’s algorithm, at the expense
of a more complicated Markov-chain analysis.

The other major direction is asymptotically better combinatorial
searches, including 1 level of collision search (as in Stern [114]
and Dumer [54]), 2 levels of collision search (as in May–Meurer–
Thomae [82], which adapted Howgrave-Graham–Joux [67] to de-
coding), and allowing collisions with partial cancellations (as in
Becker–Joux–May–Meurer [18], which adapted Becker–Coron–
Joux [15] to decoding).

The attacks and analyses in CAT systematically integrate random
walks with 0, 1, or 2 levels of collision search. The attack description
below first explains the random walks, and then explains the three
search options. For 2 levels, collisions with partial cancellations
are supported in CAT, and the analysis of the “𝐶 = 1” option
described below appears to be new. Some search techniques that
the literature describes as small improvements are not included in
CAT: ball-collision decoding as in [30], 3 levels of collision search
as in [18], and nearest-neighbor search as in [83].

The random walks in CAT are more general than the random
walks in [29]. The 𝑋 parameter in this paper is the number of
positions changed, matching the “𝑐” parameter in [29]; the new
𝑌 parameter in this paper reduces the number of positions con-
sidered for a change. Taking the maximum possible choice of 𝑌
matches the random walks in [29]. Taking much smaller 𝑌 creates
a noticeable chance of a failed information-set update spoiling all

CryptAttackTester: formalizing attack analyses

subsequent iterations, but periodic resets in this paper limit the
impact of failures: a completely new information set is chosen every
RE iterations, starting from the original input matrix, producing a
new chain of information sets. Manual parameter selection would
take RE large enough to hide the occasional reset costs compared
to per-iteration search costs, and would take 𝑌 somewhat above
𝑋 + log2 RE so that it is rare for a chain to fail.

4.2. Notation. By 𝐼 ⊕ 𝐽 , we denote the symmetric difference of two
sets 𝐼 and 𝐽 . Given a nonnegative integer 𝑑 , we denote by [𝑑] the
set {0, 1, . . . , 𝑑}. Vectors, if not stated otherwise, are considered as
column vectors over F2. By 𝑣 | | 𝑣 ′, we denote the result of concate-
nating vectors 𝑣 and 𝑣 ′. By wt(𝑣) we denote the Hamming weight
of a vector 𝑣 . By 𝑣𝑖 we denote entry 𝑖 (the index starts from 0) of a
vector 𝑣 . We denote by 𝑢𝑖 the 𝑖th unit vector, of which the length
depends on the context. We denote by vec(𝐼 , 𝑑) the vector 𝑣 in F𝑑2
such that 𝑣𝑖 = 1 if and only if 𝑖 ∈ 𝐼 . By nrows(𝐴) we denote the
number of rows of a matrix 𝐴. By ncols(𝐴) we denote the number
of columns of a matrix 𝐴. By 𝐴𝑖 we denote row 𝑖 of a matrix 𝐴. By
𝐴[𝑖] we denote column 𝑖 of a matrix 𝐴. Similarly, by 𝐴[𝐼], where
𝐼 is a set of integers, we denote

∑
𝑖∈𝐼 𝐴[𝑖]. Given an integer 𝑑 , a

matrix𝐴 with at least 𝑑 columns, and a vector 𝑠 of length nrows(𝐴),
we denote by S𝑑 (𝐴, 𝑠) the set{(

𝑠 +𝐴[𝐼], 𝐼
)
| 𝐼 ⊆

[
ncols(𝐴) − 1

]
, |𝐼 | = 𝑑

}
.

Similarly, we denote by S𝑑 (𝐴,𝐴′, 𝑠, 𝑠 ′) the set{(
𝑠 +𝐴[𝐼], 𝑠 ′ +𝐴′[𝐼], 𝐼

)
| 𝐼 ⊆

[
ncols(𝐴) − 1

]
, |𝐼 | = 𝑑

}
.

4.3. Attack overview. Each attack takes two inputs𝐻 ∈ F(𝑛−𝑘)×𝑛2
and 𝑠 ∈ F𝑛−𝑘2 and outputs a vector 𝑒 ∈ F𝑛2 , where the last 𝑛 − 𝑘
columns of 𝐻 form an identity matrix (i.e., 𝐻 is in systematic
form). Each attack tries to ensure that 𝑒 is a vector of Hamming
weight 𝑡 satisfying 𝐻𝑒 = 𝑠 .

(Note that the problem in Section 3.4 is different. The identity
matrix there is at a different position, and success in the OW-CPA
problem requires recovering a particular preimage of 𝑠 under 𝐻 ,
which is a narrower notion than finding an arbitrary preimage
when there are multiple preimages. See Appendix K.)

Each attack consists of a sequence of iterations followed by a
simple post-processing phase. The number of iterations is speci-
fied by a parameter IT > 0. Each iteration consists of two phases: a
column-permutation phase and a search phase. The column-
permutation, search, and post-processing phases are described be-
low.

Each attack has a parameter FW ∈ {0, 1}. If FW = 1 then the attack
begins by extending 𝐻 to include a row (1, 1, . . . , 1), extending 𝑠
to include a corresponding bit 𝑡 mod 2, reducing the new 𝐻 to
systematic form (and failing if this reduction fails), adjusting 𝑠
accordingly, and reducing 𝑘 to 𝑘 − 1. For literature using the known
sum of elements of 𝑒 to reduce 𝑘 by 1, see [48, page 57, “zero mean”]
for lattices, [49, full version, Section 6.3] for lattices, and [57, Section
3.1] for codes.

4.4. Column-permutation phase. Each column-permutation
phase applies in-place operations to a matrix 𝐻̃ and a vector 𝑠 ,
where 𝐻̃ and 𝑠 are scrambled versions of 𝐻 and 𝑠 , respectively. The

𝑧

𝑘 + ℓ 𝑛 − 𝑘 − ℓ

𝑛 − 𝑘

ℓ

𝑛 − 𝑘 − ℓ

Figure 2: A (𝑛 − 𝑘) ×𝑛 matrix in generalized systematic form.

operations applied to 𝑠 are simply the same as the row operations
that are applied to 𝐻̃ , so below we only talk about operations that
are applied to 𝐻̃ . The column-permutation phase uses four attack
parameters: ℓ ≥ 0, RE > 0, 𝑋 > 0, and 𝑌 ≥ 𝑋 .

By definition, a matrix 𝐴 is in generalized systematic form if
the last nrows(𝐴) − ℓ columns of the matrix consist of ℓ zero rows
and an identity matrix. Figure 2 depicts an (𝑛−𝑘) ×𝑛 matrix in gen-
eralized systematic form. (This form is also used in previous papers
such as [82], usually without a name.) Each column-permutation
phase aims to permute the columns of 𝐻̃ in a sufficiently random
way while keeping 𝐻̃ in generalized systematic form.

The operations carried out in a column-permutation phase de-
pend on the iteration number, as described below.

4.4.1. First iteration. If the iteration number is 0, the column-
permutation phase first sets two variables 𝐻̃ and 𝑠 to 𝐻 and 𝑠 ,
respectively. Then, for each 𝑖 ∈ {0, . . . , ℓ − 1} in order, 𝑏𝑖, 𝑗 𝐻̃𝑖 is
added to 𝐻̃ 𝑗 for each 𝑗 ≠ 𝑖 , where each 𝑏𝑖, 𝑗 ∈ F2 is chosen randomly.
(Without the row additions, almost all entries in 𝐻̃ [𝑘], . . . , 𝐻̃ [𝑘 +
ℓ − 1] would be 0, which in experiments produces considerable
deviations from the predicted success probability.)

4.4.2. Starting a subsequent chain. If the iteration number is
a non-zero multiple of RE, the column-permutation phase sets 𝐻̃
and 𝑠 to𝐻 and 𝑠 , respectively. Then, the column-permutation phase
permutes the columns of 𝐻̃ randomly, reduces 𝐻̃ to row-echelon
form, and permutes the columns of 𝐻̃ to bring it to systematic form.
Finally, each of the first ℓ rows is added to other rows in a random
way, as in the first iteration.

4.4.3. Inside a chain. If the iteration number is not a multiple of
RE, the column-permutation phase consists of three steps. These
steps are designed to save bit operations by permuting only a small
set of columns of 𝐻̃ instead of all columns. See Figure 3.

The first step applies a random permutation to the first 𝑘 + ℓ
columns of 𝐻̃ . It then applies another random permutation to the
last 𝑛 − 𝑘 − ℓ columns of 𝐻̃ , and the same permutation to the last
𝑛 − 𝑘 − ℓ rows of 𝐻̃ .

The second step applies row operations to rows 𝐻̃ℓ , . . . , 𝐻̃ℓ+𝑋−1
so that the 𝑋 × 𝑌 submatrix formed by the first 𝑌 columns of the
resulting rows is in reduced row-echelon form. It then permutes the
columns 𝐻̃ [0], . . . , 𝐻̃ [𝑌 −1] and 𝐻̃ [𝑘+ℓ], . . . , 𝐻̃ [𝑘+ℓ+𝑋−1] so that
the intersection between 𝐻̃ℓ , . . . , 𝐻̃ℓ+𝑋−1 and 𝐻̃ [𝑘 + ℓ], . . . , 𝐻̃ [𝑘 +

Daniel J. Bernstein and Tung Chou

𝑌

𝑋

𝑋

Figure 3: The attack parameters 𝑋 and 𝑌 .

ℓ + 𝑋 − 1] becomes an identity matrix. It then uses row operations
to bring 𝐻̃ to generalized systematic form.

The third step works in the same way as the first step, making
new choices of random permutations.

Ensuring that all 𝑋 columns are exchanged with new columns
is the “type 3” approach described in [29, “Analysis of the number
of iterations”]. Considering only 𝑌 choices of new columns allows
a smaller column-permutation circuit.

4.5. Search and post-processing phases. After each column-
permutation phase, there is a permutationmatrix 𝑃 and an invertible
matrix 𝐴 such that

𝐻̃ = 𝐴𝐻𝑃, 𝑠 = 𝐴𝑠.

Consequently, given 𝑃 and anyweight-𝑡 vector 𝑒 that satifies 𝐻̃𝑒 = 𝑠 ,
it is easy to compute a weight-𝑡 vector 𝑒 = 𝑃𝑒 such that𝐻𝑒 = 𝐻𝑃𝑒 =
𝑠 . The goal of each search phase is to find such 𝑒 given 𝐻̃ and 𝑠 ,
while the goal of the post-processing phase is to derive 𝑒 = 𝑃𝑒 .

The matrix 𝑃 is represented as a vector 𝜋 = (𝜋0, . . . , 𝜋𝑛−1) ∈ Z𝑛
where 𝑃 [𝑖] = 𝑢𝜋𝑖 . Whenever 𝐻̃ is set to 𝐻 (inside the first iteration
of each chain), 𝜋 is set to (0, 1, . . . , 𝑛 − 1); whenever a column
permutation is applied to 𝐻̃ , the same permutation is applied to
entries of 𝜋 . Whenever a solution for 𝑒 is found in a search phase, 𝜋
is stored into a solution buffer, along with some data from which
𝑒 can be derived. The post-processing phase derives 𝑒 from the data
in the solution buffer and computes 𝑒 as 𝑃𝑒 .

Three options for the search phase are described below: isd0,
isd1, and isd2. The reader may wish to interpret each “𝑆 · · · ⊆ · · · ”
below as “𝑆 · · · = · · · ” for an initial understanding of the attacks,
but optimizing the new QU, PE, and WI parameters in Section 5
usually produces smaller subsets.

4.6. Failure to maintain generalized systematic form. Up-
dates to the solution buffer are controlled by an update-permitted
bit. If the 𝑋 × 𝑌 matrix from which the column-permutation phase
computes reduced row-echelon form is not full rank then the
column-permutation phase fails to bring 𝐻̃ to generalized system-
atic form. The column-permutation phase then clears the update-
permitted bit. Each new chain sets the update-permitted bit to 1.

4.7. isd0: 0 levels of collision search. The following text de-
scribes the search phase in CAT’s isd0 attack. There are three
attack parameters that matter for the search, called 𝑝 , ℓ , and 𝑧. This
attack includes, for example, Prange’s original ISD algorithm (pa-
rameters 𝑝 = 0 and ℓ = 0), the Lee–Brickell algorithm (𝑝 > 0 and
ℓ = 0), and Leon’s algorithm (ℓ > 0).

The first 𝑘 + ℓ − 𝑧 columns of 𝐻̃ are viewed as(
𝑇 (0)

𝑇 (1)

)
∈ F(𝑛−𝑘)×(𝑘+ℓ−𝑧)2 ,

where nrows(𝑇 (0)) = ℓ and nrows(𝑇 (1)) = 𝑛 − 𝑘 − ℓ . Similarly, 𝑠 is
considered as 𝑠 (0) | | 𝑠 (1) , where 𝑠 (0) ∈ Fℓ2 and 𝑠

(1) ∈ F𝑛−𝑘−ℓ2 .
In the case ℓ > 0, each search phase first computes

𝑆 (1) ⊆
{
𝐼 | (0, 𝐼) ∈ S𝑝 (𝑇 (0) , 𝑠 (0))

}
.

Then, for each 𝐼 ∈ 𝑆 (1) , the search phase computes 𝑣 = 𝑠 (1)−𝑇 (1) [𝐼]
and checks if wt(𝑣) = 𝑡 − 𝑝 .

In the case ℓ = 0, for each (𝑣, 𝐼) in S𝑝 (𝑇, 𝑠), the search phase
checks if wt(𝑣) = 𝑡 − 𝑝 . Here 𝑇 is the first 𝑘 − 𝑧 columns of 𝐻̃ .

Either way, if the check passes, then 𝐻̃𝑒 = 𝑠 must hold for the
weight-𝑡 vector

𝑒 = (vec(𝐼 , 𝑘 + ℓ − 𝑧) | | (0, . . . , 0) | | 𝑣) ∈ F𝑛2 .
The search phase then stores 𝐼 and 𝑣 in the solution buffer, so that
the post-processing phase can derive 𝑒 .

4.8. isd1: 1 level of collision search. CAT’s isd1 attack again
has three attack parameters that matter for the search, called 𝑝 ′,
ℓ , and 𝑧. This attack includes, e.g., Stern’s algorithm (with 𝑧 = ℓ)
and Dumer’s algorithm (with 𝑧 = 0). The parameters 𝑝 ′ and ℓ are
required to be positive. The parameter 𝑝 ′ in isd1 is analogous to
𝑝 in isd0 in how it controls list sizes, but isd1 uses these lists to
search for 2𝑝 ′ errors while isd0 uses these lists to search for 𝑝
errors.

The search phase in isd1 works as follows. Matrices 𝑇 (0) ,𝑇 (1)

and vectors 𝑠 (0) , 𝑠 (1) are defined in the same way as in isd0, and
we consider

𝑇 (𝑖) =
(
𝑇
(𝑖)
𝐿

𝑇
(𝑖)
𝑅

)
,

where ncols(𝑇 (𝑖)
𝐿
) = ⌊(𝑘 + ℓ − 𝑧)/2⌋ and ncols(𝑇 (𝑖)

𝑅
) = ⌈(𝑘 + ℓ −

𝑧)/2⌉.
Each search phase first computes two sets

𝑆𝐿 = S𝑝′ (𝑇 (0)𝐿
, 0), 𝑆𝑅 = S𝑝′ (𝑇 (0)𝑅

, 𝑠 (0)).
Then a collision search between 𝑆𝐿 and 𝑆𝑅 is carried out to find

𝑆 (1) ⊆
{
(𝐼𝐿, 𝐼𝑅) | (𝑣, 𝐼𝐿) ∈ 𝑆𝐿 and (𝑣, 𝐼𝑅) ∈ 𝑆𝑅 for some 𝑣

}
.

For each (𝐼𝐿, 𝐼𝑅) ∈ 𝑆 (1) , the search phase computes 𝑤 = 𝑠 (1) −
(𝑇 (1)
𝐿
[𝐼𝐿] +𝑇 (1)𝑅

[𝐼𝑅]) and checks if wt(𝑤) = 𝑡 − 2𝑝 ′. If so, 𝐻̃𝑒 = 𝑠
must hold for the weight-𝑡 vector

𝑒 = (vec(𝐼𝐿, ⌊𝑘+ℓ−𝑧)/2⌋) | | vec(𝐼𝑅, ⌈𝑘+ℓ−𝑧)/2⌉) | | (0, . . . , 0) | |𝑤)
in F𝑛2 . The search phase then stores 𝐼𝐿, 𝐼𝑅,𝑤 in the solution buffer,
so that the post-processing phase can derive 𝑒 .

4.9. isd2: 2 levels of collision search. Attack parameters in
CAT’s isd2 attack include ℓ0 > 0 and ℓ1 > 0, with ℓ defined as ℓ0+ℓ1;
𝑧; 𝑝 ′′ > 0; 𝑝 ′ ∈ {0, 2, . . . , 2𝑝 ′′}; 𝐶 ∈ {0, 1}; and 𝐷 ∈ {1, . . . , 2ℓ0 }.

The case 𝐶 = 0 with 𝑝 ′ = 2𝑝 ′′ is due to 2011 May–Meurer–
Thomae [82] (MMT). The case 𝐶 = 0 with 𝑝 ′ < 2𝑝 ′′ is due to 2012
Becker–Joux–May–Meurer [18] (BJMM). The case 𝐶 = 1 ignores
𝑝 ′ and is essentially [63, Table 3], but the analysis in [63] treats
this algorithm as succeeding only when the MMT algorithm does,

CryptAttackTester: formalizing attack analyses

whereas the CAT analysis accounts for further success cases in the
algorithm.

The first 𝑘 + ℓ − 𝑧 columns of 𝐻̃ are viewed as©­­«
𝑇 (0)

𝑇 (1)

𝑇 (2)

ª®®¬ ∈ F
(𝑛−𝑘)×(𝑘+ℓ−𝑧)
2 ,

where nrows(𝑇 (0)) = ℓ0, nrows(𝑇 (1)) = ℓ1, and nrows(𝑇 (2)) =
𝑛 − 𝑘 − ℓ . Similarly, 𝑠 is considered as 𝑠 (0) | | 𝑠 (1) | | 𝑠 (2) , where
𝑠 (0) ∈ Fℓ02 , 𝑠

(1) ∈ Fℓ12 , 𝑠
(2) ∈ F𝑛−𝑘−ℓ2 . We further consider

𝑇 (𝑖) =
(
𝑇
(𝑖)
𝐿

𝑇
(𝑖)
𝑅

)
,

where ncols(𝑇 (𝑖)
𝐿
) = ⌊(𝑘+ℓ−𝑧)/2⌋ and ncols(𝑇 (𝑖)

𝑅
) = ⌈(𝑘+ℓ−𝑧)/2⌉,

respectively.
The attack parameter 𝐷 is used to specify the size of a set 𝑆Δ ⊆

Fℓ02 . For each Δ ∈ 𝑆Δ, each search phase first computes

𝑆
(0)
𝐿

= S𝑝′′ (𝑇 (0)𝐿
,𝑇
(1)
𝐿

, 0, 0),

𝑆
(0)
𝑅

= S𝑝′′ (𝑇 (0)𝑅
,𝑇
(1)
𝑅

,Δ, 0),

𝑆
(0)
𝑅

= S𝑝′′ (𝑇 (0)𝑅
,𝑇
(1)
𝑅

, 𝑠 (0) + Δ, 𝑠 (1)).

Then, a collision search between 𝑆 (0)
𝐿

and 𝑆 (0)
𝑅

is performed to build

𝑆 (1) ⊆
{
(𝑤𝐿 +𝑤𝑅, 𝐼𝐿, 𝐼𝑅) | (𝑣,𝑤𝐿, 𝐼𝐿) ∈ 𝑆 (0)𝐿 , (𝑣,𝑤𝑅, 𝐼𝑅) ∈ 𝑆 (0)𝑅

}
.

Similarly, a collision search between 𝑆 (0)
𝐿

and 𝑆 (0)
𝑅

is performed to
build

𝑆 (1) ⊆
{
(𝑤̂𝐿 + 𝑤̂𝑅, 𝐼𝐿, 𝐼𝑅) | (𝑣, 𝑤̂𝐿, 𝐼𝐿) ∈ 𝑆 (0)𝐿 , (𝑣, 𝑤̂𝑅, 𝐼𝑅) ∈ 𝑆 (0)𝑅

}
.

Once 𝑆 (1) and 𝑆 (1) are obtained, another collision search is per-
formed to build

𝑆 (2) ⊆
{
(𝐼𝐿, 𝐼𝐿, 𝐼𝑅, 𝐼𝑅) | (𝑣, 𝐼𝐿, 𝐼𝑅) ∈ 𝑆 (1) , (𝑣, 𝐼𝐿, 𝐼𝑅) ∈ 𝑆 (1)

}
if 𝐶 = 1. If 𝐶 = 0, 𝑆 (2) is built in a similar way except that each
(𝐼𝐿, 𝐼𝐿, 𝐼𝑅, 𝐼𝑅) ∈ 𝑆 (2) needs to satisfy two additional constraints
|𝐼𝐿 ⊕ 𝐼𝐿 | = 𝑝 ′ and |𝐼𝑅 ⊕ 𝐼𝑅 | = 𝑝 ′.

Once 𝑆 (2) is obtained, for each (𝐼𝐿, 𝐼𝐿, 𝐼𝑅, 𝐼𝑅) ∈ 𝑆 (2) , the search
phase then computes𝑤 = 𝑠 (2) −

(
𝑇
(2)
𝐿
[𝐼𝐿 ⊕ 𝐼𝐿] +𝑇 (2)𝑅

[𝐼𝑅 ⊕ 𝐼𝑅]
)
and

checks
• in the case 𝐶 = 0: whether wt(𝑤) = 𝑡 − 2𝑝 ′;
• in the case𝐶 = 1: whether |𝐼𝐿 ⊕ 𝐼𝐿 | + |𝐼𝑅 ⊕ 𝐼𝑅 | +wt(𝑤) = 𝑡 .

If so, 𝐻̃𝑒 = 𝑠 holds for the weight-𝑡 vector

𝑒 = (vec
(
𝐼𝐿⊕𝐼𝐿, ⌊𝑘+ℓ−𝑧⌋

)
| | vec

(
𝐼𝑅⊕𝐼𝑅, ⌈𝑘+ℓ−𝑧⌉

)
| | (0, . . . , 0) | |𝑤)

in F𝑛2 . The search phase then stores 𝐼𝐿, 𝐼𝐿, 𝐼𝑅, 𝐼𝑅,𝑤 in the solution
buffer so that the post-processing phase can derive 𝑒 .

5 Circuits for the ISD variants
This section explains how the circuits in CAT handle the subrou-
tines needed for Section 4: reducing matrices to echelon form, find-
ing collisions, etc.

There are many improvements here compared to naive circuit
designs. Some of the improvements show how ISD subroutines can
exploit known techniques such as fast sorting networks. Some of
the improvements provide new tradeoffs between cost and success

probability for ISD subroutines: for example, taking this section’s WI
parameter to be small accelerates collision-finding at the expense
of sometimes missing collisions, a tradeoff that turns out to be
worthwhile.

5.1. Queues. An important low-level tool is a fixed-length queue
of fixed-size vectors. Conditionally pushing a vector into a queue,
given a bit 𝑐 , means pushing the vector into the queue if 𝑐 = 1,
and not doing anything if 𝑐 = 0. To carry out this operation, first
conditionally move each vector in the queue except for the last one
to the next vector, and then conditionally move the new vector to
the first vector. To conditionally move variable 𝑏0 ∈ F2 to variable
𝑏1 ∈ F2 given the condition bit 𝑐 ∈ F2, simply overwrite 𝑏1 with
𝑏1 + 𝑐 (𝑏0 + 𝑏1) (“MUX”), at cost 3. In other words, if the queue
consists of 𝑞 vectors each of 𝑑 bits, conditionally pushing a new
vector into the queue costs 3𝑑𝑞.

5.2. Hamming-weight computation. Let 𝑣 ∈ F𝑑2 . Computing
wt(𝑣) costs 0 if 𝑑 = 1 and costs 2 (half_adder) if 𝑑 = 2. For 𝑑 ≥ 3,
CAT uses the algorithm described in [36], which works as follows.
Let 𝛼 be the largest integer such that 𝛼 + 1 ≤ 𝑑 and 𝛼 + 1 is power
of 2. Let 𝛽 = 𝑑 − 1 − 𝛼 . The algorithm recursively computes 𝑤𝛼
and 𝑤𝛽 , the Hamming weights of the first 𝛼 coordinates and the
next 𝛽 coordinates of 𝑣 , respectively. Finally, wt(𝑣) is computed as
𝑤𝛼 +𝑤𝛽 + 𝑣𝑑−1, in a way that 𝑣𝑑−1 serves as the carry-in bit.

5.3. Computing S𝒅 (𝑨, 𝒗). CAT computes S𝑑 (𝐴, 𝑣) by comput-
ing the leaves of a tree. Each node in the tree is of the formN(𝑣, 𝐴, 𝐼) B
(𝑣 +𝐴[𝐼], 𝐼), where 𝐼 ⊆ [ncols(𝐴) − 1] and |𝐼 | ≤ 𝑑 . The root of the
tree is defined asN(𝑣, 𝐴, ∅). The children of the root are defined as

N
(
𝑣, 𝐴, {𝑑 − 1}

)
, . . . ,N

(
𝑣, 𝐴, {ncols(𝐴) − 1}

)
.

The children of a node N(𝑣, 𝐴, 𝐼) with 0 < |𝐼 | < 𝑑 are defined as

N
(
𝑣, 𝐴, 𝐼 ∪ {𝑑 − |𝐼 | − 1}

)
, . . . ,N

(
𝑣, 𝐴, 𝐼 ∪ {min(𝐼) − 1}

)
.

A node N(𝑣, 𝐴, 𝐼) is considered as a leaf node if |𝐼 | = 𝑑 . The leaf
nodes form S𝑑 (𝐴, 𝑣). CAT computes each non-root node from its
parent using exactly 1 vector addition. In this way, under the con-
dition that 𝑑 ≤ 10 and 100 ≤ ncols(𝐴) ≤ 10000, on average it takes
no more than 1.11 vector additions to compute each element in
S𝑑 (𝐴, 𝑣).

5.4. Random-access memory (RAM) operations. Sometimes
CAT needs to compute 𝐴[𝑖] given a matrix 𝐴 and an index 𝑖 , where
𝑖 depends on the entries in 𝐻 and 𝑠 . Similarly, sometimes CAT need
to set 𝐴[𝑖] to 𝑣 given a matrix 𝐴, an index 𝑖 , and a vector 𝑣 . The
circuits for these RAM read and RAM write operations imitate
real-world RAM circuits. For example, each RAM read operation
is carried out by computing the root of a binary tree, where the
columns of 𝐴 form the leaves. Each non-leaf node with left child 𝑥
and right child 𝑦 is of value (1−𝑏)𝑥 +𝑏𝑦, where 𝑏 is a specific bit in
𝑖: 𝑏 is the least significant bit of 𝑖 if the node is in the second lowest
level of the tree, and 𝑏 is the second least significant bit if the node
is in the third lowest level of the tree, and so on. The value of each
node with only 1 child is same as that of the child.

Daniel J. Bernstein and Tung Chou

5.5. Sorting. Knuth’s “merge exchange” algorithm [70] sorts a
list 𝐿 of 𝑑 elements using Θ(𝑑 log2 𝑑) compare-and-exchange op-
erations, with small hidden constants, and is used for sorting in
CAT. (Other algorithms are known using Θ(𝑑 log𝑑) compare-and-
exchange operations, but with much larger Θ constants.) Each
compare-and-exchange opration exchanges 𝐿[𝑖] and 𝐿[𝑗] if 𝐿[𝑖] >
𝐿[𝑗], for some 𝑖, 𝑗 such that 𝑖 < 𝑗 .

Sorting is used for various operations, in particular for collision
search. See Section 5.11 for more details on collision search.

5.6. Computing the sumof specific columns. Often CAT needs
to compute 𝐴[𝐼] for a matrix 𝐴 and a set of indices 𝐼 . It uses one of
two approaches to compute 𝐴[𝐼]. The first one is to simply obtain
the corresponding columns by carrying out |𝐼 | RAM reads and then
compute the sum of the columns. The second one is to first compute
vec(𝐼 , ncols(𝐴)) via sorting and then multiply by 𝐴. For any given
input size, CAT automatically predicts the cost of both approaches
and selects the lower-cost approach.

5.7. Computing the size of symmetric difference. One of the
operations required in isd2 is computation of |𝐼 ⊕ 𝐽 |, where each
of 𝐼 and 𝐽 is a set of 𝑝 ′′ indices. Here CAT first sorts the indices
in 𝐼 and 𝐽 together to form a sorted list 𝐿 of length 2𝑝 ′′ and sets
a variable 𝑣 to (1, . . . , 1) ∈ F2𝑝

′′

2 . Then, for 𝑖 = 0, . . . , 2𝑝 ′′ − 2, if
𝑣𝑖 = 𝑣𝑖+1 = 1 and 𝐿[𝑖] = 𝐿[𝑖 + 1], 𝑣𝑖 and 𝑣𝑖+1 are both set to 0.
Finally, |𝐼 ⊕ 𝐽 | is obtained as wt(𝑣).

5.8. Computing reduced row-echelon form. To compute re-
duced row-echelon form of a matrix 𝐴 ∈ F𝑎×𝑏2 where 𝑎 ≤ 𝑏, CAT
uses the following algorithm from [45]:

(1) Set 𝑟 = 0.

(2) Set 𝑣 to the logical OR of 𝐴𝑟 , . . . , 𝐴𝑎−1.

(3) Find the index 𝑗 of the first nonzero entry in 𝑣 . If 𝑣 = 0, set
𝑗 to any value in {0, . . . , 𝑏 − 1}.

(4) For 𝑖 ∈ {𝑟 + 1, . . . 𝑎 − 1}, 𝐴𝑟 ← 𝐴𝑟 +𝐴𝑖 · (1 −𝐴𝑟,𝑗).
(5) For 𝑖 ∈ {0, . . . , 𝑎 − 1} \ {𝑟 }, 𝐴𝑖 ← 𝐴𝑖 +𝐴𝑟 · 𝐴𝑖, 𝑗 .
(6) If 𝑟 + 1 < 𝑎, increase 𝑟 by 1 and go back to Step 2.

Unrolling eliminates 𝑟 , so Steps 1 and 6 cost 0. Step 2 is carried out
using (𝑎 − 𝑟 − 1)𝑏 ORs. Step 4 and 5 are carried out using RAM
operations: since 𝑗 is known only after Step 3, RAM operations are
used to read 𝐴𝑟,𝑗 from 𝐴𝑟 and read 𝐴𝑖, 𝑗 from 𝐴𝑖 . A minor optimiza-
tion mentioned in [45], and used in CAT, is to make Steps 2, 3, 4, 5
only work on entries in 𝐴[𝑟], . . . , 𝐴[𝑏 − 1].

In Step 3, it is required to find the index 𝑗 of the first 1 in a vector
of length 𝑏. If 𝑏 = 1, 𝑗 is simply set to 0. Now assume 𝑏 ≥ 2. Let 𝛼
be the integer such that 2𝛼 < 𝑏 and 2𝛼+1 ≥ 𝑏. Note that 𝑗 can be
represented as a vector of 𝛼 + 1 bits. To compute 𝑗 , CAT carries out
the following steps for 𝑖 = 𝛼, . . . , 0:

(1) Compute 𝑗𝑖 as (1 − 𝑣0) · · · (1 − 𝑣2𝑖−1).
(2) For all 𝑑 such that 𝑑 < 2𝑖 and 𝑑 +2𝑖 < 𝑏, conditionally move

𝑣𝑑+2𝑖 to 𝑣𝑑 by considering 𝑗𝑖 as the condition bit.
Note that if 𝑣 = 0, we might have 𝑗 ≥ 𝑏 after the 3 steps are carried
out. The circuits still compute reduced row-echelon form correctly

in this case because RAM reads ensure that an entry of 𝐴𝑟 or 𝐴𝑖
will be obtained even when 𝑗 ≥ 𝑏.

5.9. Permuting columns. In each column-permutation phase,
it is required to permute some columns of 𝐻̃ in a random way.
Each circuit permutes the columns in a deterministic way, which is
chosen randomly from all possible ways to permute the columns
when the circuit is generated. This is simply copying data, at cost
0. (The wiring used here would be visible in a cost metric that
accounts for communication costs.)

When the iteration number is a nonzero multiple of RE, the ran-
dom column permutation is followed by a reduction to row-echelon
form, and then by a conversion to systematic form, which works
as follows. Let the column indices of the pivots be 𝑖0, . . . , 𝑖𝑛−𝑘−1,
where 𝑖0 < 𝑖1 < · · · < 𝑖𝑛−𝑘−1. To bring 𝐻̃ to systematic form, sim-
ply swap 𝐻̃ [𝑖𝑛−𝑘−1] with 𝐻̃ [𝑛 − 1], swap 𝐻̃ [𝑖𝑛−𝑘−2] with 𝐻̃ [𝑛 − 2],
and so on, using 𝑛 − 𝑘 RAM reads and 𝑛 − 𝑘 RAM writes. Similarly,
when the iteration number is not a multiple of RE, CAT carries out
𝑋 RAM reads and 𝑋 RAM writes to permute 𝐻̃ [0], . . . , 𝐻̃ [𝑌 − 1]
and 𝐻̃ [𝑘 + ℓ], . . . , 𝐻̃ [𝑘 + ℓ + 𝑋 − 1].

5.10. Search phase in isd0. Denote by E(𝑐) a bit which is of
value 1 if and only if the statement 𝑐 holds. To compute 𝑆 (1) in
isd0, for each (𝑣, 𝐼) ∈ S𝑝 (𝑇 (0) , 𝑠 (0)), CAT computes E(𝑣 = 0) and
conditionally pushes 𝐼 into a queue of size QU, where QU is an attack
parameter. Every time PE elements in S𝑝 (𝑇 (0) , 𝑠 (0)) are checked,
where PE is another attack parameter such that PE ≥ QU, for each 𝐼
in the queue, CAT computes 𝑣 = 𝑠 (1) −𝑇 (1) [𝐼], E(wt(𝑣) = 𝑡 − 𝑝)
and conditionally stores (𝐼 , 𝑣) into the solution buffer. After all the
elements in the queue are checked, the queue is cleared so that the
next PE elements in S𝑝 (𝑇 (0) , 𝑠 (0)) can be processed.

Note that every 𝐼 such that (0, 𝐼) ∈ S𝑝 (𝑇 (0) , 𝑠 (0)) will be pushed
into the queue, but it might be kicked out from the queue, which
is why 𝑆 (1) might not be equal to the corresponding superset. The
attack parameters QU and PE allow these circuits to trade efficiency
(in terms of cost) for success probability, and vice versa. See Appen-
dix J.1 for how CAT predicts queue-loss probabilities.

5.11. Search phase in isd1. In each search phase of isd1, to
find collisions between 𝑆𝐿 and 𝑆𝑅 , CAT first sorts the elements in
{(𝑣, 𝐼 , 0) | (𝑣, 𝐼) ∈ 𝑆𝐿} and {(𝑣, 𝐼 , 1) | (𝑣, 𝐼) ∈ 𝑆𝑅} together, using
the following ordering: (𝑣, 𝐼 , 𝑏) > (𝑣 ′, 𝐼 ′, 𝑏 ′) means that (1) 𝑣 > 𝑣 ′
in lexicographic order or (2) 𝑣 = 𝑣 ′ and 𝑏 ′ > 𝑏. Let the sorted list
be 𝐿, and, for an attack parameter WI > 0, define

𝑆𝐿,𝑅 =

{
(𝐿[𝑖], 𝐿[𝑖 + 𝑑]) | 𝑑 ∈ {1, . . . , WI}

}
.

For each element ((𝑣, 𝐼 , 𝑏), (𝑣 ′, 𝐼 ′, 𝑏 ′)) ∈ 𝑆𝐿,𝑅 in a random order,
CAT computes E(𝑣 = 𝑣 ′, 𝑏 ≠ 𝑏 ′) and conditionally pushes (𝐼 , 𝐼 ′)
into a queue of size QU. Every time PE elements in 𝑆𝐿,𝑅 are checked,
for each (𝐼 , 𝐼 ′) in the queue, CAT computes𝑤 = 𝑠 (1) − (𝑇 (1)

𝐿
[𝐼] +

𝑇
(1)
𝑅
[𝐼 ′]), E(wt(𝑤) = 𝑡 − 2𝑝) and conditionally stores (𝐼 , 𝐼 ′,𝑤) into

the solution buffer. After all the elements in the queue are checked,
the queue is cleared so that the next PE elements in 𝑆𝐿,𝑅 can be
processed.

The use of queues is as in isd0; the WI parameter provides an-
other tradeoff between probability and cost. See Appendix J.2 for
how CAT predicts window-loss probabilities.

CryptAttackTester: formalizing attack analyses

5.12. Search phase in isd2. In each search phase in isd2, 𝑆 (0)
𝐿

,
𝑆
(0)
𝑅

, and 𝑆 (0)
𝑅

are generated for each Δ ∈ 𝑆Δ ⊆ Fℓ02 . As 𝑆
(0)
𝐿

is
independent of Δ, it is generated at the beginning of the search
phase and simply reused for all Δ’s. 𝑆 (0)

𝑅
and 𝑆 (0)

𝑅
, unlike 𝑆 (0)

𝐿
, can

change for different Δ’s. To save bit operations for generating 𝑆 (0)
𝑅

and 𝑆 (0)
𝑅

, CAT uses a Gray code to ensure that any two consecutive
Δ’s differ in only 1 bit. In this way, whenever a new Δ is used, it
takes only 1 NOT to update each element in 𝑆 (0)

𝑅
and 𝑆 (0)

𝑅
.

The computations of 𝑆 (2) from 𝑆 (1) and 𝑆 (1) , of 𝑆 (1) from 𝑆
(0)
𝐿

and 𝑆 (0)
𝑅

, and of 𝑆 (1) from 𝑆
(0)
𝐿

and 𝑆 (0)
𝑅

in isd2work the same way
as the computation of 𝑆 (1) from 𝑆𝐿 and 𝑆𝑅 in isd1, using separate
WI1, QU1, PE1, WI2, QU2, PE2 parameters for the two levels.

6 Numerical results
This section presents and compares various numbers produced by
this paper’s formalization. Section 6.1 compares observed effec-
tiveness of the simulated circuits for various small 𝑛 to predicted
effectiveness, finding a very close match. Section 6.2 quantifies what
the predictions say at cryptographic sizes, specifically regarding (1)
the security levels of the Classic McEliece parameter lists from [8]
and (2) comparisons among ISD algorithms.

Appendix L considers ways that inaccuracies could have ap-
peared in the predictions while avoiding detection by the simula-
tions in Section 6.1.

6.1. Comparing simulations to predictions. The CAT package
includes an isdsims.py script to run the experiments described
below, and an isdsims-graph.py script to convert the results of
the experiments into the graph shown in Figure 4.

The experiments are as follows:
• For each 𝑛 ∈ {16, 18, 20, . . . , 128}, and for each integer 𝑡 ≥ 1

such that 𝑘 = 𝑛 − 𝑡 ⌈lg𝑛⌉ satisfies 0.7 ≤ 𝑘/𝑛 ≤ 0.8, use
searchparams to heuristically search for parameters for
isd0 with 𝑝 = 0 and ℓ = 0, isd0 with ℓ = 0, isd0 without
restrictions, isd1, isd2with𝐶 = 0, and isd2with𝐶 = 1, in
each case with FW chosen as 1 and with (IT, RE) chosen in
three different ways: (1, 1) or (2, 1) or (4, 4). This produces
a sequence of attack parameter lists.

• For each attack parameter list, use circuitcost to compare
the observed cost of the simulated circuit to the predicted
cost. This raises an alert if the costs are not identical. (No
cost alerts appeared.)

• Also, for each attack parameter list, use circuitprob with
trialfactor = 100000 and probfactor = 100 to run
many experiments with the simulated circuit and compare
the observed success probability to the predicted success
probability. Setting probfactor = 100 skips circuits with
success probability below 1%; concretely, this means skip-
ping some of the larger isd0 circuits.

The results of the probability comparison are shown in the graph
in Figure 4. Each circuit produces one dot in the graph, where the
horizontal position of the dot is 𝑛, the shape of the dot indicates
𝑡 , and the vertical position of the dot is the ratio between circuit
cost and observed success probability. An arrow coming from the

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 10
0

10
2

10
4

10
6

10
8

11
0

11
2

11
4

11
6

11
8

12
0

12
2

12
4

12
6

12
8

13
0

13
2

13
4

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

t=5 isd2 C=1
t=5 isd2 C=0
t=5 isd1
t=5 isd0
t=5 isd0 L=0
t=4 isd2 C=1
t=4 isd2 C=0
t=4 isd1
t=4 isd0
t=4 isd0 L=0
t=4 isd0 P=0 L=0
t=3 isd1
t=3 isd0
t=3 isd0 L=0
t=3 isd0 P=0 L=0
t=2 isd1
t=2 isd0
t=2 isd0 L=0
t=2 isd0 P=0 L=0
t=1 isd0 L=0
t=1 isd0 P=0 L=0

Figure 4: Accuracy of predictions of success probability for
various attack circuits for small 𝑛. Horizontal axis: 𝑛. Vertical
axis: circuit cost divided by success probability. Each dot
shows experimentally observed successes from the simulated
circuit with trialfactor = 100000. The arrow from the left
of the dot shows the probability prediction. The arrow from
the right of the dot shows a simplified probability prediction
without a collision correction.

left of the dot shows the ratio between circuit cost and predicted
success probability. An arrow coming from the right of the dot
shows the ratio between circuit cost and a simplified prediction of
success probability, where the simplification omits a correction for
collisions; see Appendix K. The two predictions differ by at most
(
(𝑛−𝑘
𝑡

)
− 1)/2𝑛−𝑘 , which converges rapidly to 0 as 𝑛 and 𝑡 increase.

For small 𝑛 with 𝑡 = 1, the graph shows the prediction under-
stating circuit effectiveness by about 0.1 bits (while the simplified
prediction overstates circuit effectiveness), with a maximum error
below 0.2 bits. The prediction generally becomes more accurate as
𝑛 and 𝑡 increase within the range of the graph, although the arrival
of isd2 for 𝑡 = 4 is again accompanied by measurable deviations.
Note that if predicted success probabilities are accurate then, with
trialfactor = 100000, the ratio between observed success proba-
bility and actual success probability will have standard deviation
considerably below 1%.

As expected, the graph (of observed values and of predicted
values) shows large jumps upwards as 𝑡 increases from 1 to 2 to 3
to 4 to 5, and gentler increases with 𝑛. For each problem parameter
with 𝑡 ≤ 3, the smallest cost/probability ratios in the graph are from
isd0; isd1 begins to take over at 𝑡 = 4. There are a few cases where
the graph shows searchparams finding slightly better results when
𝑛 is increased; presumably more comprehensive parameter searches
would move more dots slightly downwards.

Daniel J. Bernstein and Tung Chou

6.2. Predictions for cryptographic sizes. The CAT package
includes scripts isdpredict1.py and isdpredict2.py to search
for attack parameters for cryptographic sizes, along with a script
isdpredict-table.py to turn the results into Table 1 below.

The Classic McEliece documentation selects five parameter lists
(𝑛, 𝑘, 𝑡), namely (3488, 2720, 64); (4608, 3360, 96); (6688, 5024, 128);
(6960, 5413, 119); (8192, 6528, 128). CAT takes 47 hours on a dual
EPYC 7742 (with Core Performance Boost disabled) to collect data
for all of these. The results for 6688 and 6960 are almost iden-
tical; to save space, the table shows just the smaller size 6688.
For comparison, the script also covers (𝑛, 𝑘, 𝑡) = (1284, 1020, 24),
the size of the largest challenge broken in [57] using isd2, and
(𝑛, 𝑘, 𝑡) = (1347, 1047, 25), the size of a larger challenge broken in
2023 using isd1 (see [23]); the table includes 1284.

For each parameter list, the table reports, for various circuits, the
predicted ratio between circuit cost and success probability. Table
entries in columns isd through 𝐶 indicate attack constraints.

Table 1 is split into several sections. The first section, just one
row, is Prange’s original ISD algorithm: isd0 with RE = 1, ℓ = 0,
and 𝑝 = 0. The next section is for general isd0, including the
Lee–Brickell use of 𝑝 and Leon’s use of ℓ . The next section is isd1,
including collision searches from Stern and Dumer. All of this is still
from the 1980s, except that random walks at the time were limited
to Omura’s 𝑋 = 1 for isd0. Random walks do not matter for large
𝑝, 𝑝 ′, 𝑝 ′′ but provide an interesting speedup for small 𝑝, 𝑝 ′, 𝑝 ′′; see
the table rows with and without the RE = 1 restriction.

There are, finally, three sections for isd2. The first is for 𝑝 ′ = 2𝑝 ′′
with 𝐶 = 0, as in the MMT paper, although this paper does better
using randomwalks and many speedups in subroutines. The second
is for 𝑝 ′ = 2𝑝 ′′ − 2 with𝐶 = 0, an example of the BJMM paper with
two levels, although again this paper includes more improvements.
The third is for 𝐶 = 1, where the CAT analysis appears to be the
first analysis in the literature; note that the 𝐶 = 1 attack ignores 𝑝 ′,
so taking 𝑝 ′ < 2𝑝 ′′ would make no difference here.

Each section beyond the first is split into lines with different
values of 𝑝 or 𝑝 ′ or 𝑝 ′′, the parameter controlling the starting list
sizes, so that the reader can see the drop in circuit costs as this
parameter increases to an optimal value. The minimal cost in each
section is highlighted in blue.

The asymptotics in the literature already indicate that the opti-
mum for this parameter gradually increases with 𝑛 in the McEliece
context (see, e.g., [31, Sections 4–5]). CAT provides precise, fully
defined data on this point for concrete sizes.

The full attack parameters for each table row are defined as
follows. Starting from the parameter restrictions shown in the ta-
ble plus FW = 1, the isdpredict1.py script runs searchparams
for IT = 1 to find an initial list of parameters. For each 𝑟 ∈
{0, 1, . . . , 24}, the isdpredict2.py script then runs searchparams
again to search for (𝑋,𝑌) subject to RE = 2𝑟 , IT = 2𝑟+16 (this en-
sures that the reset costs will be counted within a 2−16 error), and all
other parameters matching the output from isdpredict1.py. The
lowest cost/probability ratio across 𝑟 is used for the table, except
for the RE = 1 rows, which use 𝑟 = 0.

Compared to the original Prange algorithm (first row), the small-
est exponent shown in the table is 15% lower for 𝑛 = 3488, reflecting
the overall impact of many years of algorithmic improvements. It
is remarkable that most of this change was already achieved in

Table 1: Logarithm base 2, rounded to 2 digits, of the ratio
between predicted cost and predicted success probability for
various attack circuits. See text for details.

isd RE ℓ 𝑝 𝑝 ′ 𝑝 ′′ 𝐶 1284 3488 4608 6688 8192
0 1 0 0 85.99 177.26 221.14 299.99 338.10
0 0 0 78.62 168.34 211.56 290.00 328.15
0 1 0 1 79.39 169.34 213.02 291.29 329.02
0 0 1 75.24 163.70 206.54 284.50 322.49
0 1 0 2 78.13 166.70 209.62 287.59 325.62
0 0 2 78.07 166.63 209.51 287.50 325.56
0 0 3 81.53 170.14 213.13 291.11 329.17
0 1 1 80.47 170.53 214.24 292.50 330.21
0 1 74.46 163.06 205.87 283.94 321.87
0 1 2 76.27 165.12 208.51 286.32 323.72
0 2 72.54 159.93 202.30 279.88 317.66
0 3 75.89 163.31 205.68 283.34 321.17
1 1 1 76.83 165.65 209.02 286.83 324.27
1 1 71.11 158.39 201.17 278.63 316.07
1 1 2 71.66 157.33 199.60 276.39 313.45
1 2 71.48 156.96 198.93 275.71 312.97
1 3 73.16 157.43 199.27 275.53 312.47
1 4 75.00 157.95 199.69 275.41 312.03
1 5 77.19 158.64 200.24 275.41 311.69
1 6 80.73 159.48 200.91 275.55 311.52
1 7 87.30 160.50 201.74 275.82 311.44
1 8 93.88 161.68 202.71 276.23 311.50
1 9 100.26 163.03 203.83 276.74 311.69
2 1 2 1 0 72.37 158.93 201.45 278.24 315.21
2 2 1 0 70.95 156.26 198.61 275.13 312.22
2 1 4 2 0 72.71 155.41 197.29 278.84 309.65
2 4 2 0 72.67 155.38 197.20 278.74 309.52
2 6 3 0 75.84 156.27 202.70 274.09 308.43
2 8 4 0 80.31 157.92 198.04 272.84 307.72
2 10 5 0 86.58 158.19 199.07 272.32 307.04
2 12 6 0 98.04 160.02 200.07 271.62 306.18
2 14 7 0 161.95 201.72 271.53 305.11
2 16 8 0 165.39 203.25 272.00 304.62
2 18 9 0 167.83 206.08 272.97 306.20
2 1 2 2 0 75.07 163.29 203.50 283.28 317.05
2 2 2 0 75.00 163.13 203.18 282.95 316.84
2 4 3 0 72.74 156.54 203.14 275.02 310.93
2 6 4 0 73.88 156.14 197.40 271.98 308.41
2 8 5 0 77.13 154.76 196.19 270.81 306.29
2 10 6 0 84.28 155.15 195.91 268.91 304.23
2 12 7 0 155.75 196.43 267.77 302.11
2 14 8 0 157.89 196.92 267.30 300.68
2 16 9 0 159.07 198.11 267.41 301.39
2 18 10 0 163.40 201.31 268.05 301.06
2 20 11 0 167.53 202.41 269.99 300.49
2 22 12 0 171.35 205.45 270.17 301.19
2 1 2 1 1 72.59 158.59 201.70 278.31 315.21
2 2 1 1 70.90 156.26 198.21 275.14 312.21
2 1 4 2 1 70.99 158.62 199.22 278.45 309.19
2 4 2 1 70.95 158.46 198.90 278.12 309.06
2 6 3 1 71.07 154.21 200.67 272.72 307.34
2 8 4 1 72.45 154.17 195.37 270.42 305.78
2 10 5 1 75.35 152.45 193.88 267.79 303.99
2 12 6 1 82.39 151.78 192.78 266.34 301.82
2 14 7 1 150.84 191.95 264.40 299.18
2 16 8 1 150.91 191.56 263.57 296.93
2 18 9 1 150.59 190.62 260.44 296.45
2 20 10 1 151.46 191.41 261.13 294.64
2 22 11 1 151.77 190.50 260.40 292.46
2 24 12 1 152.91 191.18 259.02 291.14
2 26 13 1 154.04 190.55 259.44 290.83
2 28 14 1 156.08 192.21 258.54 289.99
2 30 15 1 159.08 193.16 258.69 289.31
2 32 16 1 165.51 194.12 258.29 287.21
2 34 17 1 195.99 257.36 288.00
2 36 18 1 197.89 258.34 287.50

CryptAttackTester: formalizing attack analyses

the 1980s, most importantly from simply reducing linear-algebra
costs; see Section 4.1’s list of specific improvements and credits.
Concretely, moving within isd0 from Prange’s algorithm to Leon’s
algorithm (with 𝑝 = 2) gives 17 bits of improvement; moving from
isd0 to isd1 (with 𝑝 ′ = 2) gives just 3 more bits of improvement;
and moving from isd1 to isd2 (with a much larger 𝑝 ′′) gives just
6 bits of further improvement.

The numbers in this table are predictions of clearly defined math-
ematical objects: the model of computation, the cost metric, and
the circuits are fully defined. This paper’s formalization tests pre-
dictions directly against complete circuit simulations (see Figures 1
and 4), and the predictions account for various algorithm features
that were missing from previous analyses. Readers are, however,
cautioned to keep in mind that there are still risks of mispredictions,
including risks arising from inadequate searches for circuits, risks
arising from the structural limits of small-scale simulation as a form
of verification, and risks arising from inaccuracies in the underlying
model. See Appendix L.

The largest known issue is the following. Increasing 𝑝, 𝑝 ′, 𝑝 ′′
increases list size exponentially (e.g., for the isd2 table entry with
𝐶 = 1 and 𝑝 ′′ = 9 for 𝑛 = 3488, the first list has almost 276 entries),
and correspondingly increases the hardwaremass and long-distance
communication costs involved in collision searches inside isd1 and
isd2. This paper’s formalization measures bit operations, includ-
ing the bit operations involved in memory access, but does not
account for hardware mass or communication costs. Cost metrics
that account for those costs would favor lower-memory attacks.

References
[1] Report of the workshop on estimation of significant advances in computer

technology, 1976. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir76-
1189.pdf.

[2] Sunny Cove: Intel’s lost generation, 2022. URL: https://chipsandcheese.com/
2022/06/07/sunny-cove-intels-lost-generation/.

[3] Scott Aaronson. Why isn’t it more mysterious?, 2015. URL: https://web.archive.
org/web/20150423085814/http://ideas.aeon.co/viewpoints/1829.

[4] Carlisle M. Adams and Henk Meijer. Security-related comments regarding
McEliece’s public-key cryptosystem. In Carl Pomerance, editor, Advances in
Cryptology – CRYPTO’87, volume 293 of Lecture Notes in Computer Science, pages
224–228, Santa Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg,
Germany. doi:10.1007/3-540-48184-2_20.

[5] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz.
Solving the shortest vector problem in 2𝑛 time using discrete Gaussian sampling:
Extended abstract. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th
Annual ACM Symposium on Theory of Computing, pages 733–742, Portland, OR,
USA, June 14–17, 2015. ACM Press. doi:10.1145/2746539.2746606.

[6] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[7] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on the
third round of the NIST Post-Quantum Cryptography Standardization Process,
2022. URL: https://csrc.nist.gov/publications/detail/nistir/8413/final.

[8] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, VarunMaram, Ingo vonMaurich, RafaelMisoczki, RubenNiederha-
gen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen
Wang. Classic McEliece. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-4-submissions.

[9] Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M.
Schanck. Estimating quantum speedups for lattice sieves. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part II,
volume 12492 of Lecture Notes in Computer Science, pages 583–613, Daejeon,
South Korea, December 7–11, 2020. Springer, Heidelberg, Germany. doi:10.
1007/978-3-030-64834-3_20.

[10] Ant Miner Store. Antminer S17 – 56TH/s, 2022. URL: https://web.archive.org/
web/20220613183343/https://www.ant-miner.store/product/antminer-s17-
56th/.

[11] Jean-Philippe Aumasson. Too much crypto. Cryptology ePrint Archive, Report
2019/1492, 2019. https://eprint.iacr.org/2019/1492.

[12] Eric Bach. Toward a theory of Pollard’s rho method. Information and Computa-
tion, 90(2):139–155, 1991. doi:10.1016/0890-5401(91)90001-I.

[13] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. A finite regime analysis of information set decoding algorithms.
Algorithms, 12(10):209, 2019. doi:10.3390/a12100209.

[14] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-
mers, Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptography. In 2021
IEEE Symposium on Security and Privacy, pages 777–795, San Francisco, CA,
USA, May 24–27, 2021. IEEE Computer Society Press. doi:10.1109/SP40001.
2021.00008.

[15] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic al-
gorithms for hard knapsacks. In Kenneth G. Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Sci-
ence, pages 364–385, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-20465-4_21.

[16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions
in nearest neighbor searching with applications to lattice sieving. In Robert
Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 10–24, Arlington, VA, USA, January 10–12, 2016. ACM-SIAM. doi:
10.1137/1.9781611974331.ch2.

[17] Anja Becker, Nicolas Gama, and Antoine Joux. Solving shortest and closest
vector problems: The decomposition approach. Cryptology ePrint Archive,
Report 2013/685, 2013. https://eprint.iacr.org/2013/685.

[18] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2𝑛/20: How 1 + 1 = 0 improves information
set decoding. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 520–536, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg,
Germany. doi:10.1007/978-3-642-29011-4_31.

[19] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences,
61(3):362–399, 2000.

[20] Robert L. Benedetto, Dragos Ghioca, Benjamin Hutz, Pär Kurlberg, Thomas
Scanlon, and Thomas J. Tucker. Periods of rational maps modulo primes. Math-
ematische Annalen, 355(2):637–660, 2013. doi:10.1007/s00208-012-0799-8.

[21] Daniel J. Bernstein. Quantum algorithms to find collisions, 2017. URL: https:
//blog.cr.yp.to/20171017-collisions.html.

[22] Daniel J. Bernstein. Cryptographic competitions, 2021. URL: https://cr.yp.to/
papers.html#competitions.

[23] Daniel J. Bernstein. Solving the length-1347 McEliece challenge, 2023. URL:
https://isd.mceliece.org/1347.html.

[24] Daniel J. Bernstein and Tung Chou. CryptAttackTester, 2023. https://cat.cr.yp.to.
[25] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo vonMaurich, Rafael Misoczki,

Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece. Techni-
cal report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-1-submissions.

[26] Daniel J. Bernstein, Nadia Heninger, Paul Lou, and Luke Valenta. Post-
quantum RSA. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017, pages 311–329,
Utrecht, The Netherlands, June 26–28, 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-59879-6_18.

[27] Daniel J. Bernstein and Tanja Lange. Non-uniform cracks in the concrete:
The power of free precomputation. In Kazue Sako and Palash Sarkar, editors,
Advances in Cryptology – ASIACRYPT 2013, Part II, volume 8270 of Lecture Notes
in Computer Science, pages 321–340, Bengalore, India, December 1–5, 2013.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-42045-0_17.

[28] Daniel J. Bernstein and Tanja Lange. Two grumpy giants and a baby. In ANTS
X. Proceedings of the tenth algorithmic number theory symposium, San Diego,
CA, USA, July 9–13, 2012, pages 87–111. Berkeley, CA: Mathematical Sciences
Publishers (MSP), 2013.

[29] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Johannes Buchmann and Jintai Ding, editors,
Post-quantum cryptography, second international workshop, PQCRYPTO 2008,
pages 31–46, Cincinnati, Ohio, United States, October 17–19, 2008. Springer,
Heidelberg, Germany. doi:10.1007/978-3-540-88403-3_3.

[30] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller decoding
exponents: Ball-collision decoding. In Phillip Rogaway, editor, Advances in
Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Sci-
ence, pages 743–760, Santa Barbara, CA, USA, August 14–18, 2011. Springer,
Heidelberg, Germany. doi:10.1007/978-3-642-22792-9_42.

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir76-1189.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir76-1189.pdf
https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/
https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/
https://web.archive.org/web/20150423085814/http://ideas.aeon.co/viewpoints/1829
https://web.archive.org/web/20150423085814/http://ideas.aeon.co/viewpoints/1829
https://doi.org/10.1007/3-540-48184-2_20
https://doi.org/10.1145/2746539.2746606
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-030-64834-3_20
https://doi.org/10.1007/978-3-030-64834-3_20
https://web.archive.org/web/20220613183343/https://www.ant-miner.store/product/antminer-s17-56th/
https://web.archive.org/web/20220613183343/https://www.ant-miner.store/product/antminer-s17-56th/
https://web.archive.org/web/20220613183343/https://www.ant-miner.store/product/antminer-s17-56th/
https://eprint.iacr.org/2019/1492
https://doi.org/10.1016/0890-5401(91)90001-I
https://doi.org/10.3390/a12100209
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-642-20465-4_21
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://eprint.iacr.org/2013/685
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/s00208-012-0799-8
https://blog.cr.yp.to/20171017-collisions.html
https://blog.cr.yp.to/20171017-collisions.html
https://cr.yp.to/papers.html#competitions
https://cr.yp.to/papers.html#competitions
https://isd.mceliece.org/1347.html
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://doi.org/10.1007/978-3-319-59879-6_18
https://doi.org/10.1007/978-3-642-42045-0_17
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-642-22792-9_42

Daniel J. Bernstein and Tung Chou

[31] Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Henk C.A. van Tilborg.
Explicit bounds for generic decoding algorithms for code-based cryptography.
In International Workshop on Coding and Cryptography (WCC 2009, Ullensvang,
Norway, May 10–15, 2009), pages 168–180. Selmer Center, University of Bergen,
2009.

[32] Andrey Bogdanov, Donghoon Chang, Mohona Ghosh, and Somitra Kumar
Sanadhya. Bicliques with minimal data and time complexity for AES. In Jooy-
oung Lee and Jongsung Kim, editors, ICISC 14: 17th International Conference on
Information Security and Cryptology, volume 8949 of Lecture Notes in Computer
Science, pages 160–174, Seoul, Korea, December 3–5, 2015. Springer, Heidelberg,
Germany. doi:10.1007/978-3-319-15943-0_10.

[33] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 344–371, Seoul, South Korea, December 4–8, 2011.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-25385-0_19.

[34] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Im-
proved classical and quantum algorithms for subset-sum. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
Part II, volume 12492 of Lecture Notes in Computer Science, pages 633–666,
Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-64834-3_22.

[35] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques
with applications to cryptology. Journal of Cryptology, 26(2):280–312, April
2013. doi:10.1007/s00145-012-9124-7.

[36] Joan Boyar and René Peralta. The exact multiplicative complexity of the
Hamming weight function. Electronic Colloquium on Computational Complex-
ity, TR05-049, 2005. URL: https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-
049/index.html, arXiv:TR05-049.

[37] Richard P. Brent and H. T. Kung. The area-time complexity of binary multipli-
cation. J. ACM, 28(3):521–534, 1981. doi:10.1145/322261.322269.

[38] Renée C. Bryce, Sreedevi Sampath, Jan B. Pedersen, and Schuyler Manchester.
Test suite prioritization by cost-based combinatorial interaction coverage. Int. J.
Syst. Assur. Eng. Manag., 2(2):126–134, 2011. doi:10.1007/s13198-011-0067-
4.

[39] James R. Bunch and John E. Hopcroft. Triangular factorization and inversion
by fast matrix multiplication. Mathematics of Computation, 28(125):231–236,
1974.

[40] Danielle Cadet. How the FBI invaded Martin Luther King Jr.’s privacy – and
tried to blackmail him into suicide, 2014. URL: https://www.huffpost.com/entry/
martin-luther-king-fbi_n_4631112.

[41] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem and
to narrow-sense BCH codes of length 511. IEEE Transactions on Information
Theory, 44(1):367–378, 1998.

[42] Anne Canteaut and Nicolas Sendrier. Cryptanalysis of the original McEliece
cryptosystem. In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology
– ASIACRYPT’98, volume 1514 of Lecture Notes in Computer Science, pages
187–199, Beijing, China, October 18–22, 1998. Springer, Heidelberg, Germany.
doi:10.1007/3-540-49649-1_16.

[43] Wouter Castryck and Thomas Decru. An efficient key recovery attack on
SIDH (preliminary version). Cryptology ePrint Archive, Report 2022/975, 2022.
https://eprint.iacr.org/2022/975.

[44] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An efficient
quantum collision search algorithm and implications on symmetric cryptogra-
phy. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 211–240, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg,
Germany. doi:10.1007/978-3-319-70697-9_8.

[45] Tung Chou and Jin-Han Liou. A constant-time AVX2 implementation of a
variant of ROLLO. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):152–174, 2022. doi:10.46586/tches.v2022.i1.152-174.

[46] George C. Clark, Jr. and J. Bibb Cain. Error-correction coding for digital com-
munications. 2nd printing, 1982.

[47] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. The AETG system:
an approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997. doi:10.1109/32.605761.

[48] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy,
editor,Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, pages 52–61, Konstanz, Germany, May 11–15, 1997. Springer,
Heidelberg, Germany. doi:10.1007/3-540-69053-0_5.

[49] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE with
side information: Attacks and concrete security estimation. In Daniele Miccian-
cio and Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part II, volume 12171 of Lecture Notes in Computer Science, pages 329–358,
Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-56880-1_12.

[50] Thomas Debris-Alazard, Léo Ducas, and Wessel P. J. van Woerden. An algo-
rithmic reduction theory for binary codes: LLL and more. IEEE Transactions on
Information Theory, 68(5):3426–3444, 2022. doi:10.1109/TIT.2022.3143620.

[51] Whitfield Diffie and Martin E. Hellman. Exhaustive cryptanalysis of the NBS
Data Encryption Standard. Computer, 10:74–84, 1977. URL: https://ee.stanford.
edu/~hellman/publications/27.pdf.

[52] John D. Dixon. Asymptotically fast factorization of integers. Mathematics of
Computation, 36:255–260, 1981. doi:10.2307/2007743.

[53] LéoDucas,Maxime Plançon, and BenjaminWesolowski. On the shortness of vec-
tors to be found by the ideal-SVP quantum algorithm. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science, pages 322–351,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
doi:10.1007/978-3-030-26948-7_12.

[54] Il’ya Isaakovich Dumer. Two decoding algorithms for linear codes. Problemy
Peredachi Informatsii, 25(1):24–32, 1989.

[55] Andre Esser and Emanuele Bellini. Syndrome decoding estimator. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryptography
- PKC 2022 - 25th IACR International Conference on Practice and Theory of Public-
Key Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part I, volume
13177 of Lecture Notes in Computer Science, pages 112–141. Springer, 2022.
doi:10.1007/978-3-030-97121-2_5.

[56] Andre Esser and Alexander May. Better sample—random subset sum in 20.255𝑛
and its impact on decoding linear codes. 2019. withdrawn. URL: https://arxiv.
org/abs/1907.04295.

[57] Andre Esser, Alexander May, and Floyd Zweydinger. McEliece needs a break
- solving McEliece-1284 and quasi-cyclic-2918 with modern ISD. In Orr
Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EURO-
CRYPT 2022, Part III, volume 13277 of Lecture Notes in Computer Science, pages
433–457, Trondheim, Norway, May 30 – June 3, 2022. Springer, Heidelberg,
Germany. doi:10.1007/978-3-031-07082-2_16.

[58] Agner Fog. Instruction tables, 2023. URL: https://agner.org/optimize/
instruction_tables.pdf.

[59] Electronic Frontier Foundation. Cracking DES: secrets of encryption research,
wiretap politics & chip design. O’Reilly, 1998.

[60] Heiner Giefers and Marco Platzner. An fpga-based reconfigurable mesh many-
core. IEEE Trans. Computers, 63(12):2919–2932, 2014. doi:10.1109/TC.2013.
174.

[61] Oded Goldreich. Computational complexity: a conceptual perspective. Cambridge
University Press, 2008.

[62] Ian Grigg and Peter Gutmann. The curse of cryptographic numerology. IEEE
Security & Privacy, 9(3):70–72, 2011.

[63] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information
set decoding. Cryptology ePrint Archive, Report 2013/162, 2013. https://eprint.
iacr.org/2013/162.

[64] David Harvey and Joris van der Hoeven. Integer multiplication in time
𝑂 (𝑛 log𝑛) . Annals of Mathematics. Second Series, 193(2):563–617, 2021. doi:
10.4007/annals.2021.193.2.4.

[65] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf.
Theory, 26(4):401–406, 1980. doi:10.1109/TIT.1980.1056220.

[66] Martin E. Hellman, Whitfield Diffie, Paul Baran, Dennis Branstad, Douglas L.
Hogan, and Arthur J. Levenson. DES (Data Encryption Standard) review at
Stanford University, 1976. URL: https://web.archive.org/web/20170420171412/
www.toad.com/des-stanford-meeting.html.

[67] Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard
knapsacks. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010,
volume 6110 of Lecture Notes in Computer Science, pages 235–256, French Riviera,
May 30 – June 3, 2010. Springer, Heidelberg, Germany. doi:10.1007/978-3-
642-13190-5_12.

[68] Thomas R. Johnson. American cryptology during the cold war, 1945–1989, book
III: retrenchment and reform, 1972–1980. 1998. URL: https://archive.org/details/
cold_war_iii-nsa.

[69] Elena Kirshanova. Re: Number of bit-operations required for information set
decoding attacks on code-based cryptosystems?, 2021. URL: https://crypto.
stackexchange.com/a/92112.

[70] Donald Ervin Knuth. The art of computer programming, Volume III: Sorting and
Searching, 2nd Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/
oclc/312994415.

[71] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-
sensitive hashing. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes
in Computer Science, pages 3–22, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-47989-6_1.

[72] Thijs Laarhoven and Benne de Weger. Faster sieving for shortest lattice vectors
using spherical locality-sensitive hashing. In Kristin E. Lauter and Francisco
Rodríguez-Henríquez, editors, Progress in Cryptology - LATINCRYPT 2015: 4th
International Conference on Cryptology and Information Security in Latin America,

https://doi.org/10.1007/978-3-319-15943-0_10
https://doi.org/10.1007/978-3-642-25385-0_19
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/s00145-012-9124-7
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-049/index.html
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-049/index.html
http://arxiv.org/abs/TR05-049
https://doi.org/10.1145/322261.322269
https://doi.org/10.1007/s13198-011-0067-4
https://doi.org/10.1007/s13198-011-0067-4
https://www.huffpost.com/entry/martin-luther-king-fbi_n_4631112
https://www.huffpost.com/entry/martin-luther-king-fbi_n_4631112
https://doi.org/10.1007/3-540-49649-1_16
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-319-70697-9_8
https://doi.org/10.46586/tches.v2022.i1.152-174
https://doi.org/10.1109/32.605761
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1109/TIT.2022.3143620
https://ee.stanford.edu/~hellman/publications/27.pdf
https://ee.stanford.edu/~hellman/publications/27.pdf
https://doi.org/10.2307/2007743
https://doi.org/10.1007/978-3-030-26948-7_12
https://doi.org/10.1007/978-3-030-97121-2_5
https://arxiv.org/abs/1907.04295
https://arxiv.org/abs/1907.04295
https://doi.org/10.1007/978-3-031-07082-2_16
https://agner.org/optimize/instruction_tables.pdf
https://agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1109/TC.2013.174
https://doi.org/10.1109/TC.2013.174
https://eprint.iacr.org/2013/162
https://eprint.iacr.org/2013/162
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.1109/TIT.1980.1056220
https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
https://web.archive.org/web/20170420171412/www.toad.com/des-stanford-meeting.html
https://doi.org/10.1007/978-3-642-13190-5_12
https://doi.org/10.1007/978-3-642-13190-5_12
https://archive.org/details/cold_war_iii-nsa
https://archive.org/details/cold_war_iii-nsa
https://crypto.stackexchange.com/a/92112
https://crypto.stackexchange.com/a/92112
https://www.worldcat.org/oclc/312994415
https://www.worldcat.org/oclc/312994415
https://doi.org/10.1007/978-3-662-47989-6_1

CryptAttackTester: formalizing attack analyses

volume 9230 of Lecture Notes in Computer Science, pages 101–118, Guadalajara,
Mexico, August 23–26, 2015. Springer, Heidelberg, Germany. doi:10.1007/
978-3-319-22174-8_6.

[73] Julien Lavauzelle, Matthieu Lequesne, and Nicolas Aragon. Syndrome decoding
in the Goppa-McEliece setting, 2023. URL: https://decodingchallenge.org/goppa.

[74] Jonathan D. Lee and Ramarathnam Venkatesan. Rigorous analysis of a ran-
domised number field sieve. Journal of Number Theory, 187:92–159, 2018.
doi:10.1016/j.jnt.2017.10.019.

[75] Pil Joong Lee and Ernest F. Brickell. An observation on the security ofMcEliece’s
public-key cryptosystem. In C. G. Günther, editor, Advances in Cryptology –
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 275–
280, Davos, Switzerland, May 25–27, 1988. Springer, Heidelberg, Germany.
doi:10.1007/3-540-45961-8_25.

[76] David P. Leech and Michael W. Chinworth. The economic impacts
of NIST’s data encryption standard (DES) program, 2001. URL:
https://csrc.nist.gov/publications/detail/white-paper/2001/10/01/the-
economic-impacts-of-nist-des-program/final.

[77] Hendrik W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of
Mathematics. Second Series, 126:649–673, 1987. URL: semanticscholar.org/paper/
307ab08c3d4f551019297d2480597c614af8069c, doi:10.2307/1971363.

[78] Hendrik W. Lenstra, Jr. Algorithms in algebraic number theory. Bulletin
of the American Mathematical Society. New Series, 26(2):211–244, 1992. doi:
10.1090/S0273-0979-1992-00284-7.

[79] HendrikW. Lenstra, Jr. and Carl Pomerance. A rigorous time bound for factoring
integers. J. Am. Math. Soc., 5(3):483–516, 1992. URL: hdl.handle.net/1887/2148,
doi:10.2307/2152702.

[80] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights
of large error-correcting codes. IEEE Transactions on Information Theory,
34(5):1354–1359, 1988.

[81] Gaëtan Leurent and Clara Pernot. New representations of the AES key schedule.
In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryp-
tology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer
Science, pages 54–84, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-77870-5_3.

[82] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ (20.054𝑛) . In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 107–124, Seoul, South Korea, December 4–8, 2011.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-25385-0_6.

[83] Alexander May and Ilya Ozerov. On computing nearest neighbors with applica-
tions to decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 203–228, Sofia, Bulgaria, April 26–30,
2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46800-5_9.

[84] Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. The deep space network progress report 42-44, Jet Propulsion Lab-
oratory, California Institute of Technology, January/February 1978. https:
//ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF.

[85] Dustin Moody. The beginning of the end: the first NIST PQC standards, 2022.
URL: https://nist.pqcrypto.org/foia/20220914/pkc2022-march2022-moody.pdf.

[86] Pieter Moree. Psixyology and diophantine equations. Leiden: Rijksuniversiteit te
Leiden, 1993.

[87] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 96–109, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany. doi:10.1007/978-3-540-45146-4_6.

[88] National Security Agency. NSA’s key role in major developments in computer
science, 2007. partially declassified in 2017. URL: https://web.archive.org/
web/20230430105513/https://www.nsa.gov/portals/75/documents/news-
features/declassified-documents/nsa-early-computer-history/6586785-nsa-
key-role-in-major-developments-in-computer-science.pdf.

[89] National Security Agency. Yes, we ARE the largest employer of mathematicians
in the world, 2014. URL: https://archive.ph/hMV9d.

[90] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207, 2008.
URL: https://doi.org/10.1515/JMC.2008.009.

[91] National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the post-quantum cryptography standardization
process, 2016. URL: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

[92] Christos H. Papadimitriou. Computational complexity, 1994.
[93] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in

ideal lattices with pre-processing. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part II, volume 11477 of Lecture
Notes in Computer Science, pages 685–716, Darmstadt, Germany, May 19–23,
2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17656-3_24.

[94] René Peralta. Circuit minimization work, 2020. URL: http://cs-www.cs.yale.
edu/homes/peralta/CircuitStuff/CMT.html.

[95] Ray Perlner. Number of bit-operations required for information set decoding
attacks on code-based cryptosystems?, 2021. URL: https://crypto.stackexchange.
com/q/92074.

[96] Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards
of privacy on Web, 2013. URL: https://www.nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html.

[97] Christiane Peters. Information-set decoding for binary codes, 2008. URL:
https://github.com/christianepeters/isdf2/.

[98] John M. Pollard. Theorems on factorization and primality testing. Proceedings
of the Cambridge Philosophical Society, 76:521–528, 1974.

[99] John M. Pollard. A Monte Carlo method for factorization. BIT. Nordisk Tidskrift
for Informationsbehandling, 15:331–334, 1975. doi:10.1007/BF01933667.

[100] John M. Pollard. Monte Carlo methods for index computation (mod 𝑝). Mathe-
matics of Computation, 32:918–924, 1978. doi:10.2307/2006496.

[101] Carl Pomerance. Analysis and comparison of some integer factoring algorithms.
Computational methods in number theory, Part I, Math. Cent. Tracts 154, 89–
139, 1982.

[102] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[103] Charles M. Rader. Discrete Fourier transforms when the number of data samples
is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[104] Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision
interval arithmetic and the MPFI library. Reliable computing, 11(4):275–290,
2005.

[105] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978. URL: citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.
2023, doi:10.1145/359340.359342.

[106] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin E. Lauter. Quan-
tum resource estimates for computing elliptic curve discrete logarithms. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, Part II, volume 10625 of Lecture Notes in Computer Science, pages
241–270, Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Ger-
many. doi:10.1007/978-3-319-70697-9_9.

[107] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some
functions of prime numbers. Illinois Journal of Mathematics, 6:64–94, 1962.

[108] Tarinder Sandhu. Review: AMD Epyc 7742 2P Rome server, 2019. URL:
https://web.archive.org/web/20211104084321/https://hexus.net/tech/reviews/
cpu/133244-amd-epyc-7742-2p-rome-server/?page=2.

[109] Claus P. Schnorr and Hendrik W. Lenstra, Jr. A Monte Carlo factoring algorithm
with linear storage. Mathematics of Computation, 43:289–311, 1984. doi:10.
2307/2007414.

[110] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh
connected computers. In 18th Annual ACM Symposium on Theory of Computing,
pages 255–263, Berkeley, CA, USA, May 28–30, 1986. ACM Press. doi:10.
1145/12130.12156.

[111] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/round-3-submissions.

[112] Adi Shamir. Factoring numbers in𝑂 (log𝑛) arithmetic steps, 1977. MIT LCS
TM-91. URL: https://web.archive.org/web/20230430125359/https://apps.dtic.
mil/sti/pdfs/ADA047709.pdf.

[113] Joseph H. Silverman. Variation of periods modulo 𝑝 in arithmetic dynamics.
The New York Journal of Mathematics, 14:601–616, 2008.

[114] Jacques Stern. A method for finding codewords of small weight. In Gérard D.
Cohen and Jacques Wolfmann, editors, Coding Theory and Applications, 3rd
International Colloquium, Toulon, France, November 2-4, 1988, Proceedings, vol-
ume 388 of Lecture Notes in Computer Science, pages 106–113. Springer, 1988.
doi:10.1007/BFb0019850.

[115] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, 1969.

[116] Biaoshuai Tao andHongjunWu. Improving the biclique cryptanalysis of AES. In
Ernest Foo and Douglas Stebila, editors, ACISP 15: 20th Australasian Conference
on Information Security and Privacy, volume 9144 of Lecture Notes in Computer
Science, pages 39–56, Brisbane, QLD, Australia, June 29 – July 1, 2015. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-19962-7_3.

[117] Clark D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel
computer. Communications of the ACM, 20(4):263–271, 1977. doi:10.1145/
359461.359481.

[118] Andrei L. Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. In Soviet Mathematics Doklady, volume 3, pages
714–716, 1963.

https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/978-3-319-22174-8_6
https://decodingchallenge.org/goppa
https://doi.org/10.1016/j.jnt.2017.10.019
https://doi.org/10.1007/3-540-45961-8_25
https://csrc.nist.gov/publications/detail/white-paper/2001/10/01/the-economic-impacts-of-nist-des-program/final
https://csrc.nist.gov/publications/detail/white-paper/2001/10/01/the-economic-impacts-of-nist-des-program/final
semanticscholar.org/paper/307ab08c3d4f551019297d2480597c614af8069c
semanticscholar.org/paper/307ab08c3d4f551019297d2480597c614af8069c
https://doi.org/10.2307/1971363
https://doi.org/10.1090/S0273-0979-1992-00284-7
https://doi.org/10.1090/S0273-0979-1992-00284-7
hdl.handle.net/1887/2148
https://doi.org/10.2307/2152702
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://nist.pqcrypto.org/foia/20220914/pkc2022-march2022-moody.pdf
https://doi.org/10.1007/978-3-540-45146-4_6
https://web.archive.org/web/20230430105513/https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nsa-early-computer-history/6586785-nsa-key-role-in-major-developments-in-computer-science.pdf
https://web.archive.org/web/20230430105513/https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nsa-early-computer-history/6586785-nsa-key-role-in-major-developments-in-computer-science.pdf
https://web.archive.org/web/20230430105513/https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nsa-early-computer-history/6586785-nsa-key-role-in-major-developments-in-computer-science.pdf
https://web.archive.org/web/20230430105513/https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/nsa-early-computer-history/6586785-nsa-key-role-in-major-developments-in-computer-science.pdf
https://archive.ph/hMV9d
https://doi.org/10.1515/JMC.2008.009
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-030-17656-3_24
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://crypto.stackexchange.com/q/92074
https://crypto.stackexchange.com/q/92074
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://github.com/christianepeters/isdf2/
https://doi.org/10.1007/BF01933667
https://doi.org/10.2307/2006496
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.2023
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.2023
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-319-70697-9_9
https://web.archive.org/web/20211104084321/https://hexus.net/tech/reviews/cpu/133244-amd-epyc-7742-2p-rome-server/?page=2
https://web.archive.org/web/20211104084321/https://hexus.net/tech/reviews/cpu/133244-amd-epyc-7742-2p-rome-server/?page=2
https://doi.org/10.2307/2007414
https://doi.org/10.2307/2007414
https://doi.org/10.1145/12130.12156
https://doi.org/10.1145/12130.12156
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://web.archive.org/web/20230430125359/https://apps.dtic.mil/sti/pdfs/ADA047709.pdf
https://web.archive.org/web/20230430125359/https://apps.dtic.mil/sti/pdfs/ADA047709.pdf
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1007/978-3-319-19962-7_3
https://doi.org/10.1145/359461.359481
https://doi.org/10.1145/359461.359481

Daniel J. Bernstein and Tung Chou

[119] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Tsuyoshi Takagi, editor, Post-
Quantum Cryptography - 7th International Workshop, PQCrypto 2016, pages
144–161, Fukuoka, Japan, February 24–26, 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-29360-8_10.

[120] U.S. Congress, Office of Technology Assessment. A history of the Department
of Defense Federally Funded Research and Development Centers, 1995. URL:
https://www.princeton.edu/~ota/disk1/1995/9501/9501.PDF.

[121] Xiaoyun Wang, Mingjie Liu, Chengliang Tian, and Jingguo Bi. Improved
Nguyen-Vidick heuristic sieve algorithm for shortest vector problem (keynote
talk). In Bruce S. N. Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Dun-
can S. Wong, editors, ASIACCS 11: 6th ACM Symposium on Information, Com-
puter and Communications Security, pages 1–9, Hong Kong, China, March 22–24,
2011. ACM Press.

[122] Shimeng Yu. Semiconductor Memory Devices and Circuits. CRC Press, 2022.
[123] Feng Zhang, Yanbin Pan, and Gengran Hu. A three-level sieve algorithm for

the shortest vector problem. In Tanja Lange, Kristin Lauter, and Petr Lisonek,
editors, SAC 2013: 20th Annual International Workshop on Selected Areas in
Cryptography, volume 8282 of Lecture Notes in Computer Science, pages 29–
47, Burnaby, BC, Canada, August 14–16, 2014. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-43414-7_2.

A The importance of cryptographic
security-level assessments

Cryptography is full of numerical claims regarding costs of attacks
against various cryptosystems: attack𝐴 costs 256, attack 𝐵 costs 280,
attack 𝐶 costs 2112, etc. This appendix reviews various examples
of how these numbers are used, and highlights an attack strategy
that sabotages real-world cryptography by exploiting quantitative
inaccuracies in evaluations of the costs of attack algorithms.

A.1. The Data Encryption Standard. DES was standardized in
1977, remained an official U.S. government standard until 2005, and
was widely deployed in the meantime (see [76]). Recorded DES
ciphertexts are now breakable at very low cost, and presumably
include some plaintexts that remain useful to attackers today: for
example, there is no evident time limit on the type of extortion
described in [40].

Diffie and Hellman objected at the outset to the low DES security
level. In [51], they explained how to build a $20000000 machine
breaking one DES key per day with a brute-force attack. (This was
before Hellman [65] introduced much more efficient attacks after
precomputation.) NSA claimed that the attack was actually 30000
times more expensive (see [66]: “instead of one day he gets some-
thing like 91 years”). The dispute here was not about the number
of DES keys (namely 256), but about lower-level circuit details and
claimed overheads (again see [66]; e.g., “for the pipelining you blew
up the number of gates, and your size of your chip went up, and
the cost went up”). Proposals to use larger keys were explicitly
rejected on the basis of (1) the claimed cost of DES attacks and (2)
the claimed cost of those proposals; see [1].

The actual cost of brute-force attacks against DES was, in fact,
far below NSA’s public claims, but public researchers did not have
the resources to demonstrate this at the time. Twenty years later,
EFF built a $250000 machine [59] breaking one DES key every
few days with a brute-force attack (and larger-scale attacks would
have had even better price-performance ratios because of various
economies of scale), whereas combining NSA’s claims with the
observed improvements in chip technology over the same period
would have predicted three orders of magnitude higher costs.

These three orders of magnitude mean that attackers were, for
any particular attack cost, able to break three orders of magnitude

more data than NSA was claiming—or break the same data for the
same cost many years earlier, with three orders of magnitude worse
chip technology. All of this is with simple enumeration of all keys,
not using the faster attack from [65].

A.2. Sabotaging cryptographic selection. NSA had secretly
established a policy of sabotaging cryptography to make sure it
was “weak enough” for NSA to break, in the words of an internal
NSA history book [68]: “Narrowing the encryption problem to
a single, influential algorithm might drive out competitors, and
that would reduce the field that NSA had to be concerned about.
Could a public encryption standard be made secure enough to
protect against everything but a massive brute force attack, but
weak enough to still permit an attack of some nature using very
sophisticated (and expensive) techniques?”

Forty years later, the budget for NSA’s “Sigint Enabling Project”—
a project to “covertly influence and/or overtly leverage” deployed
designs to make them “exploitable”—was “more than $250 million
a year”, according to [96].

Cryptographic choices are continually made on the basis of quan-
titative claims regarding attack costs. Small-sounding differences
in claims played a clear role in, e.g., the DES example above and
the much newer NTRU-Kyber example below. Current practice
does not follow robust mechanisms to recognize errors in these
quantitative claims; it does not even enforce clear definitions of
the claims. This gives attackers tremendous freedom to manipulate
the numbers, for example by publicly pointing out an overestimate
for cryptosystem 𝑋 while staying quiet about an overestimate for
cryptosystem 𝑌 .

Sometimes cryptographic systems are publicly broken by attack
algorithms that are so fast that academics can easily run them—
but then those systems are no longer considered for deployment;
the targets of sabotage are the remaining algorithms. In the oppo-
site direction, sometimes cryptographic systems have such high
security levels that making them sound breakable would require a
gigantic, hopefully obvious, security-evaluation error—but there
is tremendous pressure to reject these systems in favor of systems
with smaller security margins; see, e.g., [62] and [11]. Because of
these incentives, as noted in [22], most security levels end up closely
packed—not far from each other, and not far beyond what they need
to resist attack.

A.3. NTRU-509 vs. Kyber-512. The following cryptosystem pro-
posals aim for much higher security levels than DES, as one would
expect given that (1) DES was a security disaster, (2) these proposals
are 40 years newer than DES, and (3) these proposals are portrayed
as being secure for many further years into the future. Specifically,
these proposals aim to be as secure as AES-128. The point of the fol-
lowing text is not to say that security problems are known in these
proposals, but to give an example of the role that a tiny difference
in quantitative security claims played in a modern cryptographic
standardization decision.

NTRU-509 is the most efficient proposal displayed in [85, page
23, “bandwidth graph”]: in particular, it visibly beats Kyber-512 in
that graph. This is a size comparison from a March 2022 NIST talk
“The beginning of the end: the first NIST PQC standards”. NTRU-509
has 699-byte public keys and 699-byte ciphertexts, while Kyber-512
has 800-byte public keys and 768-byte ciphertexts.

https://doi.org/10.1007/978-3-319-29360-8_10
https://www.princeton.edu/~ota/disk1/1995/9501/9501.PDF
https://doi.org/10.1007/978-3-662-43414-7_2

CryptAttackTester: formalizing attack analyses

However, NTRU-509 is not present in [7, Table 6], a size com-
parison from a July 2022 NIST report. NTRU is instead represented
in the table by NTRU-677, which has 930-byte public keys and
930-byte ciphertexts, obviously beaten by Kyber-512.

The report announced that NIST would standardize Kyber for
post-quantum encryption. The report includes a paragraph on
NIST’s “difficult” choice between Kyber and NTRU. This paragraph
describes Kyber’s security assumptions as “marginally” more con-
vincing [7, page 18] than NTRU’s security assumptions, but the
same paragraph says that “NIST is confident in the security that
each provides”, so this does not appear to have been a very impor-
tant decision criterion. The only decisive-sounding sentence in the
paragraph is the last sentence: “With regard to performance, Kyber
was near the top (if not the top) in most benchmarks.”

Why did NTRU-509 disappear between [85] and [7]? Accord-
ing to [7, page 39], “what NIST used for NTRU in the figures and
tables in this report” is a “non-local cost model” for the “assign-
ment of security categories”. In context, this indicates that NIST
eliminated NTRU-509 as not reaching NIST’s minimum allowed
“security category”, namely the security level of AES-128.

NTRU-509 uses lattice problems that are not much smaller than
the Kyber-512 lattice problems. For example, according to the Kyber-
512 security-estimation methodology, Kyber-512 is just 12 bits
harder to break than NTRU-509. This is compatible with NIST
concluding that

• NTRU-509 is easier to break than AES-128 and
• AES-128 is easier to break than Kyber-512,

but it forces both of these gaps to be very small, with total just 12
bits; at least one of the gaps must have been 6 bits or smaller.

The decision structure displayed in [7] is thus sensitive to very
small changes in quantitative security levels. If algorithm analyses
had been modified to produce slightly higher security claims (for
example, accounting for missed overheads) then NTRU-509 would
not have been eliminated; NTRU would have scored much better in
the quantitative comparisons in [7], such as [7, Table 6]. This would
not necessarily have been a decisive win for NTRU, but if a choice
is labeled as “difficult” then one has to presume that any big change
is important. In the opposite direction, if security claims had been
slightly lower then Kyber-512 would have been eliminated, and
NTRU-677 would have beaten the smallest remaining Kyber option.

A.4. The dangers of underestimates. There is a common per-
ception that underestimating attack exponents by 5% or 10% or 20%
is harmless, even “conservative”: users will simply choose larger
cryptosystem parameters to compensate, ending up with an extra
security margin.

However, cryptosystems are continually being compared. Users
ask for the highest-performance cryptosystem that fits specified
security requirements, or for the safest cryptosystem that fits spec-
ified performance requirements. Underestimating security levels
corrupts these comparisons, and can mean that a higher-security
cryptosystem is skipped in favor of a lower-security cryptosys-
tem. The misevaluation would not matter here if it were the same
across cryptosystems, but known examples of underestimates vary
in many ways across cryptosystems.

If underestimates are encouraged, or at least accepted, then an at-
tacker trying to influence cryptosystem selection is free to publicly

underestimate the security of cryptosystem 𝑋 more than the secu-
rity of cryptosystem 𝑌 . This is analogous to the attacker’s freedom
to selectively point out overestimates, but in that context there was
a risk (from the attacker’s perspective) of a non-attacker discover-
ing and pointing out the other overestimates, which presumably
would then be corrected.

A.5. The process of attack discovery. The process of analyzing
the costs of an attack is one component of a broader public process
of searching for the best attacks.

One might think that errors in attack analyses do not damage
this broader process. For example, the subset-sum algorithm of [67],
with exponent 0.337𝑛, was a breakthrough compared to the 0.5𝑛 ex-
ponent that had been known for decades. The ideas of [67]—and of
[15], whose main result improved 0.337 to 0.291—were then success-
fully adapted to a larger class of code/lattice problems. For example,
the aforementioned MMT paper [82] adapted [67] to decoding, and
the BJMM paper [18] adapted [15] to decoding. Why does it matter
that the exponent from [67] was originally underestimated by 8%,
or that the exponent from [56] was underestimated by 12%?

If every algorithm speedup were like [67] in changing exponents
by more than 30%, then it is true that the speedups would not be
hidden by errors around 10%. However, the reality is that, for well-
studied problems, such large changes rarely happen all at once.
Most individual speedups change exponents by much less than
10%.

For example, [34] reported subset-sum exponent 0.283, just 2.7%
better than the 0.291 from [15]. This speedup would have been
harder to publish if the erroneous 0.255 from [56] had not been
withdrawn.

Small speedups rarely make the news. They are nevertheless
the main driver of algorithmic advances, both through the cumula-
tive impact of many small speedups and through the role of small
speedups as inspiring larger speedups (e.g., [103] inspiring [64], and
[98] inspiring [77]). Underestimating a state-of-the-art exponent by
10% will lead one useful idea after another to be misevaluated as un-
productive, and can even halt research on a topic—unless someone
luckily happens to find a big speedup or discovers that the claimed
exponent was wrong.

Now consider the hypothesis that a large-scale attacker has
found an algorithm to break a popular cryptosystem. The attacker
will then want to keep this knowledge secret—for example, by
attracting public cryptanalysis to less productive lines of attack.
Underestimating attack costs is a straightforward way to do this.

This hypothesis is plausible. NSA says [89] it is “the largest
employer of mathematicians in the world”. The U.S. government
also funds “federal research centers” that are “designed to attract
the best and the brightest people available using salary above the
wage scale the federal government offers”, according to [120]; in
particular, NSA contractor IDA has hired many cryptanalysts, such
as Coppersmith, whose pre-IDA papers earned the 2022 Levchin
Prize for “foundational innovations in cryptanalysis”. As a historical
matter, many cryptosystems, including deployed cryptosystems,
have been publicly broken, so it is easy to imagine some currently
deployed cryptosystems being breakable.

Daniel J. Bernstein and Tung Chou

Of course, taking steps to eliminate errors does not guarantee
that the public search for the best attacks will succeed. State-of-the-
art cryptanalysis is challenging even when the process is not under
attack.

B The tension between proving attack costs and
optimizing attacks

The literature on algorithms has many examples of speedups that
have experimental evidence but no proof. In particular, experience
shows that the normal state of affairs for conjecturally hard cryp-
tographic problems is that efforts to attack the problems develop
speedups that are conjectured, not proven, to work.

This appendix surveys various examples of this phenomenon for
factorization (which has a very long history), elliptic-curve discrete
logarithms, and lattice problems. The magnitude of the conjectured
speedups varies from one problem to another. These gaps motivate
this paper’s choice to formalize cryptanalytic processes that are
not proofs.

Perhaps all of these speedups will eventually be proven (or dis-
proven), but perhaps not; perhaps some of them are unprovable.
Either way, there are long periods during which no proof is known,
and there is tremendous value in formalizing the processes that
cryptanalysts are following during these periods.

One exception to the normal state of affairs is that the study of
a problem often begins with simple provable attacks, such as trial
division for factorization. However, in each of the examples below,
continued study of the problem produced gaps between the state
of the art and the proven state of the art.

Another exception is that often systems are broken by new at-
tacks, and sometimes these new attacks are proven while the su-
perseded attacks were not. Broken systems are not what one would
recommend to cryptographic users.

B.1. Why unproven attack speedups should be unsurpris-
ing. Mathematicians and theoretical computer scientists typically
view proofs as their primary research output, and select research
topics that have a high chance of producing proofs. This creates
a selection bias towards provable statements—and yet these re-
searchers frequently report encountering statements that they are
unable to prove, despite accumulating considerable evidence that
the statements are true.

One expects removing this selection bias to create a much larger
frequency of such statements. This matches the observed situation
in cryptanalysis. Cryptanalysts focusing on the real-world task of
analyzing security levels of major cryptosystem proposals do not
have the luxury of selecting topics for provability; and cryptana-
lysts continually develop attack speedups that are experimentally
observed to work but that nobody seems able to prove.

For comparison, [3] claims that Gödel’s “gremlin”—the fact that
there are unprovable truths—is “mostly dormant”, and partly at-
tributes this claimed situation to a differently stated selection bias:
namely, that “pattern-less parts of math” (apparently meaning state-
ments without proofs) are not “interesting to humans” (apparently
meaning people who prioritize proofs).

B.2. Existence of unprovable speedups. For readers who per-
ceive Gödel’s results as a provable example of a pervasive problem

rather than as a mostly dormant gremlin, the following example
makes it even less surprising that there are many unproven algo-
rithm speedups.

Recall that Gödel’s second incompleteness theorem states, for
a broad class of axiom systems 𝑆 , that if 𝑆 is consistent then there
is no proof in 𝑆 of consistency of 𝑆 . It is then an easy exercise to
construct an algorithm speedup with the following property: if 𝑆 is
consistent then 𝑆 cannot prove the speedup correct even though
the speedup is, in fact, correct.

For example, define 𝐹 as the function that, on input 𝑥 , returns 1
if 𝑥 is a proof in 𝑆 of consistency of 𝑆 , else 0. The straightforward
way to compute 𝐹 reads through all of 𝑥 to check, step by step,
whether 𝑥 is a proof in 𝑆 of consistency of 𝑆 . The speedup4 is to
simply return 0 without bothering to read 𝑥 . This speedup is correct
by Gödel if 𝑆 is consistent. Proving in 𝑆 that the speedup is correct
means proving in 𝑆 that there is no proof in 𝑆 of consistency of 𝑆 ,
which logically implies proving in 𝑆 that 𝑆 is consistent,5 which,
by Gödel again, is impossible if 𝑆 is consistent.

Note that this is not showing that every function 𝐹 has unprov-
able speedups, and is not showing that the unproven speedups listed
below are unprovable. Formally, restricting attention to concrete
problem sizes such as RSA-2048, as in real-world cryptography, also
means that one can restrict attention to the finite list of attacks that
do not consume more resources than brute-force search, and that
establishing the effectiveness of each attack is a finite computation,
ergo provable. This raises the question of whether there is a proof
of length below, e.g., 2100.

B.3. Factorization. For simplicity, the following comments focus
on the problem of factoring “balanced” moduli 𝑛 = 𝑝𝑞, where the
secret primes 𝑝 and 𝑞 are chosen independently and uniformly
at random between 2𝑏−1 and 2𝑏 . Also, these comments focus on
operation counts without considering the costs of memory.

For trial division by all primes between 2𝑏−1 and 2𝑏 , the number
of primes is (1/2 + 𝑜 (1))2𝑏/log 2𝑏 by the prime-number theorem,
where log is the natural logarithm and 𝑜 (1) is something that con-
verges to 0 as 𝑏 →∞. More generally, for each real number 𝜃 with
0 < 𝜃 ≤ 1, trial division by all primes between 2𝑏−1 and (1+𝜃)2𝑏−1
involves (𝜃/2+𝑜 (1))2𝑏/log 2𝑏 divisions and succeeds with probabil-
ity (2− 𝜃)𝜃 + 𝑜 (1). One can make the 𝑜 (1) bounds explicit to prove
reasonably precise bounds for concrete values of 𝑏; see generally
[107].

Some simple speedups to trial division, such as modifying the
range of primes considered according to the size of the modulus
being attacked, are similarly provable. Even better, in 1974, Pol-
lard [98] introduced an algorithm that provably cuts the exponent
in half, in particular reaching probability 1 using just 𝑛1/4+𝑜 (1)
operations.

However, Pollard noted that an earlier method of Shanks was
conjectured to use just 𝑛1/5+𝑜 (1) operations. Furthermore, Pollard’s

4This example works with a broad class of “speedup” definitions: all one needs is that
simply returning 0 without reading 𝑥 is a speedup compared to checking each step of
𝑥 .
5If 𝑆 is inconsistent then there is a proof in 𝑆 of every statement. In particular, if 𝑆 is
inconsistent then there is a proof in 𝑆 of consistency of 𝑆 . Take the contrapositive: if
there is no proof in 𝑆 of consistency of 𝑆 , then 𝑆 is consistent. Reflect into a proof in
𝑆 : if there is a proof in 𝑆 that there is no proof in 𝑆 of consistency of 𝑆 , then there is a
proof in 𝑆 that 𝑆 is consistent.

CryptAttackTester: formalizing attack analyses

paper introduced another factorization method, the 𝑝 − 1 method,
which has its own gap betwen proven effectiveness and conjectured
effectiveness.

It is not difficult to formulate a precise quantitative statement
that, qualitatively, says that the 𝑝 −1 method finds 𝑝 quickly if 𝑝 −1
happens to factor into small primes (and similarly for 𝑞); what is
difficult is to provably pin down the chance that this occurs. There
were already bounds on the number of integers between 2𝑏−1 − 1
and 2𝑏 − 1 that factor into small primes (see [86] for a survey), but
this gives only a (conjecturally) loose upper bound on the chance
that 𝑝 − 1 is one of those integers, and does not give a lower bound.

The proof challenges deepened the next year with Pollard’s
introduction [99] of the rho method, which iterates a polynomial
function such as 𝑥 ↦→ 𝑥2 + 1 modulo 𝑛 and hopes to encounter a
collision modulo 𝑝 (or modulo𝑞). The rho method conjecturally uses
𝑛1/4+𝑜 (1) operations for worst-case primes 𝑝, 𝑞. A closer look shows
that the conjectural number of operations is better by a factor 𝑏Θ(1)
than the number of operations in the provable algorithm of [98].
What has been proven about the rho method is much weaker than
what has been conjectured; see, e.g., [12], [113, Section 6], and [20,
Section 5].

The RSA paper then appeared [105], and mentioned, among
other things, that a new algorithm from Schroeppel “can factor 𝑛 in
approximately exp

√︁
ln(𝑛) · ln(ln(𝑛))” operations. A correct state-

ment of what was known would have said that this was a conjecture,
would have included exponent 1 + 𝑜 (1), and would have stated that
the operation count was ignoring linear algebra. A full operation
count, including linear algebra, produced a larger exponent, which
was brought much closer to 1 by a subsequent change from Schroep-
pel’s linear sieve to Pomerance’s quadratic sieve; see [101] for this
analysis. Subsequent improvements in linear algebra brought the
exponent to 1 + 𝑜 (1). All of these exponents are conjectural; the
effectiveness of the linear sieve and of the quadratic sieve remains
unproven today.

In 1981, Dixon [52] introduced another factorization method,
the random-squares method, proven to take exp

√︁
Θ(log𝑛 log log𝑛)

operations. Further work improved the Θ constant in the exponent,
culminating in a 1992 Lenstra–Pomerance algorithm proven to take
exp

√︁
(1 + 𝑜 (1)) log𝑛 log log𝑛 operations—but by that time other

algorithms had been introduced with much better conjectural scala-
bility. As stated in [79, page 484]:

With our theorem, we hoped to bridge the gap be-
tween rigorously analyzed factoring algorithms and
heuristically analyzed factoring algorithms. Our vic-
tory has turned out to be an empty one, however,
since in 1989 factoring broke through the 𝐿𝑛 [12 , 1]
barrier in a rather dramatic fashion.

The breakthrough factorization algorithm mentioned there, the
number-field sieve (NFS), has some components that have been
rigorously analyzed but other components that remain unproven
today. The “rigorous analysis” from [74] of a variant of NFS is
actually “conditional on Conjecture 7.1”; see [74, Theorem 2.3].
Even if some variant of NFS is proven to work someday, it seems
unlikely that this variant will include all the known NFS speedups:
for example, the partial proof in [74] relies on making a random
choice of number fields within a large range, while NFS speed

records rely on searching for number fields that appear particularly
favorable.

In reasonable models of quantum computation, Shor’s algorithm
has much better scalability than NFS, and at the same time is prov-
able. Shor’s algorithm is normally interpreted as a reason not to
use RSA. “Post-quantum RSA” [26] instead scales RSA up to sizes
that resist Shor’s algorithm; security analysis of this RSA variant
relies on analysis of how well Lenstra’s elliptic-curve method [77]
performs—which is yet another conjecture that remains unproven
decades later.

B.4. Elliptic-curve discrete logarithms. In the case of discrete-
logarithm algorithms for conservative choices of elliptic curves (not,
e.g., pairing-friendly curves), speedups have been quantitatively
much smaller than for factorization algorithms. However, there
are still gaps between the best proven effectiveness of known algo-
rithms and the best conjectured effectiveness of known algorithms.

For example, Pollard [100] introduced a rho method for discrete
logarithms (and a “kangaroo” method for an important variant of
the same problem, namely discrete logarithms in a short interval).
The rho method uses much less memory than the baby-step-giant-
step method of computing discrete logarithms, and the number
of operations is conjecturally within a small constant factor of the
proven number of operations of the baby-step-giant-step method.

This rho method does not need to follow the polynomial struc-
ture that was used in the rho method for factorization. A provable
variant of the rho method computes log𝑃 𝑄 , where 𝑃 and 𝑄 are
curve points, by walking from 𝑅 to 𝑎(𝑅)𝑃 + 𝑏 (𝑅)𝑄 for functions
𝑎, 𝑏 chosen uniformly at random. However, this variant has to keep
building and checking a table showing the 𝑎(𝑅), 𝑏 (𝑅) values chosen
so far; this throws away the main advantage of the rho method,
namely that it uses very little memory.

Conjecturally optimized versions of the rho method instead walk
from 𝑅 to 𝑅+𝑊𝐻 (𝑅) , with further modifications to exploit fast nega-
tion on elliptic curves. Here 𝐻 is an extremely lightweight hash
function that hashes 𝑅 to just a few bits, and the values𝑊0,𝑊1, . . .
are chosen as random linear combinations of 𝑃,𝑄 . The group struc-
ture does not interact in a problematic way with the structure of
𝐻 in experiments, but this is a heuristic, not a proof. The analysis
of adding a small number of values involves more heuristics; see
generally [28].

B.5. Lattice problems. An SVP algorithm with proven exponent
1 + 𝑜 (1) was introduced by Aggarwal–Dadush–Regev–Stephens-
Davidowitz [5] in 2015. For comparison, Nguyen–Vidick [90] had
already obtained conjectural exponent 0.415 . . . + 𝑜 (1) in 2008. At-
tacks after [90] obtained conjectural exponents close to 0.384 [121],
0.3778 [123], 0.3774 [17], 0.337 [71], 0.298 [72], and 0.292 [16].

The application of SVP algorithms inside lattice attacks involves
additional heuristics. For example, deployed lattice-based cryptosys-
tems essentially always rely on lattices derived from number fields,
but analyses of the performance of BKZ in this context generally
ignore this lattice structure. See, e.g., [111, Section 5.1, “analyze the
hardness of the MLWE problem as an LWE problem”]. Nothing
has been proven here; treating structured lattices as unstructured
lattices is another heuristic.

Some attacks explicitly use the number-field structure. The anal-
yses rely on further heuristics: see, e.g., [93, Heuristics 1–6]. This

Daniel J. Bernstein and Tung Chou

follows a long-established pattern of relying on heuristics in an-
alyzing algorithms for number fields. Consider, for example, the
following 1992 comment from Lenstra [78]:

The analysis of many algorithms related to alge-
braic number fields seriously challenges our the-
oretical understanding, and one is often forced to
argue on the basis of heuristic assumptions that are
formulated for the occasion. It is considered a relief
when one runs into a standard conjecture such as
the generalized Riemann hypothesis (as in [6, 15])
or Leopoldt’s conjecture on the nonvanishing of
the 𝑝-adic regulator [60].

This is also one of the reasons that heuristics appear in the analy-
ses of various factorization algorithms listed above—not just the
number-field sieve.

C Examples of errors that comprehensive
formalization would have prevented

This appendix looks at why the errors in [67] and [53] mentioned
in Section 1 were not caught by the simulations in those papers. In
each case, there was a mismatch at one of the interfaces between
the simulations and the incorrect analysis, and there was nothing
checking for errors hiding in that interface, whereas the formaliza-
tion pattern stated in Section 1.2 would have enforced a check. The
two errors illustrate mismatches at two different interfaces.

C.1. A mismatch of models of computation. For [67], heuris-
tic analysis missed a bottleneck inside the algorithm. Using the
analysis to compute a cost formula, and directly comparing this
formula at any particular input size to the algorithm’s actual cost,
would immediately have detected the discrepancy. This would have
required [67] to specify a model of computation, to track costs in
that model through the analysis, and to measure the algorithm’s
cost in the same metric.

Instead the analysis in [67] tracked asymptotics of costs in an
unspecified model of computation. Meanwhile the attack experi-
ments in [67] tracked measurements of run time on a real CPU. The
hardware design that produces a real CPU is a specified model of
computation, but the definition is very complicated and obviously
not the foundation of the analysis in [67]. Consider the fact that the
analysis assumes instantaneous access to arbitrarily large arrays,
while real CPUs vary heavily in array-access costs depending on
the size of the array; see, e.g., the measurements in [2, “Memory
Access and Caching”].

This mismatch of models made meaningful comparison impos-
sible. Trying experiments for enough sizes might have detected
that the attack had worse scalability than 20.3113𝑛 , but this would
have been easily explainable in other ways, such as 2𝑜 (𝑛) factors
suppressed in the analysis and memory-access costs visible on the
CPU.

C.2. A mismatch of problem parameters. Cost was not an
issue for [53]: that paper considered only algorithms having low
cost (asymptotically bounded by a low-degree polynomial). The
issue was identifying the transition between problems solved with
low probability and problems solved with high probability.

The lattice problem attacked in [53] is conventionally indexed by
“Hermite factor”, the simplest quantity to use in checking alleged
solutions. Internally, the paper’s analysis introduced another quan-
tity, the Hermite factor times “Δ1/2𝑛

𝐾
”. The simulation in [53] also

worked with that quantity. The (unpublished) software producing
the erroneous Hermite-factor graph in [53] should have divided
the internal quantity by “Δ1/2𝑛

𝐾
”, but instead multiplied by “Δ1/2𝑛

𝐾
”.

The way this error was detected two years later was by another
team redoing the entire sequence of computations outlined in [53],
including production of the graph.

Formalization of the problem would have used Hermite factor,
for the same reason that Hermite factor is conventionally used. The
simulated algorithm output would have been compared directly to
the Hermite factor. The success probability of the algorithm would
have been compared to the formula predicting success probability
for the same Hermite factor. A graph automatically generated from
the same formula would never have been faced with a different
quantity. If, as a variant of the error in [53], division and multiplica-
tion had been exchanged inside the formula, then this would have
been caught by the probability comparisons.

C.3. The value of post-mortems. Studying how errors occurred
is useful for evaluating the benefits of error-detection techniques.
This process requires not merely acknowledgment of errors, but
also analysis of how the errors occurred and analysis of how the
errors could have been prevented.

Beyond an initial set of post-mortems, further post-mortems
can be useful for identifying further types of errors. For example,
the error in [109] was an error in the probability analysis for some
inputs, and would have been caught by systematic experiments for
small inputs; [109] included some experiments, but only for larger
inputs, which were less likely to trigger the error. This shows the
importance of checking many inputs, including many small inputs.
The situation of the error in [109] is different from the situations
of the errors in [67] and [53], where a precise check of one input
would have been enough.

Note that there is an inherent selection bias in studying only
known errors. It is important for post-mortems to be accompanied
by analyses of how further types of errors can occur and can be
caught.

D Breaking security claims for Kyber-512 and
AES-128

This appendix reviews, and disproves, two examples of claims re-
garding the number of “gates” used by “optimised”/“optimal” attack
algorithms. There are problematic ambiguities in both claims, but
the disproof here is reasonably robust against these ambiguities:

• The claimed security levels are not accompanied by clear
definitions of the allowed set 𝐺 of “gates”, but the claims
are accompanied by statements making sufficiently clear
that particular “gates” are included in𝐺 . The attacks in this
appendix are built purely from those “gates”.

• The claimed security levels are accompanied by ambigu-
ous wording regarding precision (“about” and “estimate”),
but it is not plausible that most readers would interpret

CryptAttackTester: formalizing attack analyses

the wording as allowing the magnitude of attack speedups
demonstrated in this appendix.

The big problem with the claims has nothing to do with these
ambiguities. Both claims use a concept of “gate” in which access to
an arbitrarily large array costs just 1 “gate”. This appendix presents
very easy ways to exploit this low-cost array access.

In particular, the latest Kyber documentation [111] states a “cost
of about 2137.4 gates for AllPairSearch in dimension 375” for the
main subroutine used inside a Kyber-512 attack, and NIST [91]
states an “estimate” of “2143 classical gates” for “optimal” AES-128
key search. For Kyber-512, this appendix cuts almost 10 bits out
of the “gate” count for the “primary optimisation target”, and also
speeds up various secondary algorithm components. The AES-128
speedup is smaller but is still sufficient to disprove 2143.

There have been several other Kyber-512 attack speedups after
[111] (although there also appear to be ongoing disputes regarding
the success probability of some of those speedups). All of those
appear to combine straightforwardly with the speedups here.

The speedups in this appendix as measured by “gates” are slow-
downs in realistic cost metrics. The point here is not merely that
this “gates” concept is unrealistic, but also that the algorithm opti-
mization in the relevant literature obviously did not focus on this
notion. See Appendix D.5 and Appendix G.5 for connections to the
question of how models of computation and cost metrics should be
selected.

D.1. Which definition of “gates” is being used? In its 2016
call for submissions [91] to the NIST Post-Quantum Cryptography
Standardization Project, NIST gave “estimates for the classical and
quantum gate counts for the optimal key recovery and collision
attacks on AES and SHA3”—but did not define the allowed set of
“gates”.

In particular, NIST estimated “2143 classical gates” for AES-128
key search, and designated AES-128 key search as the minimum se-
curity level allowed in the project. There were then various requests
for a definition of the allowed set of “gates”. In a 2022 report [7],
NIST wrote the following:

In the context of the NIST PQC Standardization
Process, the version of the RAM model, where the
operations being counted are “bit operations” that
act on no more than 2 bits at a time and where each
one-bit memory read or write is counted as one
bit-operation, is sometimes referred to as the gate
count model.

This is still not a complete definition—one can write down many
different models that fit all of the features listed here for “the”
model—but the statement that “each one-bit memory read or write
is counted as one bit-operation” is sufficient for the AES-128 attack
speedups in this appendix.

The same report [7, page 18] highlights the “thorough and de-
tailed security analysis” in the round-3 Kyber specification. That
specification, in turn, estimates [111, page 27] that attacking Kyber-
512 involves 2151.5 “gates”: specifically, 214.1 calls to “AllPairSearch”,
times “a cost of about 2137.4 gates for AllPairSearch in dimension

375”. The latter cost is based on “explicit gate counts for the in-
nermost loop operations (XOR-popcounts, inner products)” and is
attributed to [9].

The paper [9] says that it describes “classical algorithms as pro-
grams for RAM machines (random access memory machines)”, and
counts the number of “NOT, AND, OR, XOR, LOAD, STORE” opera-
tions where “LOAD and STORE act on ℓ bit registers”. This is again
not a complete definition, but enough information is provided to
allow some comparisons to [7].

“NOT, AND, OR, XOR” appear to be intended as 2-input opera-
tions, so they are examples of NIST’s “act on no more than 2 bits at
a time”. NIST appears to be allowing other such operations such as
NAND, but this makes only a small difference in operation counts.

A more important incompatibility between [9] and [7] is that
“LOAD” and “STORE” in [9] have multiple-bit addresses and trans-
fer multiple bits of data at once, whereas [7] allows multiple-bit
addresses but only a “one-bit memory read or write”. This difference
is not clear from the brief description “LOAD and STORE act on
ℓ bit registers” but can be seen from the analogy stated in [9] to
particular quantum “gates”; it can also be seen, more straightfor-
wardly, from the statement “loading ℎ(𝑣) has cost 1” in [9, Section
4.2], where ℎ(𝑣) is an 𝑛-bit vector.

The speedups in this appendix are generally larger with multi-
bit loads than with single-bit loads, although some of the tables
below have single-bit outputs. For breaking the Kyber-512 security
levels claimed in [9] and [111], this appendix allows multi-bit loads,
since these are allowed and used in [9] and there is nothing to
the contrary in [111]; but this appendix also notes what would
happen with single-bit loads. For breaking the AES-128 security
levels claimed in [91], this appendix restricts to single-bit loads.

Neither [9] nor [7] appears to prevent extremely large tables
from being embedded into programs, such as precomputed tables
simply mapping public data to secret keys. This appendix limits
itself to small attack algorithms building tables at run time, so the
speedups here apply even if program length is added into cost as
in, e.g., [19].

D.2. Components of the 2137.4 claim for Kyber-512. The paper
[9] says that a “XOR and Population Count” operation, “popcount”,
is its “primary optimisation target”. This operation “loads 𝑢 and 𝑣
from specified memory addresses, computes ℎ(𝑢) and ℎ(𝑣), com-
putes the Hamming weight of ℎ(𝑢) ⊕ ℎ(𝑣), and checks whether it
is less than or equal to 𝑘”.

The “RAM program for popcount” in [9, Section 4.2] begins by
saying that “loading ℎ(𝑣) has cost 1”. This illustrates that [9] is
allowing and using cost-1 multi-bit memory access, as noted above.

The program then carries out a sequence of bit operations on
the bits of ℎ(𝑢) and ℎ(𝑣) to build a tree of adders ending with the
Hamming weight. The “overall instruction count is 6𝑛 − 4ℓ − 5”
where “ℓ =

⌈
log2 𝑛

⌉
”. For example, for dimension 𝑑 = 375, [9] takes

𝑛 = 511, so the “instruction count” is 3025.
As for “inner products”, [9, Section 4.3] explains that this does not

need careful optimization: “The cost of one inner product is amor-
tised over many popcounts, and a small change in the popcount
parameters will quickly suppress the ratio of inner products to pop-
counts (see Remark 2). Hence we only need a rough estimate for the
cost of an inner product.” The inner-product cost estimate given in

Daniel J. Bernstein and Tung Chou

[9, Section 4.3] is “approximately 322𝑑” for 𝑑 32-bit multiplications;
here 322 is the number of ANDs in schoolbook multiplication.

The script in [9] covers many smaller algorithm components
that are not commented upon in the text of [9]. A review of these
components shows that the number of bits manipulated is con-
tinually appearing. For example, the script in [9] estimates cost
(32 + log2 𝑍)𝑍 (log2 𝑍) for sorting a list of 𝑍 32-bit integers.

D.3. Exploiting tables to reduce the number of “gates”. Con-
sider a table mapping pairs (𝑟, 𝑠), where 𝑟 and 𝑠 are 54-bit vectors,
to the 6-bit Hamming weight of 𝑟 ⊕ 𝑠 . It is easy to build this table
using just 2110 “gates”, which is not a bottleneck in the attack.

Apply this table to the bottom 54 bits of ℎ(𝑢) and ℎ(𝑣), then to
the next 54 bits of ℎ(𝑢) and ℎ(𝑣), etc. There are 7 table lookups,
reducing the input to 7 Hamming weights, each having 6 bits. Then
use one further lookup in another table to map these 42 bits to the
desired single-bit output, namely whether the sum “is less than or
equal to 𝑘”.

With the memory access allowed by NIST in [7], this costs just
43 “gates” for the 43 bits of table output. Even better, with the more
powerful memory access in [9], this costs just 8 instructions for the
8 table lookups. This is 378 times better than the 3025 instructions
used in [9].

Similar comments apply to inner products: precomputing mul-
tiplication tables and addition tables easily reduces the cost of 𝑑
32-bit multiplications and additions to just 3𝑑 instructions, almost
three orders of magnitude better than the “approximately 322𝑑”
from [9, Section 4.3]. The speedup is not as large if each output
bit is counted as in [7], but one can skip most of the output bits as
explained in [9].

Sorting can also easily exploit multi-bit LOAD and STORE. A
simple merge sort uses just a few instructions per comparison after
precomputation of increment tables, decrement tables, comparison
tables, etc. More broadly, essentially every combination of “NOT,
AND, OR, XOR” operations in [9] includes long stretches of opera-
tions that can be productively replaced with table lookups, given
that [9] allows LOAD and STORE as single “gates”.

D.4. The AES-128 baseline. NIST has never provided details of
how it arrived at its estimate of “2143 classical gates” for AES-128
“key recovery”.

An AES-128 block encryption involves 10 rounds, each involving
4 S-box lookups to compute a round key and 16 S-box lookups for
encryption, for a total of 200 S-box lookups. There were already
various efforts to minimize the number of bit operations for the
AES-128 S-box: for example, [35] reported “32 AND gates and 83
XOR/XNOR gates for a total of 115 gates”, meaning 23000 bit op-
erations for AES-128. Beyond the S-boxes, there are various linear
operations plus a final ciphertext comparison; without a precise
calculation, it is reasonable to estimate a total close to 215 bit oper-
ations. (For a precise calculation, see Appendix I.)

One expects “key recovery” to search only 2127 keys on average,
not 2128, for a total of about 2142 bit operations. A single plaintext-
ciphertext pair will, conjecturally, identify just a few possibilities
for the key, and checking those few possibilities against a second
plaintext-ciphertext pair has negligible extra cost; there is no need
to apply every key guess to both plaintexts.

(If iterations were independent, as in the simplest forms of ISD,
then 215 operations for an iteration having success probability 2−128
would mean an average of 2143 operations until success. Iterations
in exhaustive AES key search are not independent: a failed key
guess increases the success probability of subsequent key guesses.)

More importantly, given that NIST says in [7] that “each one-bit
memory read or write is counted as one bit-operation” in “the gate
count model”, it is easy to reduce AES-128 encryption to far fewer
than 215 “gates”.

As a starting point, consider a conventional “𝑇 -table” implemen-
tation. Each of the 10 encryption rounds performs the following
operations:

• 16 table lookups for the 16 bytes of state, where each table
lookup produces 32 bits of output. This costs 512 “gates”.

• XORing each of 128 bits of a round key with 4 of the bits
from table lookups. Each XOR of 5 bits costs just 1 “gate”
with a XOR-5-bits table, so overall this costs 128 “gates”.
• 4 further table lookups for the round key, costing 128 “gates”.
• 128 further “gates” for round-key XORs.

Overall this is 896 “gates” for each of the 10 rounds, for a total only
slightly above 213 “gates”, including comparison of the resulting
128 bits to a given 128-bit ciphertext. Key recovery then takes, on
average, slightly above 2140 “gates”.

One can do even better by building tables that take, e.g., 32 bits of
input at once. It is not obvious how far this can be pushed: writing
down 1280 bits of state and 1280 bits of round keys requires at least
2560 “gates”, but perhaps it is possible to do better by writing down
only the nonlinear components of round keys and by merging
rounds. This requires analysis of how potential table structures
interact with the large-scale data flow in AES, a complication that
does not appear in conventional optimization of Boolean circuits
for AES.

D.5. Confidence that attacks have been optimized? The way
that the above speedups break the claimed security levels for Kyber-
512 and AES-128 is not by introducing new attack ideas, but rather
by straightforwardly exploiting the declaration that access to a
large array has as low cost as a bit operation.

Quotes such as “each one-bit memory read or write is counted as
one bit-operation” and “loadingℎ(𝑣) has cost 1” make clear that this
declaration was not an accident. Allowing low-cost memory access
is often portrayed as a “conservative” way to measure security,
supposedly immunizing security analyses to improvements in time-
memory tradeoffs.

However, the resulting security-level claims are incorrect. In-
specting how the literature arrived at these claims shows that most
components of the algorithm designs and analyses were closer to
what one would expect in a conventional Boolean-circuit model.
Instead of carefully distinguishing different gate sets and tracing
the impact of this difference upon security levels, the literature
treated optimizations for a restricted set of “gates” as if those were
optimizations for a broader set of “gates”.

For comparison, NIST’s report [7] includes the following state-
ment:

Additionally, while some submitters have rightly
observed that many widely used cost models, such

CryptAttackTester: formalizing attack analyses

as the RAM model, underestimate the difficulty of
certain memory intensive attacks, the comparative
lack of published cryptanalysis using more realistic
models may bring into question whether sufficient
effort has been made to optimize the best-known
attacks to perform well in these models.

This statement appears to indicate that attack designers are nor-
mally working in “the” RAM model, and systematically taking
advantage of low-cost memory access. It is difficult to reconcile this
with the AES-128 and Kyber-512 examples.

E Definitions of Boolean circuits and cost
metrics

Section 2.1 gives a particular definition of circuits and of circuit
cost. This appendix reviews various alternatives.

One can tweak the costs of gates to come closer to reported
hardware costs: for example, assigning cost 2/3 for NOT, cost 1
for NAND, cost 1 for NOR, cost 4/3 for AND, etc. Reports vary
depending on the circuit technology considered, and in any event
this changes costs by at most a small factor. This paper opts for
the simplicity of taking cost 1 for each gate beyond constants and
copies.

Rather than allowing every function taking at most 2 inputs,
the literature typically defines Boolean circuits to use a smaller
universal set of bit operations: sometimes just a few commonly
used operations (e.g., [61, Section 1.2.4.1] uses just AND, OR, NOT);
sometimes just NAND for minimality. Sometimes 0 and 1 are pro-
vided as extra inputs rather than operations. Sometimes the circuit
designer is instead required to eliminate 0 and 1, making it impos-
sible to compute, e.g., the 0-bit-to-2-bit function () ↦→ (0, 1); for
example, [61, page 39, “any Boolean function can be computed by
some family of circuits”] is incorrect with the definitions given
in [61, Section 1.2.4.1]. Typically the circuit designer is required
to eliminate copies, forcing extra operations for computing, e.g.,
(𝑥,𝑦, 𝑧) ↦→ (𝑥,𝑦, 𝑧, 𝑧,𝑦) and generally complicating circuit compo-
sition.

Often many-input AND, OR, and XOR gates are allowed, with
cost proportional to the number of inputs. (For example, [61, Sec-
tion 1.2.4.1] allows many-input gates, and defines circuit “size” as
the number of edges; this is different from Section 2.1 and, e.g., [92,
Definition 4.4], where each gate allows at most 2 inputs.) These
many-input gates can be converted into a chain of 2-input opera-
tions at similar cost (or into a tree, but this paper does not try to
minimize circuit depth).

Another typical choice in the literature (used in, e.g., [61] and
[92]) is to define Boolean circuits as labeled directed acyclic graphs,
where the labels indicate how inputs correspond to vertices, how
outputs correspond to vertices, and which bit operations are carried
out by non-input vertices. This requires additional labeling when
asymmetric operations such as 𝑥𝑘 = 𝑥𝑖 (1 − 𝑥 𝑗) (“ANDN”) are al-
lowed, but typically each asymmetric operation is decomposed into
two symmetric operations, avoiding the issue. Topological sorting
converts such DAGs into circuits meeting this paper’s definition.

F Validation of the selected model
It is well known that formalized specifications need validation—
sanity checks on the utility of what has been specified. Validation
should not be confused with the process of formally verifying con-
clusions within a model.

This appendix evaluates various aspects of the utility of the
specific model of computation and cost metric formalized in CAT.

F.1. Special-purpose circuits. Bitcoin-mining ASICs are special-
purpose circuits that compute cryptographic hashes much more ef-
ficiently than available general-purpose computers. Circuit-design
courses explain in detail how to build such circuits, with portions of
the circuit area allocated to bit operations and connected by wires.

This is close to the conventional Boolean-circuit model selected
in Section 2.1. One difference is that the reported real-world circuit
cost is higher for (e.g.) AND than for NAND, although this is a small
effect; see Appendix E. A larger difference is that a Boolean-circuit
model does not account for the physical layout of bit operations,
and in particular does not account for the cost of communicating
data through long wires; see Appendix F.6. Boolean-circuit models
also unroll computations of any size, whereas real circuits repeat-
edly apply limited-size computations; such size limits restrict the
model of computation and in particular limit memory consump-
tion, although this restriction is conceptually compatible with the
iterative structure of typical attack algorithms.

There is extensive literature indicating that special-purpose cir-
cuits outperform general-purpose computers for a much wider
range of computations, even when size limits and wiring costs
are taken into account. Non-recurring chip-engineering costs are
large enough to prevent academic demonstrations of most of these
circuits, but large-scale attackers have much larger budgets and pre-
sumably rely on special-purpose circuits for their most challenging
attacks, the same way that Bitcoin mining moved to ASICs.

An internal 2007 NSA document, partially declassified in 2017,
stated [88, page 1] that “since the middle of the last century, au-
tomation has been used as a way to greatly ease the making and
breaking of codes”; that NSA was already building “special-purpose
computers” for “cryptanalysis” [88, page 3] in the 1950s; and that
NSA “has a great demand for microchips”, where the details of
this demand for microchips remained classified [88, page 6]. The
document concluded as follows: “NSA’s computers almost always
were well in advance of data processing equipment anywhere else.
In conjunction with its partners in industry and academia, NSA
continues to be a leader in research and development of computer
technologies and has been a singular pioneer on the frontiers of
computer science and electrical engineering.”

F.2. Formalizing main computations after precomputations.
The way that the CAT formalization is structured (see Section 3)
requires circuits for any particular parameters to be produced by
an algorithm taking the parameters as input, but does not place
any limits on how long the algorithm takes to run, beyond the
user’s patience in running the simulator. Consequently, when a
precomputation produces a circuit that costs 𝐶 , the formalization
directly measures 𝐶 . This models the real-world situation that a
large-scale attacker designs and builds special-purpose hardware to

Daniel J. Bernstein and Tung Chou

efficiently attack a cryptosystem and wants to know how efficient
the resulting hardware is.

One might also try to measure the precomputation time, so
as to quantify tradeoffs between precomputation time and main-
computation time. Beware, however, that someone can carry out the
precomputation in advance and embed the output of the precom-
putation into an algorithm provided to the measurement process,
hiding the precomputation time from the measurement process.
There is a long history of definitions that were incorrectly believed
to solve this problem (see the attacks in [27]), and there continues
to be a common misperception that RAM models prevent precom-
putation (see Appendix G.4). The lack of definitions capturing the
intuitive concept of precomputation time is a general limitation
in the literature, neither solved nor exacerbated by the choice of a
circuit model.

F.3. Formalizing randomized computations. The formaliza-
tion in CAT supports randomized attacks, even though the model
of computation is deterministic. The point here is that the algo-
rithm that computes a circuit is free to generate random bits. If
a randomized circuit (with the usual definition: the input bits are
supplemented with some random bits) were allowed and achieved
success probability 𝑝 , then there would exist a choice of random-
ness for which the circuit achieves success probability at least 𝑝 ,
so the randomized circuit would be no better than a deterministic
circuit using that choice of randomness.

F.4. Formalizing computations with variable costs. The for-
malization also supports variable-cost attacks (meaning that the
cost depends on the input or on randomness or both, not just on pa-
rameters), even though the model of computation is constant-cost.
For example, the success probability of an 𝐼 -iteration ISD algorithm
inside CAT is, for each 𝐼 , the same as the success probability that a
variable-iteration ISD algorithm finishes using at most 𝐼 iterations.
Varying 𝐼 , as in this paper’s examples, then shows the distribu-
tion of the number of iterations needed by the variable-iteration
algorithm.

F.5. Bit-operation counts as lower bounds for real-world
costs. Consider a real-world attack using hardware of physical
mass 𝑀 . Assume that the hardware has price at least 𝑝𝑀 for a
positive constant 𝑝 , constant meaning independent of𝑀 and the
attack details; one should be able to determine 𝑝 from the tech-
nology used for the attack. If the attack runs for time 𝑇 then its
price-performance ratio6 is at least 𝑝𝑀𝑇 .

Assume that the hardware performs computation via bit opera-
tions; formalizing quantum attacks is out of scope for this paper.
Assume that carrying out a bit operation inherently occupies hard-
ware mass at least 𝑚 and time at least 𝑡—or, more to the point,
mass-time product at least𝑚𝑡—for some positive constants𝑚 and
𝑡 determined by the technology. The total number of bit operations
carried out by the attack then cannot exceed𝑀𝑇 /𝑚𝑡 .

Counting the number of bit operations is thus putting a lower
bound on the mass-time product, and thus the price-performance
6“Price-performance ratio” is standard engineering terminology for the quotient be-
tween (1) price measured in whichever price units and (2) performance measured as
operations per unit time. In this case, the price is ≥𝑝𝑀 , and the performance of an
attack run is 1/𝑇 attacks per unit time, so the price-performance ratio of the attack is
≥𝑝𝑀/(1/𝑇) , i.e., ≥𝑝𝑀𝑇 .

ratio, of any attack using this technology. Specifically, the mass-
time product𝑀𝑇 is at least𝑚𝑡 times the number of bit operations,
and the price-performance ratio is at least 𝑝𝑚𝑡 times the number
of bit operations.

F.6. How close are bit-operation counts to real-world costs?
For a wide range of 𝑀 , sellers are offering Bitcoin-mining ASICs
of total mass 𝑀 for price proportional to 𝑀 (with a technology-
dependent constant), aside from minor discretization effects. The
number of hashes per second carried out by these ASICs is also
proportional to𝑀 (with another technology-dependent constant),
so the ASICs have price-performance ratio proportional to the
number of bit operations. This does not mean that the constant of
proportionality is as low as 𝑝𝑚𝑡 (consider, e.g., the aforementioned
variations in the costs of bit operations), but there is no evident
reason for a large gap.

There are other types of computations for which real-world costs
are structurally forced to be farther above bit-operation counts,
specifically because bit-operation counts ignore the costs of long-
distance communication. For example, standard circuit construc-
tions multiply two 𝑛-bit integers using 𝑛1+𝑜 (1) bit operations (see,
e.g., [118]), but a theorem from [37] states, for a reasonable model
of two-dimensional circuits, that 𝑛-bit multiplication cannot have
price-performance ratio better than 𝑛3/2+𝑜 (1) . See also [117] for an
analogous theorem regarding sorting, a critical subroutine in many
algorithms.

One can try to avoid this asymptotic argument by declaring
that all real-world computations have cost bounded by a constant,
making it formally meaningless to consider asymptotics of real-
world computations as 𝑛 grows. However, asymptotics are merely
the simplest way to see the issue highlighted in [37], namely that
communicating data across distance 𝑑 occupies at least 𝑑 wire
elements each for at least one unit of time. Bit-operation counts
ignore this cost, while it is not at all clear that costs sublinear
in 𝑑 can be achieved by any physically realizable communication
technology. Perhaps there is a way to manage the energy-input and
energy-output difficulties of packing multiplication or sorting into
an efficient three-dimensional circuit, but this would at best reduce
𝑑 from the scale of 𝑛1/2 to the scale of 𝑛1/3.

These considerations suggest that moving from the model in
Section 2.1 to a circuit-layout model, such as the two-dimensional
models of [117] and [37] or possibly a three-dimensional model,
would gain realism. This would allow full tracking of circuit sizes
(not just the portions of circuits designated by algorithm designers
as memory) and of long-distance communication costs. The main
disadvantage is the complication.

For the case of ISD, this paper’s results already show that vari-
ous high-memory algorithms have only a marginal benefit against
the McEliece cryptosystem even when the costs of long-distance
communication are ignored. For example, for 𝑛 = 3488, Table 1 lists
2150.59 operations for high-memory algorithms and 2155.38 oper-
ations for low-memory algorithms. A model incorporating those
costs would thus not make much difference for this case study.
Accounting for communication costs would be more important for,
e.g., lattice-based cryptosystems, where high-memory attacks play
a larger role in the literature.

CryptAttackTester: formalizing attack analyses

F.7. Further validation. Boolean-circuit models are a common
feature of computational-complexity textbooks such as [92] and
are widely used in the literature. There are some common varia-
tions in the details of the definitions (see Appendix E), creating the
usual risks from mismatched interfaces. On the other hand, these
variations are quantitatively and qualitatively far less severe than
common variations in definitions of RAM models; see generally
Appendix G.

CAT includes internal tests showing that various simple circuits
have, within the formalization, costs matching what a human cal-
culated from the definition in Section 2.1. There have also been
human double-checks of the central bit-operation-counting code
inside CAT against that definition.

G RAMmodels
Instead of a simple Boolean-circuit model (as in Section 2.1 or, more
broadly, Appendix E), one could select and formalize one of the
more complicated random-access-machine models (RAM models)
from the literature. This appendix considers various issues raised
by this possibility.

G.1. Which RAMmodel? A Google Scholar search for "the RAM
model" "bits" currently finds 1830 papers. A random sample from
the first 1000 papers finds that a large fraction do not define “the
RAM model”. Readers of such papers are led to believe that “the
RAM model” refers to a standard, fully defined model of computa-
tion and accompanying cost metric. However, a closer look at the
literature rapidly finds severe definitional problems.

Consider, for example, the textbook [61, pages 25–26] defining a
RAMmodel with “reset”, “inc”, “dec”, “load”, “store”, and “cond-goto”
instructions. This seems reasonably clear at first glance.

The book then says that “to make the RAM model closer to real-
life computers, we may augment it with additional instructions
that are available on real-life computers” such as “add” and “mult”.
The reader is invited to add “instructions that are available in some
real-life computer”. Obviously this is not just one definition: it is a
family of definitions, where the more complicated definitions are
motivated by the original definition sounding too restrictive.

A reader briefly checking documentation for “real-life” comput-
ers would think that it is safe to include addition, subtraction, mul-
tiplication, and division instructions. One finds such an instruction
set listed in, e.g., the definition in the earlier textbook [6, page 6],
which lists “READ” (direct and indirect), “STORE” (same), “LOAD”,
“ADD”, “SUB”, “MULT”, “DIV”, “WRITE”, “JUMP”, “JGTZ”, “JZERO”,
and “HALT” instructions (while also inviting the reader to add “any
other instructions found in real computers”).

However, Shamir’s algorithm from [112] factors 𝑛 in 𝑂 (log𝑛)
“arithmetic steps (addition, subtraction, multiplication and integer
division)”. The basic problem is that this model allows a single
instruction to handle arbitrarily large integers.

Another textbook [92, Section 2.6] defines a RAM model similar
to [6] but with “MULT”, “DIV”, “WRITE”, and “JGTZ” replaced with
“HALF”, “JPOS”, and “JNEG” instructions. There are no multipli-
cations; integers in this model grow by at most one bit at each
step. This in turn avoids the extreme abuses of [112], as noted in
[92, page 38]; [92, Theorem 2.5] says that this RAM model can be
simulated in cubic time by a Turing machine. However, the model

still allows a program running in “time” 𝑇 to carry out arithmetic
on Θ(𝑇 2) bits spread across Θ(𝑇) integers; this is unrealistic, and
not suitable for fine-grained algorithm analysis.

One response is to count the number of bits used in each integer;
this is stated in [6, page 12] as an option, the “logarithmic cost crite-
rion”. A similar response is to restrict the allowed set of arithmetic
operations, allowing only bit operations. However, one can still
abuse the basic assumption of cost-1 RAM lookups, as illustrated
by the attacks in Appendix D. Assigning higher cost to RAM begs
the question of what this cost should be. (Note that implementing a
RAM circuit on top of bit operations very much as in real hardware,
and then counting the bit operations in this RAM circuit, provides
a principled answer to the cost question.)

To summarize, “the” RAM model is actually a large, unstable
collection of different models, including many abuse-prone models.
One could pick a particular RAM model to clearly define and for-
malize as an extension to CAT, but there is obviously a high risk
that the resulting model will warp whatever algorithm analyses
are carried out in the model, while at the same time matching very
little of the literature.

G.2. Different roles of models of computation. Historically,
one of the earliest uses of models of computation was to prove that
various models are equivalent in the sense of supporting the same
set of computable functions. Later this was refined into proving
that various models with accompanying time metrics are equiva-
lent in the sense of supporting the same set of polynomial-time-
computable functions. These simplifications are helpful for building
the theories of, respectively, computability and polynomial-time
computability.

For example, [61] introduces RAM models not to suggest them
as a foundation for algorithm analysis, but as evidence for the
idea that Turing machines can compute anything that is intuitively
computable. Similarly, [92, page 38] says that the Θ(𝑇 2) issue is
“inconsequential” since it is polynomially bounded.

However, algorithm users—including large-scale attackers—care
about the gaps between 2𝑛 and 20.5𝑛 and 20.5𝑛/1000. Cryptography
requires accurate analyses of algorithm costs (see Appendix A);
selecting an inaccurate model can easily spoil this, even when every
algorithm is correctly analyzed within the model. Low-precision
equivalences among models are not helpful in this context; one
instead has to carefully distinguish different models, and evaluate
gaps between the models and reality.

G.3. Are RAM metrics more realistic than circuit metrics?
Typical cost metrics for RAMmodels assign cost 1 to random access,
whereas typical cost metrics for circuit models end up counting ev-
ery bit operation involved in random access, and end up concluding
that random access to an 𝑛-bit array costs Ω(𝑛). This quantitative
gap directly affects analyses of a wide range of algorithms.

Introductory algorithm courses teach students to count instruc-
tions and label the result as “time”, in particular with random-access
instructions taking “time” 1. This creates a perception that Ω(𝑛)
is an overestimate of the cost of random access. Students might
later learn that 1 is an underestimate of real time—measurements
of 𝑛-bit random-access time on real CPUs follow roughly a square-
root curve as 𝑛 grows (see, e.g., [2]), as one would expect from the

Daniel J. Bernstein and Tung Chou

two-dimensional models cited in Appendix F.6—but still think that
Ω(𝑛) is an overestimate.

However, these time measurements hide a much more important
cost of random access: namely, randomly accessing a real 𝑛-bit
RAM circuit occupies the entire circuit for a moment (see [122,
Section 1.3]), for an Ω(𝑛) price-performance ratio. This is a special
case of the fact that bit-operation counts put lower bounds upon
price-performance ratio of all computations; see Appendix F.5.

Consequently, typical RAM metrics are, contrary to the above
perception, farther from the price-performance ratio of random
access than typical circuit metrics are.

For comparison, the same mass of circuitry running a parallel
computation for the same time could have been used to carry out
Ω(𝑛) bit operations and thus, e.g., Ω(𝑛) separate hash computations
(with a smaller Ω constant, reflecting the cost of each hash com-
putation), as illustrated by the Bitcoin-mining ASICs mentioned
in Appendix F. It would be very strange to use a cost metric that
assigns cost 𝑜 (𝑛) to Ω(𝑛) separate hash computations.

Array access becomes much more efficient—in circuit models,
and in reality—when circuits are instead designed to support many
parallel array accesses. In particular, two-dimensional circuit-layout
models support two-dimensional sorting networks such as [117]
or [110]: circuits of mass 𝑛1+𝑜 (1) that sort 𝑛 integers, each integer
having 𝑛𝑜 (1) bits, in time 𝑛1/2+𝑜 (1) , for price-performance ratio
𝑛3/2+𝑜 (1) . The real-world scalability of these circuits is demon-
strated by, e.g., the FPGA implementation in [60]. Presumably large-
scale attackers would use ASICs rather than FPGAs.

Three-dimensional models and circuits improve 𝑛3/2+𝑜 (1) to
𝑛4/3+𝑜 (1) , although it is far less clear that this can be physically real-
ized. For the Boolean-circuit model in Section 2.1, the same sorting
task costs 𝑛1+𝑜 (1) . Bit-operation counts are a lower bound on price-
performance ratio, not an upper bound; the gap between 1 and 3/2
comes from the communication costs reviewed in Appendix F.6.

For comparison, the RAM cost of sorting depends on the choice
of a RAM model and of a cost metric (the same way that differ-
ent choices produce variations in Appendix D), but even a heavily
restricted RAMmodel would allow radix sort of𝑛 integers, each hav-
ing 𝑏 bits, to finish in “time”𝑂 (𝑏𝑛). For comparison, the sorting cir-
cuits inside CAT use about (1/4)𝑏𝑛(log2 𝑛)2 bit operations, and the
best asymptotic results known are Θ(𝑏𝑛 log𝑛) with a much larger
Θ constant. These gaps show that RAM metrics, despite having
the same 𝑛 exponent, are considerably below bit-operation counts
for sorting—and thus considerably farther from price-performance
ratio than bit-operation counts are.

To summarize, moving from circuit models to RAM models
would not just complicate definitions but also move farther from
reality, as illustrated by basic subroutines such as random access
and sorting. This is not saying that circuit models are perfectly
realistic (see Appendix F.6); it is saying that RAM models are worse.

G.4. Do RAM metrics prevent hidden precomputation? A
standard criticism of circuit models in computational-complexity
theory is that one can build a family (𝐶0,𝐶1, . . .) of polynomial-
size circuits that computes a function that cannot be computed
in polynomial time—even an uncomputable function, such as the
halting function. Specifically, take any uncomputable function 𝑛 ↦→

𝑓 (𝑛) from {0, 1, 2, . . .} to {0, 1}, and define circuit 𝐶𝑛 as the circuit
that maps all 𝑛-bit strings to 𝑓 (𝑛).

The standard fix for this problem is to require another algorithm
𝑃 that, given 𝑛, precomputes the circuit𝐶𝑛 . Syntactically, this struc-
ture does not allow 𝑃 to be a circuit, since 𝑃 needs to allow an
arbitrarily large integer 𝑛 as input; 𝑃 is instead defined as, e.g., a
Turing machine, or perhaps an algorithm in some RAM model.

For example, if this algorithm 𝑃 is required to run in time bounded
by a polynomial in𝑛, then its output𝐶𝑛 necessarily has size bounded
by a polynomial in 𝑛, and the overall function computed by the
circuit family (𝐶0,𝐶1, . . .) is a polynomial-time function. More
generally, one can impose a cost limit on 𝑃 as a metric for the “uni-
formity” of the family of circuits, and impose another cost limit on
each 𝐶𝑛 .

This background creates a perception that circuit models are
blind to any amount of precomputation—perhaps much more than
the circuit cost, perhaps not even computable—and that “uniform”
models, including RAM models, have the advantage of seeing pre-
computation.

However, as illustrated by the attacks in [27], this advantage
disintegrates when the evaluation of algorithm costs is limited to
any finite range of 𝑛, which is the situation in real-world cryptog-
raphy and in real-world algorithm experiments. What follows is a
concrete example.

Consider the elliptic-curve discrete-logarithm attacks from [27],
algorithms𝐴𝑛 that compute𝑛-bit discrete logarithms in RAM “time”
(2 + 𝑜 (1))𝑛/3, far below the conventional (2 + 𝑜 (1))𝑛/2. As empha-
sized in [27], these attacks do not appear to be a real-world threat
to deployed systems with 𝑛 = 256: the only published algorithm 𝑃

that maps 𝑛 to 𝐴𝑛 takes much more “time”, namely (2 + 𝑜 (1))2𝑛/3.
Consider the following attempt to formalize the apparent diffi-

culty of finding 𝐴𝑛 : build a framework that measures the cost of
program 𝑃 , in this case (2 + 𝑜 (1))2𝑛/3, and test this by checking
various small values of 𝑛.

In response, someone secretly computes 𝐴𝑛 for all small 𝑛, and
builds a new program 𝑃 ′ that simply includes 𝐴𝑛 for those 𝑛, while
falling back to the same behavior as 𝑃 for larger 𝑛. The framework
will then measure 𝑃 ′ as being very fast for every 𝑛 that it tries.
The framework has been blinded to the precomputation, in the
same way as a framework that simply considers𝐴𝑛 from the outset.
As an informal countermeasure, one might inspect 𝑃 ′ to check
whether something interesting is happening for small 𝑛, but the
same countermeasure is equally applicable to CAT, so this does not
show an advantage of RAM models.

The uniformity notions typically considered in computational-
complexity theory, such as whether 𝑃 takes time polynomial in 𝑛,
are not vulnerable to this type of replacement:

• Including precomputations for any finite range of 𝑛 has no
effect on whether 𝑃 takes time polynomial in 𝑛.

• Including precomputations for infinitely many 𝑛 is not com-
patible with the basic requirement of 𝑃 being a finite-length
program.

This protection is an artifact of the purely asymptotic definitions,
where a finite-length program handles infinitely many 𝑛 and where
strange behavior for any particular 𝑛 is disregarded. This is of no
help in formally defining attack costs for, e.g., 𝑛 = 256.

CryptAttackTester: formalizing attack analyses

G.5. Do RAM metrics improve optimization quality? Finally,
an interesting argument for RAM models is the idea that, even
though assigning cost just 1 for access to arbitrarily large arrays
is unrealistic, it is also simple and familiar, improving the chance
that algorithms will be successfully optimized for such cost metrics.
See, e.g., the statement quoted in Appendix D.5. However, in the
Kyber-512 and AES-128 examples in Appendix D, the literature
(1) explicitly allowed random access as a cost-1 “gate”, (2) missed
very easy speedups exploiting this, and (3) was more successful
at optimizing bit operations when this random-access “gate” was
ignored.

H Limitations in CAT
This paper focuses on a non-quantum model of computation. The
literature also studies quantum ISD algorithms, replacing the com-
binatorial searches in ISD with Grover’s algorithm and, more gen-
erally, replacing the random walks in ISD with quantum walks.
Efficiently simulating formalizations of these algorithms, when
the simulator does not have a quantum computer, would require
a formalized framework to simulate quantum walks. This paper’s
simulator does not have any specific knowledge of random walks;
the random walks are encapsulated inside constructions of ISD
algorithms and derivations of cost/probability formulas.

The way that circuitprob tries an attack circuit 𝐶 , namely
generating a pair (𝑃, 𝑠) and checking whether 𝐶 (𝑃) = 𝑠 , captures
many problems of interest in cryptography (e.g., OW-CPA problems
for PKEs and the AES-128 key-search problem in Appendix I) but
certainly not all. Allowing a more complicated comparison function
between 𝐶 (𝑃) and 𝑠 would support PRG problems (as explained in
[87, Section 3]) and various multi-target problems. Allowing 𝐶 to
call oracles would support PRF problems.

CAT’s simulator is also not integrated with any particular proof
system. The user has to check manually that, e.g., the OW-CPA
problem used here matches the OW-CPA problem hypothesized to
be secure inside a proof of a more complicated security property.
Analogously, in the case of an algorithm analysis that is rigorously
proven modulo a conjecture, the simulator might be usable for
checking the conjecture, but the user would have to manually check
that what the simulator sees matches the hypothesis of the proof.
Integration would reduce the risks of interface mismatches.

An intrinsic limitation of step-by-step simulations, with or with-
out this paper’s formalization, is that their cost grows at least lin-
early with the number of steps (and often even more than linearly
when increased memory usage triggers increased memory-access
costs on the CPU carrying out the simulation). One hopes that any
prediction errors that appear for cryptographic sizes will already
appear in scaled-down simulations having much lower cost, but
there is no guarantee of this. As Section 1.1 explains, this paper is
starting from attack analyses in the literature that are not proofs;
formalizing these analyses reduces the risk of error, but it does not
produce a formally verified proof.

As noted in Section 3, adding malicious attack code to CAT
can sabotage CAT’s results. Human review can help but will not
necessarily catch, e.g., an attacker tweaking probability formulas
in a way that does not show up in small-scale simulations.

I AES-128 in CAT
CAT includes formalizations of (1) an aes128 problem and (2) an
aes128_enum brute-force attack against this problem. This appen-
dix describes the problem, the attack, and various cost reductions
not included in the attack. This example illustrates that CAT is not
limited to ISD.

This attack searches the complete AES-128 key space using fewer
than 2142.89 bit operations. To compare the costs of AES-128 key
search to the costs of ISD, one should instead consider the cost of
finding an average AES-128 key, as noted in Appendix D.4; this cost
is below 2141.89 bit operations with this attack.

One reason for interest specifically in the cost of a brute-force
attack against AES-128 is that NIST

• selected this cost as the minimum security level allowed
in the NIST Post-Quantum Cryptography Standardization
Project and

• made decisions in that project on the basis of very close
comparisons to this cost.

See Appendix A.3. For definitional issues with NIST’s previous
comparisons, see Appendix D.

I.1. AES-128 key search. The aes128 problem in CAT has two
parameters: integers 𝐾 and 𝐶 with 1 ≤ 𝐾 ≤ 128 and 1 ≤ 𝐶 ≤ 128.
The secret information is a 𝐾-bit string 𝑠 . An AES-128 key derived
from 𝑠 is used to encrypt two public plaintext blocks. The first 𝐶
bits from each ciphertext block are also public.

Specifically, define 𝑘 as follows: zero-pad 𝑠 to 128 bits and then
view the result as a 16-byte AES-128 key 𝑘 . The public information
is (𝑝0, 𝑐0, 𝑝1, 𝑐1), where 𝑝0 and 𝑝1 are 16-byte strings, 𝑐0 is the first
𝐶 bits of AES𝑘 (𝑝0), and 𝑐1 is the first 𝐶 bits of AES𝑘 (𝑝1). The
strings 𝑠, 𝑝0, 𝑝1 are chosen independently and uniformly at random.
Bits inside bytes are viewed in little-endian order, although other
orderings would be compatible with the comments below.

Note that the case𝐾 = 128 generates the 16-byte secret key 𝑘 uni-
formly at random; this matches typical uses of AES-128. Decreasing
𝐾 is dangerous for security: it forces 128 − 𝐾 bits of 𝑘 at specified
positions to be 0, making 𝑘 easier to guess by a factor 2128−𝐾 . How-
ever, this generalization is important for testability of brute-force
attacks, the same way that scaling down problem parameters in
Section 3.5 is important for testability of ISD algorithms.

The 𝐾 secret bits in 𝑘 produce 2𝐶 bits in (𝑐0, 𝑐1). For example, in
the case 𝐶 = 128, all 256 bits of AES𝑘 (𝑝0) and AES𝑘 (𝑝1) are pub-
lic. Presumably this almost always7 determines 𝑘 . As 2𝐶 decreases
down towards 𝐾 , presumably the probability of key collisions in-
creases; Appendix K describes CAT’s model of this probability.

I.2. Enumerating AES-128 keys. The aes128_enum attack in
CAT has four parameters: an integer 𝐼 between 0 and 2𝐾 − 1; an
integer QX, either 0 or 1; an integer QU, at least 1; and an integer
PE, at least 1. The PE parameter is actually computed as QU times
another parameter QF.

7Removing the word “almost” would not make a reasonable conjecture. The case
𝑝0 = 𝑝1 occurs with probability 2−128 , and it would be surprising for the map from 𝑘
to AES𝑘 (𝑝0) to be injective. One could add testability for this gap by introducing a 𝑃
parameter for the number of nonzero bits in 𝑝0 and 𝑝1 , analogous to the 𝐾 parameter
for 𝑘 . It would also be useful to test attacks against generalizations of AES that scale
16 8-bit bytes down to 16 𝑏-bit words for 𝑏 ≥ 1.

Daniel J. Bernstein and Tung Chou

The attack carries out 𝐼 iterations. Each iteration considers one
guess𝑔 for the𝐾-bit secret. The first iteration guesses an all-0 string,
and each subsequent iteration guesses the next string in reverse
lexicographic order.

If QX is 0 then each iteration encrypts plaintexts 𝑝0 and 𝑝1 under
𝑔, comparing the outputs to 𝑐0 and 𝑐1 respectively. The QU and PE
parameters are ignored in this case.

If QX is 1 then each iteration encrypts 𝑝0 under 𝑔, compares the
output to 𝑐0, and, if there is a match, inserts 𝑔 into a queue of size
QU, which is checked and cleared every PE iterations. The check
encrypts 𝑝1 under 𝑔 and compares the output to 𝑐1, for each 𝑔 in
the queue.

With either choice of QX, the attack returns the all-1 string by
default if it does not detect any 𝑔 as mapping 𝑝0 and 𝑝1 to 𝑐0 and
𝑐1 respectively.

The advantage of taking QX to be 1, specifically with PE larger
than QU, is that PE iterations try encrypting 𝑝1 only QU times rather
than PE times. Disadvantages are the costs of queue management
and the risk of the correct key being pushed out of the queue before
it is checked. The analysis accounts for these effects, and concludes
that taking QX to be 1 saves a factor 20.98 overall.

At a lower level, this attack computes the AES S-box using the
113-bit-operation circuit from [94], credited in [94] to Calik as an
improvement over the 115-bit-operation circuit from [35]. This at-
tack follows the original definition of AES-128 to straightforwardly
convert the S-box into a full encryption circuit.

I.3. The analysis. The aes128_enum_cost function straightfor-
wardly tracks the steps in aes128_enum. The aes128_enum_prob
function starts with 𝐼/2𝐾 , the chance that one of the 𝐼 guesses
matches the secret; accounts for queue losses in the case QX = 1,
using the model from Appendix J; and then adds 1/2𝐾 to account
for the chance that the default all-1 string matches the secret. CAT
also automatically accounts for multiple preimages as explained in
Appendix K.

CAT includes an aes128.py script that uses searchparams to
find attack parameters for 𝐾 = 𝐶 = 1, then 𝐾 = 𝐶 = 2, and so on
through 𝐾 = 𝐶 = 128, in each case choosing 𝐼 = 2𝐾 − 1 to focus
on attacks that enumerate all 2𝐾 − 1 non-default keys. CAT also
includes an aes128-table.py script that converts the aes128.py
output into Table 2. The scripts include 𝐶 = 𝐾 − 1 for 𝐾 ∈ {2, 3, 4}
to illustrate the effects of varying 𝐾 and 𝐶 independently.

The parameters found for 𝐾 = 𝐶 = 128 are QX = 1, QU = 1,
and PE = 2048, with predicted cost approximately 2142.882195 and
predicted success probability approximately 1. Amortizing the cost
of encrypting 𝑝1 across 2048 iterations makes the cost almost un-
noticeable. It is, furthermore, intuitively clear that whichever 2048
iterations find the secret would have to be extraordinarily unlucky
to make another guess that matches the same 128 ciphertext bits,
overflowing a size-1 queue and losing the secret. Note that this is
not a proof.

The aes128.py script also runs circuitcost and circuitprob
(with trialfactor = 100000) on the parameters found for 𝐾 ≤ 10.
This detects a statistically significant discrepancy for 𝐾 = 𝐶 = 2,
where parameters QU = 1 and PE = 4 succeed 2.78% more often
than predicted; perhaps refinements of the model in Appendix K
can explain this discrepancy. The discrepancy disappears as 𝐾 and

Table 2: Predicted performance of various parameters for
aes128_enum with 𝐼 = 2𝐾 − 1, and observed performance for
𝐾 ≤ 10. The QX, QU, and QF columns are the attack param-
eters selected by searchparams. The “lgcost” column is the
logarithm base 2 of the predicted attack cost. The “prob”
and “prob2” columns are the predicted success probability,
respectively without and with the collision handling from
Appendix K. The “succ” column is the observed success prob-
ability in 100000 trials. The last four columns are rounded to
the number of digits displayed after the decimal point.

𝐾 𝐶 QX QU QF lgcost prob prob2 succ
1 1 0 1 1 15.838145 1.00000 0.87500 0.87571
2 1 1 2 2 17.160679 0.93750 0.66000 0.67227
2 2 1 1 4 16.838650 0.82812 0.76991 0.79131
3 2 1 3 4 18.161540 0.95758 0.78013 0.79134
3 3 1 2 4 18.009326 0.94691 0.89966 0.90680
4 3 1 4 4 19.088768 0.98028 0.87545 0.88063
4 4 1 3 8 19.010400 0.98619 0.95823 0.96095
5 5 1 3 16 19.928685 0.98174 0.96730 0.96886
6 6 1 4 16 20.908913 0.99639 0.98879 0.98873
7 7 1 4 48 21.877120 0.99603 0.99219 0.99212
8 8 1 4 64 22.861344 0.99584 0.99392 0.99411
9 9 1 4 128 23.853780 0.99575 0.99478 0.99500
10 10 1 5 256 24.853332 0.99932 0.99883 0.99883
11 11 1 4 256 25.851858 0.99963
12 12 1 3 384 26.849737 0.99932
13 13 1 2 256 27.849946 0.99937
14 14 1 2 512 28.847720 0.99937
15 15 1 2 512 29.848254 0.99984
16 16 1 2 512 30.848765 0.99996
32 32 1 1 2048 46.849717 1.00000
48 48 1 1 2048 62.855181 1.00000
64 64 1 1 2048 78.860624 1.00000
80 80 1 1 2048 94.866047 1.00000
96 96 1 1 2048 110.871450 1.00000
112 112 1 1 2048 126.876832 1.00000
128 128 1 1 2048 142.882195 1.00000

𝐶 increase within the range covered by circuitprob. This does
not rule out risks of mispredictions for larger 𝐾 , analogous to the
ISD risks covered in Appendix L.

Running circuitcost problem=aes128 K=1 and so on through
circuitcost problem=aes128 K=8 considers many different at-
tack parameters and finds aes128_enum_cost correctly predicting
costs in all cases. Running circuitprob for various parameters
finds discrepancies above 2.78%: for example, circuitprob with
𝐾 = 4, 𝐶 = 1, 𝐼 = 8, QX = 1, QU = 1, QF = 4, trialfactor = 100000
observes success probability approximately 0.197, while the predic-
tion is approximately 0.186 accounting for multiple preimages (and
0.296875 otherwise).

Presumably the accuracy of aes128_enum_cost could be for-
mally verified, but aes128_enum_prob is a different matter: prov-
ing reasonably tight lower bounds on success probability is an open

CryptAttackTester: formalizing attack analyses

problem. It is remarkable that the general difficulty of proving ef-
fectiveness of state-of-the-art attacks (see Appendix B) is visible
even for an attack as simple as brute-force search for a cipher key.

I.4. Cost reductions not included in this attack. The cost of
approximately 2142.882195, i.e., 214.882195 ≈ 30198.6 per iteration,
consists of the following components:

• Cost 14.6 per iteration for the handling of 𝑝1 every 2048 iter-
ations. Increasing PE beyond 2048 would decrease this cost;
searchparams skips parameter modifications that produce
only tiny improvements.

• Cost 256 per iteration to compare to 128 ciphertext bits.
Constant folding would decrease this to 255. Limiting the
comparison to, e.g., 20 ciphertext bits would decrease this
to 39, at the expense of re-encrypting 𝑝0 along with each
encryption of 𝑝1.

• Cost 256 per iteration to move to the next key guess. This
could be almost entirely eliminated with unrolling, Gray
codes, etc.

• Cost 386 per iteration to conditionally insert the current
128-bit guess into the queue. NOT folding would save 1
operation. Some bits could simply be skipped at the ex-
pense of a brute-force search along with each encryption
of 𝑝1, although this seems less beneficial than decreasing
the number of ciphertext bits compared.

• Cost 29286 per iteration to encrypt 𝑝0.

The following comments focus on ways that cost could be reduced
inside the encryption of 𝑝0.

Cost 5910 per iteration is spent on AES key expansion, which can
trivially be precomputed, reducing overall costs below 2142.568 (and
2141.568 on average). The storage of 2128−1 expanded keys would be
problematic in metrics that account for circuit mass, but the generic
observation that adjacent keys share portions of computations
already produces some benefit with much less storage; perhaps the
decomposition of [81] is also applicable here. Part of the circuit to
encrypt 𝑝0 is also shared across adjacent keys.

Note that if 𝑝0 were constant then the more sophisticated pre-
computation of [65] would provide better tradeoffs between storage
and main computation. This is the situation in many applications,
but not in the uniform-random-𝑝0 problem formalized in CAT.

If the initial comparison to 𝑐0 is limited to, e.g., 32 bits—at the
expense of occasionally re-encrypting 𝑝0, as noted above—then, for
reasonable choices of bit positions, eliminating unused operations
automatically eliminates many of the final computations inside
encryption. For more sophisticated speedups along these lines, see
[33], [32], and [116].

For simplicity, this attack uses bit operations to compute and
apply the AES round constants. Constant folding would save most
of these operations, but this is a negligible cost in any case.

J Accounting for queue losses and window
losses

The high-level description of isd1 in Section 4.8 allows the set
𝑆 (1) to be smaller than the set of all collisions. The circuits in CAT
exploit this flexibility in two ways described in Section 5.11:

• The circuits check for colliding elements in a sorted list 𝐿
only at positions having distance at most WI. WI stands for
“window”. Collisions at larger distances are lost.
• Instead of having further processing (namely, computing
𝑠 (1) − (𝑇 (1)

𝐿
[𝐼] +𝑇 (1)

𝑅
[𝐼]) and testing its Hamming weight)

along with every collision test, the circuits push collisions
into a queue for further processing later. The queue can hold
at most QU collisions. The queue is periodically processed
and cleared, but if it overflows in the meantime then some
collisions are lost.

Similar comments apply to both levels of collision search in isd2.
For isd0, there is no collision search, but there is still a queue,
except when ℓ = 0. There is also a queue for aes128_enum; see
Appendix I.

This appendix explains how CAT predicts the probability that
an iteration will miss a solution because the solution is pushed out
of a fixed-size queue or because it is beyond a fixed-size window.

One could use these predictions to take window lengths and
queue lengths large enough that there is negligible probability of
a solution being missed; searchparams instead aims for the best
ratio between total circuit cost and success probability.

J.1. Queue analysis. Consider 𝑃 circuits producing events. Model
the events as a Bernoulli process: producer 0 generates an event
with probability 𝜖 , producer 1 generates an event with probability
𝜖 , etc., each of these events being independent.

Now consider 𝑃 circuits consuming whichever events were pro-
duced. This is wasteful if 𝜖 is small: the average number of events
produced is only 𝜖𝑃 , so most of the consumer circuits are useless
at any moment.

So instead consider 𝑃 producer circuits pushing their results
into a queue of length 𝑄 ≤ 𝑃 , followed by 𝑄 consumer circuits
processing the results in the queue. If more than 𝑄 events are
produced then only 𝑄 events will be consumed; the remaining
events will overflow the queue and will be lost. The following
paragraph quantifies this loss.

Define 𝜑 ∈ R[𝑥] as the polynomial 1 − 𝜖 + 𝜖𝑥 . The probability
that the 𝑃 producer circuits produce exactly 𝑒 events is 𝜑𝑃𝑒 , meaning
the coefficient of 𝑥𝑒 in the polynomial 𝜑𝑃 . The average number of
events consumed is thus

∑
𝑒<𝑄 𝑒𝜑

𝑃
𝑒 +

∑
𝑒≥𝑄 𝑄𝜑

𝑃
𝑒 . This is the same

as 𝑄 −∑
𝑒<𝑄 (𝑄 − 𝑒)𝜑𝑃𝑒 since

∑
𝑒 𝜑

𝑃
𝑒 = 𝜑𝑃 (1) = 1.

In other words, the average number of events produced is 𝜖 per
producer, but the average number of events consumed is only (𝑄 −∑
𝑒<𝑄 (𝑄 − 𝑒)𝜑𝑃𝑒)/𝑃 per producer. This formula uses 𝑄 coefficients

𝜑𝑃0 , . . . , 𝜑
𝑃
𝑄−1 of 𝜑

𝑃 .

J.2. Window analysis. Consider the following general collision-
finding scenario. There are two lists. The first list contains 𝐴 > 0
pairs (𝑠, 𝑡). The second list contains 𝐵 > 0 pairs (𝑠 ′, 𝑡 ′). Sort all
(𝑠, 0, 𝑡) in lexicographic order together with all (𝑠 ′, 1, 𝑡 ′), and check
all pairs of positions in the sorted list with distance at most 𝑤 to
see whether the list entries at those positions have the form (𝑠, 0, 𝑡)
and (𝑠 ′, 1, 𝑡 ′) with 𝑠 = 𝑠 ′.

Model each 𝑠 and each 𝑠 ′ as an independent uniform random
element of Fℓ2. Define𝜓 ∈ R[𝑥] as the polynomial 1 − 1/2ℓ + 𝑥/2ℓ .
For any particular 𝑠 ∈ Fℓ2, the chance that 𝑠 appears exactly 𝑒 times

Daniel J. Bernstein and Tung Chou

in the first list is𝜓𝐴𝑒 , and the chance that 𝑠 appears exactly 𝑓 times
in the second list is𝜓𝐵

𝑓
.

If 𝑠 appears (𝑒, 𝑓) times then there are exactly 𝑒 𝑓 collisions in-
volving 𝑠 . However, only positions having distance at most𝑤 are
checked, and this loses some collisions if 𝑒 + 𝑓 > 𝑤 + 1.

More precisely, the rightmost (𝑠, 0, 𝑡) finds min{𝑓 ,𝑤} collisions;
the previous (𝑠, 0, 𝑡) finds min{𝑓 ,max{𝑤 − 1, 0}} collisions; and so
on through the first (𝑠, 0, 𝑡), which finds min{𝑓 ,max{𝑤 − 𝑒 + 1, 0}}
collisions. In other words, in an 𝑒 × 𝑓 array of dots, one counts the
number of dots on the first𝑤 diagonals. This is

𝐶𝑤 (𝑒, 𝑓) =


𝑤 (𝑤 + 1)/2 if𝑤 ≤ 𝑚,
𝑚(𝑚 + 1)/2 +𝑚(𝑤 −𝑚) if𝑚 < 𝑤 ≤ 𝑀,
𝑒 𝑓 − (𝑒 + 𝑓 −𝑤) (𝑒 + 𝑓 −𝑤 − 1)/2 if𝑀 < 𝑤 ≤ 𝑒 + 𝑓 ,
𝑒 𝑓 if 𝑒 + 𝑓 < 𝑤

where𝑚 = min{𝑒, 𝑓 } and𝑀 = max{𝑒, 𝑓 }.
To summarize, there is probability𝜓𝐴𝑒 𝜓𝐵𝑓 that 𝑠 appears exactly 𝑒

times in the first list and exactly 𝑓 times in the second list, and this
event gives 𝐶𝑤 (𝑒, 𝑓) collisions involving 𝑠 . The average number of
collisions involving 𝑠 is

∑
𝑒,𝑓 𝜓

𝐴
𝑒 𝜓

𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓).

Now let 𝑠 vary, and sum over all 𝑠: the average number of colli-
sions in total is 2ℓ

∑
𝑒,𝑓 𝜓

𝐴
𝑒 𝜓

𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓).

As in the queue analysis, one can rewrite this sum as a sum with
fewer terms. Specifically, abbreviate

∑
𝑒≥𝑤 𝜓

𝐴
𝑒 as 𝑆 and

∑
𝑓 ≥𝑤 𝜓

𝐵
𝑓

as𝑇 . Then 𝑆 = 1−∑𝑒<𝑤 𝜓𝐴𝑒 and𝑇 = 1−∑𝑓 <𝑤 𝜓
𝐵
𝑓
, since

∑
𝑒 𝜓

𝐴
𝑒 = 1

and
∑
𝑓 𝜓

𝐵
𝑓
= 1. Now split (𝑒, 𝑓) into the following four regions:

• 𝑒 ≥ 𝑤 and 𝑓 ≥ 𝑤 : One has 𝐶𝑤 (𝑒, 𝑓) = 𝑤 (𝑤 + 1)/2, which
is independent of (𝑒, 𝑓), so ∑

𝑒≥𝑤,𝑓 ≥𝑤 𝜓
𝐴
𝑒 𝜓

𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓) =

(𝑤 (𝑤 + 1)/2)𝑆𝑇 .
• 𝑒 < 𝑤 and 𝑓 ≥ 𝑤 : One has𝐶𝑤 (𝑒, 𝑓) = 𝑒 (𝑒 + 1)/2+𝑒 (𝑤 −𝑒),

which is independent of 𝑓 , so
∑
𝑒<𝑤,𝑓 ≥𝑤 𝜓

𝐴
𝑒 𝜓

𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓) =∑

𝑒<𝑤 𝜓
𝐴
𝑒 𝐶𝑤 (𝑒, 𝑓)𝑇 .

• 𝑒 ≥ 𝑤 and 𝑓 < 𝑤 : One has𝐶𝑤 (𝑒, 𝑓) = 𝑓 (𝑓 +1)/2+ 𝑓 (𝑤− 𝑓),
which is independent of 𝑒 , so

∑
𝑒≥𝑤,𝑓 <𝑤 𝜓

𝐴
𝑒 𝜓

𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓) =∑

𝑓 <𝑤 𝜓
𝐵
𝑓
𝐶𝑤 (𝑒, 𝑓)𝑆 .

• 𝑒 < 𝑤 and 𝑓 < 𝑤 : There are only (𝑤 − 1)2 terms in this
region (with nonzero 𝑒, 𝑓).

This reduces the computation of the average number of collisions
to a sum of approximately𝑤2 terms.

J.3. Windows into queues. Inside isd1, pairs of list entries at
positions separated by at most WI are checked in a random order
for whether they are collisions, and pushed into a queue of length
QU for further processing, where the processing occurs after every
PE checks. As in Appendix I, the PE parameter is actually computed
as QU times another parameter QF. Manual parameter optimization
would take QF somewhat below the reciprocal of the queue-push
probability.

Given𝑤 = WI and the original list sizes, CAT uses the formulas
fromAppendix J.2 to predict the average number of collisions found,
under the heuristic that the relevant elements of Fℓ2 are sufficiently
random. Then CAT heuristically treats the queue insertions as
a Bernoulli process, with probability determined by the collision

prediction, and applies the formulas fromAppendix J.1, with𝑄 = QU
and 𝑃 = PE, to predict the average number of collisions consumed
from the queue.

(Note that checking for collisions at pairs of list positions in
lexicographic order, rather than a random order, would break the
Bernoulli-process model: any 𝑠 that appears several times would
produce a burst of consecutive events, probably overloading a short
queue and certainly not matching the independence assumption.)

Similar comments apply to the two levels of collision search in
isd2. The intermediate list sizes here are variables, but heuristically
have a narrower and narrower distribution around their predicted
sizes as parameters increase. The predicted sizes are averages that
are not necessarily integers; the formulas in Appendix J.2 can be
applied to non-integral 𝐴, 𝐵.

For reliable computations on real numbers, CAT uses the existing
MPFI [104] library for interval arithmetic, repeatedly doubling
precision (starting with 32 bits) until the final probability-prediction
intervals have relative width below 2−20.

K Accounting for multiple preimages
Fix finite sets 𝑋 and 𝑌 . Fix a function 𝐹 : 𝑋 → 𝑌 . Consider a secret
𝑒 chosen uniformly at random from 𝑋 , and consider the problem
of finding 𝑒 given 𝑦 = 𝐹 (𝑒).

The set 𝐹−1 (𝑦) of preimages of 𝑦 could be larger than {𝑒}. Then
𝑒 is information-theoretically hidden among the preimages. This
limits the success probability of any algorithm that outputs an
element of𝑋 as a guess for 𝑒 : for example, if there are two preimages,
then the success probability is at most 50%. An algorithm is required
to output an element of 𝑋 in, e.g., the OW-CPA security definition,
or in the context of “unique decoding” in coding theory.

Typical analyses of ISD algorithms assume a different interface,
a “list decoding” interface in which an algorithm outputs a list of
elements of 𝑋 and succeeds if 𝑒 is in the list. In other words, the
algorithm succeeds if it encounters the desired 𝑒 ; if it also encoun-
ters another preimage 𝑥 then it can output both 𝑒 and 𝑥 , without
having to make a choice between 𝑒 and 𝑥 . The algorithm analysis
then simply asks whether 𝑒 is encountered, without worrying about
whether other preimages also appear.

K.1. Do multiple preimages matter? One can convert a list-
decoding algorithm to a unique-decoding algorithm, or more gen-
erally convert a list-of-preimages attack into an OW-CPA attack,
by simply printing the first preimage of 𝑦 in the list, or printing a
uniform random element of 𝑋 if there is no preimage in the list.

The only way for this conversion to reduce success probability
is for there to be multiple preimages of 𝑦. There are two easy ways
to argue that ISD algorithms are unlikely to encounter multiple
preimages:

• In the context of applying ISD to attacking the OW-CPA
property of theMcEliece cryptosystem: Themap from plain-
texts to ciphertexts is injective—this follows immediately
from, e.g., the fact that the McEliece decryption algorithm
always works—so there is never more than one preimage.

• In the context of applying ISD to decoding for a uniform
random matrix: Write𝐻 for the full parity-check matrix ob-
tained by gluing the uniform random matrix to an identity
matrix. The input 𝑒 is a weight-𝑡 element of F𝑛2 ; the output

CryptAttackTester: formalizing attack analyses

is a syndrome 𝑦 = 𝐻𝑥 ∈ F𝑛−𝑘2 . If a weight-𝑡 vector 𝑥 ≠ 𝑒

has 𝑦 = 𝐻𝑥 then 𝐻 (𝑥 − 𝑒) = 0, which has probability 0 if
𝑥 − 𝑒 is supported on the identity part of 𝐻 and probability
1/2𝑛−𝑘 otherwise. The total chance of another preimage
is thus at most (

(𝑛−𝑘
𝑡

)
− 1)/2𝑛−𝑘 , which is negligible for

parameters (𝑛, 𝑘, 𝑡) of cryptographic interest.
However, the effect of multiple preimages is easily visible in ISD

for a uniform random matrix with small (𝑛, 𝑘, 𝑡). For example, for
(𝑛, 𝑘, 𝑡) = (16, 12, 1), straightforward computer experiments show
that a complete search through preimages succeeds with probability
only about 65.4%.

Small parameters are important for this paper. Small parameters
make it feasible to experimentally evaluate success probabilities
for comparison to predicted success probabilities. One can dismiss
the discrepancy between 100% and 65.4% as not being very large,
but ignoring such discrepancies can easily hide other discrepancies
that do not disappear as sizes increase.

K.2. Options for addressing the discrepancy. Oneway to elimi-
nate multiple preimages would be to run attack experiments against
ciphertexts for parity-check matrices for Goppa codes, as in the
McEliece cryptosystem. For example, the key-generation software
from [8] takes only 180 million cycles on an Intel Skylake core for
mceliece6960119f, which is designed for long-term security. One
can save more time by using a single key for attack experiments
with many ciphertexts.

On the other hand, that key-generation software is not designed
to support parameters smaller than cryptographic sizes, and writing
new software for carrying out experiments would raise verification
questions. There is value in the simplicity of considering uniform
random matrices as an attack target, as in the ISD literature—but
precise analyses then require accounting for multiple preimages.

A different way to eliminate multiple preimages would be to
consider the problem of recovering 𝑒 from, say, 𝐹 (𝑒) and a crypto-
graphic hash of 𝑒; often attackers are facing problems of this type.
Another 𝑥 with 𝐹 (𝑥) = 𝐹 (𝑒) would be very unlikely to have the
same hash as 𝑒 . Buffering several preimages, and occasionally com-
puting hashes to exclude preimages with the wrong hash, would
have very low cost, and the buffer would almost never overflow.

This appendix takes another approach: quantifying the impact
of multiple preimages. The uniform-random-function model be-
low is broadly applicable and already captures most of the impact,
although a closer look at ISD obtains more accurate results.

K.3. The uniform-random-function model. Consider a search
through a nonempty subset 𝑆 of 𝑋 . Perhaps this is a brute-force
search, or perhaps something faster; the speed does not matter for
the following analysis. Assume that the search outputs one of the
preimages it finds, and aborts if it does not find any preimages.

Model 𝐹 as a uniform random function from 𝑋 to 𝑌 . Any partic-
ular 𝑥 ∈ 𝑋 − {𝑒} then has 𝐹 (𝑥) = 𝐹 (𝑒) with probability 1/#𝑌 . In
other words, for each 𝑖 ∈ {0, 1}, the probability that 𝑥 contributes
𝑖 additional preimages of 𝐹 (𝑒) is the coefficient of 𝑧𝑖 in 𝜑 , where
𝜑 ∈ R[𝑧] is the polynomial 1 − 1/#𝑌 + 𝑧/#𝑌 .

The search succeeds with chance (#𝑆/#𝑋)∑𝑖≥0 𝜑#𝑆−1𝑖
/(𝑖 + 1),

where (as in Appendix J) 𝜑#𝑆−1
𝑖

means the coefficient of 𝑧𝑖 in the
polynomial 𝜑#𝑆−1:

• #𝑆/#𝑋 is the chance that 𝑒 ∈ 𝑆 . A conventional analysis
would stop at this point, saying that the search finds 𝑒 with
probability #𝑆/#𝑋 .

• Given that 𝑒 ∈ 𝑆 , there are #𝑆 − 1 elements 𝑥 ∈ 𝑆 − {𝑒},
each 𝑥 having an independent probability of 𝐹 (𝑥) = 𝐹 (𝑒);
so the chance of #{𝑥 ∈ 𝑆 − {𝑒} : 𝐹 (𝑥) = 𝐹 (𝑒)} = 𝑖 is 𝜑#𝑆−1

𝑖
for each 𝑖 ∈ {0, 1, 2, . . .}.

• Given that 𝑒 ∈ 𝑆 and that #{𝑥 ∈ 𝑆 − {𝑒} : 𝐹 (𝑥) = 𝐹 (𝑒)} = 𝑖 ,
the search succeeds with probability 1/(𝑖 + 1).

One can use the formula 𝜑#𝑆−1
𝑖

=
(#𝑆−1
𝑖

)
(1 − 1/#𝑌)#𝑆−1−𝑖 (1/#𝑌)𝑖

to compute
∑
𝑖≥0 𝜑

#𝑆−1
𝑖
/(𝑖 + 1), but it is easier to instead note that∑

𝑖≥0 𝜑
#𝑆−1
𝑖
/(𝑖 + 1) =

∫ 1
0 𝜑

#𝑆−1 𝑑𝑧 = (#𝑌/#𝑆) (1 − (1 − 1/#𝑌)#𝑆).
The search thus succeeds with chance (#𝑌/#𝑋) (1 − (1 − 1/#𝑌)#𝑆).

Here are two numerical examples:

• #𝑋 = 16, #𝑌 = 16, and #𝑆 = 16. The success probability in
this model is then 1 − (1 − 1/16)16, about 64.4%, slightly
below the actual 65.4% chance mentioned above. The con-
ventional approximation is 100%.

• #𝑋 = 16, #𝑌 = 16, and #𝑆 = 4. The success probability
in this model is then 1 − (1 − 1/16)4, about 22.8%. The
conventional approximation is 25%.

For larger parameters, in particular with #𝑆/#𝑌 converging to 0,
the ratio between the success chance (#𝑌/#𝑋) (1− (1− 1/#𝑌)#𝑆) in
this model and the conventional #𝑆/#𝑋 converges to 1, matching
the intuition that multiple preimages become less and less common.

The prediction mentioned in Section 6.1, labeled prob2 inside
CAT, is computed via this model as follows: first a simplified predic-
tion, labeled prob, is computed without accounting for collisions;
then prob2 is computed as (#𝑌/#𝑋) (1 − (1 − 1/#𝑌)#𝑋 ·prob). Sec-
tion 6.2 uses only prob.

K.4. Accounting for local injectivity. Consider any matrix 𝐻 ∈
F
(𝑛−𝑘)×𝑛
2 of the form (𝑇 |𝐼), where 𝑇 is an (𝑛 − 𝑘) × 𝑘 matrix and
𝐼 is the (𝑛 − 𝑘) × (𝑛 − 𝑘) identity matrix. Consider the following
search for a weight-𝑡 vector 𝑒 ∈ F𝑛2 given 𝐻𝑒 ∈ F𝑛−𝑘2 : if 𝐻𝑒 has
weight 𝑡 then output 𝑘 zeros followed by 𝐻𝑒 . This is an example of
one iteration of Prange’s original ISD algorithm.

This search finds 𝑒 if and only if 𝑒 ∈ 𝑆 , where 𝑆 is the set of
weight-𝑡 elements of F𝑛2 starting with 𝑘 zeros. The search cannot
encounter another preimage at the same time: 𝐻 is injective on this
set 𝑆 . Note that #𝑆 =

(𝑛−𝑘
𝑡

)
.

For example, for (𝑛, 𝑘, 𝑡) = (16, 12, 1), this search succeeds for
exactly

(4
1
)
= 4 choices of 𝑒 . The phenomenon of multiple preimages

does not occur here: the success probability for one iteration of
Prange’s algorithm is exactly the conventional 25%, not the 22.8%
from the uniform-random-function model.

On the other hand, the success probability of many iterations
of Prange’s algorithm for a uniform random 𝑇 is certainly not the
conventional 100%: it cannot exceed the 65.4% mentioned above.

In the formula (#𝑆/#𝑋)∑𝑖≥0 𝜑#𝑆−1𝑖
/(𝑖 + 1) from the uniform-

random-function model, #𝑆 − 1 counts the number of elements of 𝑆
that have a chance of colliding with 𝑒 under 𝐹 , given that 𝑒 ∈ 𝑆 . In
Prange’s algorithm, the elements of 𝑆 excluded from collisions are
not just 𝑒 itself, but another 𝐶 − 1 elements of 𝑆 , where 𝐶 =

(𝑛−𝑘
𝑡

)
.

Daniel J. Bernstein and Tung Chou

This suggests that

#𝑆
#𝑋

∑︁
𝑖≥0

𝜑#𝑆−𝐶
𝑖

𝑖 + 1 =
#𝑆
#𝑋

#𝑌
#𝑆 −𝐶 + 1

(
1 −

(
1 − 1

#𝑌

)#𝑆−𝐶+1)
would be a better approximation to the success probability.

In improved versions of Prange’s algorithm with restricted col-
umn swaps, there are more elements of 𝑆 visibly excluded from
collisions. Consider, for example, two iterations, where the 𝑘th col-
umn is swapped with the last column between the iterations. Then
𝑆 is the set of weight-𝑡 elements of F𝑛2 that start with 𝑘 zeros or
that start with 𝑘 − 1 zeros and end with one zero. If 𝑒 starts with 𝑘
zeros and ends with one zero then it cannot collide with any other
elements of 𝑆 under 𝐻 .

K.5. Accounting for excluded information sets. If 𝐻 has the
form (0|𝐼) then there is only one information set for 𝐻 , namely the
set containing the first 𝑘 positions. Prange’s algorithm always uses
this information set, and finds 𝑒 only if 𝑒 is 0 on the first 𝑘 positions.

This is related to the fact that there are many collisions under 𝐻 ,
but the consequences are more extreme. The problem is not merely
that the algorithm has to guess from among many preimages; the
problem is that, after the first iteration, subsequent iterations of
the algorithm simply repeat searching the same space.

More generally, if 𝑒 has a bit set at a position where 𝐻 has a 0
column, then Prange’s algorithm will never find 𝑒 . As a numerical
example, this occurs with probability 3/64, i.e. 4.6875%, in the case
(𝑛, 𝑘, 𝑡) = (16, 12, 1): there is chance 3/4 that 𝑒 is in the random
part of 𝐻 , and then chance 1/16 that 𝐻 has a 0 column at that
position. Experiments show that Prange’s algorithm succeeds with
probability 62.1%.

L Risks of mispredictions
This appendix considers ways that inaccuracies could have ap-
peared in the predictions in Section 6.2 while avoiding detection by
the simulations in Section 6.1; and, more broadly, ways that Table 1
can deviate from the actual cost of attacks.

Figure 4 shows a very close match—always within 0.2 bits, usu-
ally even closer—between cost/probability predictions and actual
circuit behavior, as shown by circuit simulations, for parameters
obtained by searchparams, across a range of three doublings of 𝑛.
Consider the hypothesis that this remains true for six more dou-
blings, covering sizes proposed for use in cryptography: in particu-
lar, that the predictions calculated in Section 6.2 match the actual
circuit behavior within 0.2 bits.

There is an obvious way that this hypothesis could fail: the pre-
dictions for an attack could have an inaccuracy growing with the
problem parameters. The graph seems to show increasing accuracy
with problem parameters, but this could be because the predictions
have some inaccuracies visible only at small sizes and other inac-
curacies visible only at large sizes, with the right side of the graph
between these sizes.

One way to try to catch such inaccuracies is to carry out larger
experiments. Another way, possibly more efficient, is to carry out
more experiments for small sizes, checking for very small discrep-
ancies between predictions and simulations, with the hope that an
inaccuracy for large sizes will appear as a detectable inaccuracy for
small sizes. This requires resolving all issues that appear for small

sizes, even when it is clear that those issues disappear for larger
sizes; the handling of collisions in Appendix K is an example of a
step towards this.

If the searchparams choice of an attack parameter happens not
to vary throughout the range of problem parameters considered in
simulations, then a formula for the impact of that attack parameter
would be checked only for that particular choice. Experience shows
that human errors in generating formulas are frequently caught by
single tests, but presumably further tests make errors less likely.
This is why Section 6.1 specifically moves the pair (IT, RE) from
(1, 1) to (2, 1) to see the cost and probability impact of resets, while
moving from (1, 1) to (4, 4) to see the impact of random walks.
However, this does not enforce variations in all parameters, and it
is in any case possible that an error in formulas escapes detection
for whichever parameters are tried.

Another risk is as follows. Assume that a particularly effective
portion of the parameter space for an attack is predicted to be much
worse, because of a prediction error that applies only to that portion
of the parameter space. Presumably searchparamswill avoid those
parameters, so tests of parameters selected by searchparams will
not catch the prediction error. This would not contradict the hy-
pothesis stated above, but it would mean that prediction errors are
limiting the effectiveness of the circuits considered. To the extent
that cryptanalysis papers include experiments, they typically carry
out experiments only for “optimized” parameters, incurring the
same risk.

One way to address this risk at moderate cost would be to carry
out simulations for parameters considered by searchparams rather
than just parameters selected by searchparams. The searchparams
heuristics try various modifications of single parameters and then
pairs of parameters, so variations such as moving from 𝑝 = 1 to
𝑝 = 2 or increasing iteration counts would be covered automati-
cally. If predictions are accurate for all parameters considered by
searchparams then searchparams is not being misdirected by mis-
predictions, although it could still be led astray because its search
is only heuristic. For comparison, typical methods of automatically
generating test cases ensure variations across pairs of parameters
(see, e.g., [47]) and sometimes prioritize lower-cost tests (see, e.g.,
[38]), but aim to catch problems anywhere in the parameter space
rather than more efficiently focusing on the parameters relevant to
a heuristic search.

There are further risks. Even when circuits are analyzed accu-
rately, they are not necessarily the best circuits. They could be
missing known improvements; the parameter searches could have
been inadequate; better circuits could be developed.

This paper’s formalization already covers many ISD algorithms,
but it does not claim to cover all ISD algorithms in the literature.
For example, an informal analysis suggests that the low-memory
algorithm in [50] is less effective than the comparably low-memory
case 𝑝 ′ = 1 of Stern’s algorithm, but this analysis has not been
formalized. Further examples were mentioned in Section 4.1; see
also Appendix M.

Finally, the fact that a cost metric is fully defined does not mean
that it covers all costs of interest. In particular, for sorting larger and
larger arrays—and for the applications of sorting inside isd1 and
isd2 as 𝑝 ′ and 𝑝 ′′ increase—the cost metric in Section 2.1 is a more
and more severe underestimate of real costs. See Appendix F.6.

CryptAttackTester: formalizing attack analyses

M Other ISD cost reductions
This section presents some other circuit-cost reductions that have
not been integrated into CAT.

M.1. Minor optimizations for computingS𝒅 (𝑨, 𝒗). Following
the discussion in Section 5.3, in the tree for computing S𝑑 (𝐴, 𝑣),
observe that there are non-root nodes N(𝑣, 𝐴, 𝐼) with 𝑑 − |𝐼 | =
min(𝐼) and |𝐼 | < 𝑑 . Each descendant of such a node and itself must
have at most one child, which implies that it can only lead to one
leaf node

N
(
𝑣, 𝐴, 𝐼 ∪

[
min(𝐼) − 1

])
= N

(
𝑣, 𝐴,

(
𝐼 \ {min(𝐼)}

)
∪
[
min(𝐼)

])
.

Therefore, we can redefine a non-root nodeN(𝑠, 𝐴, 𝐼) with 𝑑 − |𝐼 | =
min(𝐼) and |𝐼 | < 𝑑 as(
𝑣 +𝐴

[
𝐼 \ (min(𝐼)

]
+𝐴

[
[min(𝐼)]

]
,
(
𝐼 \ {min(I)}

)
∪

[
min(𝐼)

])
and consider it as a leaf node. By precomputing 𝐴

[
[𝑖]

]
for 𝑖 =

0, . . . , 𝑑 − 1, each redefined node still takes only 1 vector addition
to compute. As another minor optimization, the vector additions
for generating the children of the root can be skipped when it is
known that 𝑣 = 0.

M.2. Computing |𝑰 ⊕ 𝑱 | by merging sorted lists. Following
the discussion in Section 5.7, to compute |𝐼 ⊕ 𝐽 |, the circuits in CAT
first sort the elements in 𝐼 and 𝐽 together to obtain a sorted list. As
𝐼 and 𝐽 are represented as two sorted lists, instead of applying a
sorting network on the elements, one can also use an algorithm
that merges two sorted lists. One efficient option is Batcher’s “odd-
even merge” algorithm [70], which takes 𝑂 (𝑑 log𝑑) compare-and-
exchange operations to merge two sorted lists of 𝑑 elements, with
a small 𝑂 constant.

M.3. Finding collisions in isd2 by merging sorted lists. As
mentioned in Section 5.12, to find collisions between 𝑆 (0)

𝐿
and 𝑆 (0)

𝑅

(and similarly between 𝑆 (0)
𝐿

and 𝑆 (0)
𝑅

), the circuits in CAT sort the
elements in the two sets together to form a sorted list. Instead of
applying a sorting network directly, one can sort elements in the
two sets separately and then merge the two sorted lists. Note that
𝑆
(0)
𝐿

only needs to be sorted once at the beginning of each search
phase. After that, for each Δ, it remains to sort 𝑆 (0)

𝑅
and then merge

the two sorted lists. This replaces 𝐷 times sorting elements in 𝑆 (0)
𝐿

and 𝑆 (0)
𝑅

together with 1 time sorting 𝑆 (0)
𝐿

, 𝐷 times sorting 𝑆 (0)
𝑅

,
and 𝐷 times merging 𝑆 (0)

𝐿
with 𝑆 (0)

𝑅
.

M.4. Sorting elements in 𝑺 (0)𝑹 and 𝑺 (0)𝑹 in isd2. Suppose in
each search phase of isd2, Δ is set to (in chronological order)
𝛿0, 𝛿1, . . . , 𝛿𝐷−1. Let 𝑆

(0)
𝑅
(𝛿𝑖) and 𝑆 (0)𝑅 (𝛿𝑖) be the sets 𝑆

(0)
𝑅

and 𝑆 (0)
𝑅

forΔ = 𝛿𝑖 . Following the discussion in AppendixM.3, when 𝑆 (0)
𝑅
(𝛿𝑖)

(resp. 𝑆 (0)
𝑅
(𝛿𝑖)) where 𝑖 > 0 is sorted, 𝑆 (0)

𝑅
(𝛿𝑖−1) (resp. 𝑆 (0)𝑅 (𝛿𝑖−1))

must have been sorted. This can be exploited to save bit operations.
The following description is for 𝑆 (0)

𝑅
, but the same ideas also apply

to 𝑆 (0)
𝑅

. Given a vector 𝑣 ∈ F𝑑2 , denote by 𝑣≥𝑖 and 𝑣>𝑖 the vectors
(𝑣𝑖 , . . . , 𝑣𝑑−1) and (𝑣𝑖+1, . . . , 𝑣𝑑−1), respectively.

This speedup is enabled by the structure of a circuit for compar-
ing vectors. Let 𝑣,𝑤 ∈ F𝑑2 . To compute E(𝑣 > 𝑤) = E(𝑣≥0 > 𝑤≥0),
the circuit computes

E(𝑣≥𝑑−1 > 𝑤≥𝑑−1), E(𝑣≥𝑑−1 ≠ 𝑤≥𝑑−1),
E(𝑣≥𝑑−2 > 𝑤≥𝑑−2), E(𝑣≥𝑑−2 ≠ 𝑤≥𝑑−2), . . . ,
E(𝑣≥0 > 𝑤≥0)

sequentially. Each E(𝑣≥𝑑−𝑖 ≠ 𝑤≥𝑑−𝑖) with 𝑖 > 1 is computed as
(𝑣𝑑−𝑖 +𝑤𝑑−𝑖) ∨ E(𝑣≥𝑑−𝑖+1 ≠ 𝑤≥𝑑−𝑖+1), where ∨ indicates the OR
operation. Each E(𝑣≥𝑑−𝑖 > 𝑤≥𝑑−𝑖) with 𝑖 > 1 is computed as(

𝑣𝑑−𝑖 (1 −𝑤𝑑−𝑖)
(
1 − E(𝑣≥𝑑−𝑖+1 ≠ 𝑤≥𝑑−𝑖+1)

))
∨ E(𝑣≥𝑑−𝑖+1 > 𝑤≥𝑑−𝑖+1).

Apparently each of E(𝑣≥𝑑−1 > 𝑤≥𝑑−1) and E(𝑣≥𝑑−1 ≠ 𝑤≥𝑑−1)
takes only 1 bit operation to compute.

The circuits in CAT represent 𝑆 (0)
𝑅
(𝛿𝑖) as a variable list 𝐿𝛿𝑖 con-

sisting of elements in the set. Denote by Π(𝐿𝛿𝑖) the result of sorting
𝐿𝛿𝑖 . For ease of notation below, abbreviate each element (𝑣, 𝑣 ′, 𝐼) in
𝐿𝛿𝑖 as simply 𝑣 . Following the discussion in Appendix M.3, each 𝐿𝛿𝑖
with 𝑖 > 0 is obtained by adding 𝑢𝑓𝑖 to each element in Π(𝐿𝛿𝑖−1),
where 𝑓𝑖 is defined as the integer such that 𝑢𝑓𝑖 = 𝛿𝑖 + 𝛿𝑖−1. In this
way, for 𝑥 < 𝑦, we have

𝐿𝛿𝑖 [𝑥]>𝑓𝑖 = Π(𝐿𝛿𝑖−1) [𝑥]>𝑓𝑖 ≤ Π(𝐿𝛿𝑖−1) [𝑦]>𝑓𝑖 = 𝐿𝛿𝑖 [𝑦]>𝑓𝑖 (1)

before and after 𝐿𝛿𝑖 is sorted. This implies that, for each compare-
and-swap operation carried out for sorting 𝐿𝛿𝑖 , some bit operations
can be saved by only swapping the “bottom bits”, i.e., the bits of
indices smaller than or equal to 𝑓𝑖 . Also, some more bit opera-
tions can be saved whenever E(𝐿𝛿𝑖 [𝑥] > 𝐿𝛿𝑖 [𝑦]) is computed, as
E(𝐿𝛿𝑖 [𝑥]>𝛼 > 𝐿𝛿𝑖 [𝑦]>𝛼) = 0 for any 𝛼 ≥ 𝑓𝑖 .

In fact, many “E(≠)” values are already known and do not need
to be recomputed. To see this, consider computation of E(𝐿𝛿𝑖 [𝑥] >
𝐿𝛿𝑖 [𝑦]) with 𝑖 ≥ 1 and 𝑥 < 𝑦 when 𝐿𝛿𝑖 is sorted. To compute
the value, it is necessary to obtain E(𝐿𝛿𝑖 [𝑥]≥𝑓𝑖+1 ≠ 𝐿𝛿𝑖 [𝑦]≥𝑓𝑖+1),
which is always derived from

E(𝐿𝛿𝑖 [𝑥]≥ℓ0−1 ≠ 𝐿𝛿𝑖 [𝑦]≥ℓ0−1), . . . , E(𝐿𝛿𝑖 [𝑥]≥𝑓𝑖+2 ≠ 𝐿𝛿𝑖 [𝑦]≥𝑓𝑖+2) .
This means that when we compute E(𝐿𝛿𝑖+1 [𝑥] > 𝐿𝛿𝑖+1 [𝑦]) (when
𝐿𝛿𝑖+1 is sorted), if 𝑓𝑖+1 > 𝑓𝑖 , E(𝐿𝛿𝑖+1 [𝑥]>𝑓𝑖+1 ≠ 𝐿𝛿𝑖+1 [𝑦]>𝑓𝑖+1) must
have been derived before. Similarly, whenwe computeE(𝐿𝛿𝑖+1 [𝑥] >
𝐿𝛿𝑖+1 [𝑦]), if 𝑓𝑖+1 < 𝑓𝑖 , E(𝐿𝛿𝑖+1 [𝑥]>𝑓𝑖 ≠ 𝐿𝛿𝑖+1 [𝑦]>𝑓𝑖) must have been
derived before. Therefore, bit operations can be saved by reusing
the “E(≠)” values that have been derived before. Note that this
optimization enlarges the “state”, i.e., the set of bits that need to be
maintained simultaneously, but the size of the state is not consid-
ered in the cost metric defined in Section 2.1.

Under some conditions, comparing two vectors can be reduced
to comparing the most significant bits of them. To see this, consider
computation of E(𝐿𝛿𝑖 [𝑥] > 𝐿𝛿𝑖 [𝑦]) where 𝑖 > 0 and 𝑥 < 𝑦 when
𝐿𝛿𝑖 is sorted. Observe that under the condition that 𝐿𝛿𝑖 [𝑥] + 𝑢𝑓𝑖 ≤
𝐿𝛿𝑖 [𝑦] + 𝑢𝑓𝑖 , 𝐿𝛿𝑖 [𝑥] > 𝐿𝛿𝑖 [𝑦] if and only if

• 𝐿𝛿𝑖 [𝑥]>𝑓𝑖 = 𝐿𝛿𝑖 [𝑦]>𝑓𝑖 and
• 𝐿𝛿𝑖 [𝑥] 𝑓𝑖 = 1, 𝐿𝛿𝑖 [𝑦] 𝑓𝑖 = 0.

Indeed, Equation 1 shows that it is impossible to have 𝐿𝛿𝑖 [𝑥]>𝑓𝑖 >
𝐿𝛿𝑖 [𝑦]>𝑓𝑖 , and 𝐿𝛿𝑖 [𝑥]≥𝑓𝑖 = 𝐿𝛿𝑖 [𝑦]≥𝑓𝑖 implies that 𝐿𝛿𝑖 [𝑥] ≤ 𝐿𝛿𝑖 [𝑦]
under the condition 𝐿𝛿𝑖 [𝑥] + 𝑢𝑓𝑖 ≤ 𝐿𝛿𝑖 [𝑦] + 𝑢𝑓𝑖 . As 𝐿𝛿𝑖 [𝑥] =

Daniel J. Bernstein and Tung Chou

Π(𝐿𝛿𝑖−1) [𝑥]+𝑢𝑓𝑖 and 𝐿𝛿𝑖 [𝑥] = Π(𝐿𝛿𝑖−1) [𝑦]+𝑢𝑓𝑖 before any compare-
and-swap operation is carried out, we must have 𝐿𝛿𝑖 [𝑥] + 𝑢𝑓𝑖 ≤
𝐿𝛿𝑖 [𝑦] +𝑢𝑓𝑖 if the pair of entries (𝐿𝛿𝑖 [𝑥], 𝐿𝛿𝑖 [𝑦]) has not been used
in any compare-and-swap operation. To make use of this, maintain
a vector 𝑣 ∈ F |𝐿𝛿𝑖 |2 when 𝐿𝛿𝑖 is sorted, such that 𝑣𝑥 = 1 if and only
if 𝐿𝛿𝑖 [𝑥] has not been used in any compare-and-swap operation.
To figure out whether 𝐿𝛿𝑖 [𝑥] > 𝐿𝛿𝑖 [𝑦], if (𝑣𝑥 , 𝑣𝑦) = (1, 1), simply
figure out whether 𝐿𝛿𝑖 [𝑥]≥𝑓𝑖 > 𝐿𝛿𝑖 [𝑦]≥𝑓𝑖 . Note that maintaining 𝑣
is free in this cost metric, as whether an entry is used is independent
of the data being sorted.

N Previous analyses of ISD effectiveness
It is easy to find clear high-level statements of ISD algorithms in
the ISD literature, and clear explanations of the most important
bottlenecks in the algorithms. However, cryptography uses much
more precise evaluations of attack costs; see Appendix A.

This appendix reviews various quantitative statements in the
previous literature regarding the ISD cost/probability ratio. All of
the statements sound reasonably precise, but a closer look shows
that none of the statements have clearly defined semantics. Models
of computation, cost metrics, and choices of subroutines are not
pinpointed; they are only loosely constrained.

Often there are variations in security levels reported for the
same (𝑛, 𝑘, 𝑡), as the examples below illustrate. Certainly there are
cases where algorithm 𝐵 in paper 𝑌 is better than algorithm 𝐴 in
paper 𝑋 , such as Leon’s algorithm outperforming Prange’s original
algorithm. There are also cases where 𝑌 is assigning lower costs
than 𝑋 to the same operations. There are also known cases of
errors one way or the other, such as 𝑋 overestimating the cost
of 𝐴, or 𝑌 underestimating the cost of 𝐵, or 𝑋 underestimating
the cost of 𝐴 but 𝑌 more severely underestimating the cost of 𝐵.
It is labor-intensive to disentangle these effects: readers have to
manually check each step of each algorithm analysis. ISD software
is sometimes provided, but uses different cost metrics from the
algorithm analyses and, as in Appendix C.1, has limited value in
helping readers catch errors in analyses.

These difficulties are not specific to ISD. This paper uses ISD
as a case study, but the core problems are much broader, as is the
approach that this paper takes to address these problems.

N.1. 1978 McEliece and 1987 Adams–Meijer. [84] says that
“one expects a work factor of 𝑘3 · (1− 𝑡

𝑛)
−𝑘 ”, and plugs in (𝑛, 𝑘, 𝑡) =

(1024, 524, 50) as an example, obtaining “about 1019 ≈ 265”. The
“work factor” cost metric is undefined.

This is preceded by a statement that “the amount of work in-
volved in solving the 𝑘 simultaneous equations in 𝑘 unknown is
about 𝑘3”. The choice of linear-algebra subroutine here is undefined.
The simplest linear-algebra subroutines use Θ(𝑘3) field operations,
but operations for small fields can easily be batched if the model
of computation allows word operations, and a logarithmic factor
can be saved if the model of computation allows random access.
Also, as mentioned in [4], smaller asymptotic exponents than 3
were already known (from [39], which eliminated the failure cases
in [115]), although this is not necessarily important for the sizes of
𝑘 used in cryptography.

At a higher level, the algorithm description says “select 𝑘 of
the 𝑛 coordinates randomly”. Presumably this means uniformly at
random, but then the corresponding 𝑘 × 𝑘 matrix is usually not
invertible (i.e., the coordinates are usually not an information set),
so the linear-algebra problem is actually to enumerate a variable-
dimension solution space, not just to find one solution. One cannot
tell, from the level of description in [84], whether the costs of enu-
merating and checking solutions were evaluated as fitting within
𝑘3 on average (certainly they do not in the worst case), or were
simply neglected.

Similarly, [4] says “The work factor for this attack can be calcu-
lated as follows”, without defining the “work factor” cost metric.
The algorithm statement in [4] is not exactly the same as in [84]: it
explicitly hypothesizes that the relevant 𝑘 × 𝑘 matrix is invertible,
and inverts the matrix, presumably skipping the iteration if the
matrix turns out not to be invertible. The probability of invertibility,
approximately 30% for uniform random matrices, is ignored in the
analysis in [4].

Regarding the number of iterations, (1 − 𝑡
𝑛)
−𝑘 in [84] is a much

worse approximation than
(𝑛
𝑡

)
/
(𝑛−𝑘
𝑡

)
(used in, e.g., [4]). These quan-

tities are approximately 237.84 and 253.61 respectively for (𝑛, 𝑘, 𝑡) =
(1024, 524, 50).

For comparison, the version of Prange’s ISD algorithm in CAT is
fully defined all the way down through the model of computation
and cost metric, so in particular it resolves the ambiguities regarding
the cost of linear algebra; CAT’s predictors of cost and success prob-
ability are also fully defined, and compared directly to simulations
(see, e.g., Figure 4). As one would expect from the details of the algo-
rithm, the simplified formula 𝑘3

(𝑛
𝑡

)
/
(𝑛−𝑘
𝑡

)
is a reasonable, although

not perfect, prediction of the cost/probability ratio. For example, this
quantity is approximately 285.85 for (𝑛, 𝑘, 𝑡) = (1284, 1020 − 1, 24)
and 2338.04 for (𝑛, 𝑘, 𝑡) = (8192, 6528−1, 128), close to the 285.99 and
2338.10 in Table 1; the subtraction of 1 from 𝑘 accounts for FW = 1.

N.2. 1988 Lee–Brickell. [75] says that its new algorithm “reduces
the work factor significantly (factor of 211 for the commonly used
example of 𝑛 = 1024 Goppa code case)”. The “work factor” cost
metric is undefined.

The details of the analysis in [75] count twomain algorithm steps:
linear algebra, where the “work factor” is claimed to be “approxi-
mately 𝛼𝑘3 with small 𝛼”, and a combinatorial search, where the
“work factor” for each testing step is claimed to be “approximately
𝛽𝑘 with small 𝛽”.

The high-level point is that one can amortize the cost of linear
algebra across many testing steps “for any reasonable value of 𝛼
and 𝛽”. This statement is reasonably robust against variations in
the choice of cost metrics: seeing that the Lee–Brickell algorithm
outperforms Prange’s algorithm does not require a very detailed
algorithm analysis.

N.3. 1998 Canteaut–Chabaud. When algorithm performance is
converging, recognizing speedups inherently requires more and
more precision. [41] gives an algorithm with several parameters,
combining the approaches of Prange, Omura, Lee–Brickell, Leon,
and Stern; and says that it gives “a very precise analysis of the
complexity of this algorithm which enables us to optimize the
parameters it depends upon”.

CryptAttackTester: formalizing attack analyses

[41] then gives an exact formula for “the average number of ele-
mentary operations performed at each iteration”, and [41, “Propo-
sition 7”] claims an exact formula for the “overall work factor”.
However, there is no definition of “work factor”, or of which opera-
tions are allowed as “elementary operations”.

The reader can try to deduce constraints on the concept of “ele-
mentary operations” by inspecting details of the algorithm analysis.
For example, the statement “We need 𝐾 (𝑝

(𝑘/2
𝑝

)
+ 2𝜎) more opera-

tions to performthe [sic] dynamic memory allocation where 𝐾 is
the size of a computer word (𝐾 = 32 or 64)” is in the context of a
“hash table with 2𝜎 entries” storing 𝑝

(𝑘/2
𝑝

)
values, and appears to

be making an ad-hoc assumption that the number of “operations”
to manage the hash table is the “size of a computer word” times the
number of entries plus values in the table.

Note that, structurally, allowing ad-hoc assumptions in algorithm
analyses means that algorithm 𝐵 is free to make ad-hoc assumptions
producing smaller “operation” counts than algorithm𝐴, even when
a comparison in a well-defined cost metric would show that 𝐵
is slower than 𝐴. It is qualitatively clear that [41] outperforms
previous algorithms, but quantifying this requires clarity regarding
the cost metric.

N.4. 2008 Bernstein–Lange–Peters. [29] is structured to sup-
port direct comparisons: it quotes previous operation counts (e.g.,
“Stern says that reduction involves about (1/2) (𝑛 − 𝑘)3 + 𝑘 (𝑛 − 𝑘)2
bit operations”), explains how those counts appear to have been
calculated from algorithm steps (“To understand this formula, ob-
serve that the first column requires ≤ 𝑛 − 𝑘 reductions” etc.); and
then explains how the calculation changes when some steps are
eliminated (e.g., “the number of reductions in a typical column is
only about (𝑛 − 𝑘 − 1)/2”).

This micro-comparison approach again makes qualitatively clear
that there are speedups. However, it does not quantify the overall
speedups in any particular cost metric: in particular, it still does
not define “bit operations”.

[29] also reports software performance, but notes that “optimiz-
ing CPU cycles is different from, and more difficult than, optimizing
the simplified notion of ‘bit operations’ ” used in the predictions,
as mentioned in Section 3. Software is easy to measure, but these
measurements are not directly comparable to the bit-operation
predictions.

N.5. Interlude: Challenges. The software described in [29] was
used in 2008 to break a challenge for McEliece’s original parameters
(1024, 524, 50), and was used in 2023 to set a new record in the
series of challenges from [73], breaking a challenge for the size
(1347, 1047, 25) mentioned in Section 6; see [23].

This suggests that ISD algorithms have not improved much since
2008. However, there are several reasons for caution regarding the
general idea of using challenges to measure improvements in ISD
algorithms.

When a new record is set in a challenge, the record might come
from better algorithms, or from continued improvements in chip
technology, or from more money being spent on chips, or—for high-
variance computations, such as AES key search or ISD—simply
being lucky. A sufficiently large change in algorithm cost (such
as [43] breaking SIKE) will be easily visible as a sudden jump in

records, but obviously the improvements in ISD have been much
smaller than this.

The improvements in ISD algorithms after the introduction of
isd1 in the 1980s are almost invisible at the sizes of recently broken
challenges. For example, the isd1 row in Table 1 with RE = 1 and
𝑝 ′ = 2 says 71.66, while the smallest number in the column is
70.90. This difference is so small that trying to detect it from a
single challenge run is statistically invalid. Meanwhile the computer
power available to public researchers has increased by a much
larger factor over the same period. One expects larger and larger
challenges to be broken whether or not there are any algorithmic
improvements.

Challenges also have worrisome second-order effects. It is impor-
tant to recognize algorithm speedups even when the speedups are
small (see Appendix A.5), and running enough trials can reliably
detect small differences, but challenges instead encourage computer
power to be spent on a single trial at the largest affordable size.
Furthermore, what is broken in a challenge is at most what can be
broken by public researchers today, whereas large-scale attackers
have much more computer power today and will have even more
computer power in the future.

N.6. 2017 Classic McEliece. The Classic McEliece submission in
2017 [25] to the NIST Post-Quantum Cryptography Standardization
Project reviews the proposal of 𝑛 = 6960 from [29] (which says
that this was designed to maximize security for keys limited to 220
bytes) and then says that “subsequent ISD variants have reduced
the number of bit operations considerably below 2256”. The concept
of “bit operations” used here is not defined.

Subsequent versions of the ClassicMcEliece submissionmake the
same “considerably below 2256” comment, again without defining
“bit operations”. The latest version [8] also says this is consistent
with a 2246.6 number produced by the estimator in [55]; see below.

The submission also says “We expect that switching from a bit-
operation analysis to a cost analysis will show that this parameter
set is more expensive to break than AES-256 pre-quantum and
much more expensive to break than AES-256 post-quantum”. The
preceding “cost” comments refer to “hardware”, indicating that
this is a statement about real costs; certainly “cost” is not given a
mathematical definition.

N.7. 2019 Baldi–Barenghi–Chiaraluce–Pelosi–Santini. [13]
says that it provides “exact formulas for the time complexity” for a
variety of ISD algorithms. For example, [13, Proposition 6] states the
“time complexity of May–Meurer–Thomae”. However, the “time”
cost metric is undefined.

[13, Table 4] summarizes concrete costs computed from the
same formulas. In the table, “MMT” is an evident outlier, having
much lower cost than the other ISD algorithms. For example, for
(3488, 2720, 64), the 8 non-quantum numbers listed in the table in-
clude 2152.51 for “St”, 2149.91 for “BJMM”, and just 2118.61 for “MMT”.
(For comparison, Table 1 lists 156.96 for isd1, and lists 155.38 for
isd2 with 𝑝 ′ = 2𝑝 ′′ and 𝐶 = 0, which is essentially the 2011 MMT
algorithm.)

In 2021, NIST [95] wrote “If the analysis is correct, it seems like
this could threaten not just some of the McEliece parameters, but
also some of the parameters of the other code-based schemes.”

Daniel J. Bernstein and Tung Chou

In reply, Kirshanova [69] wrote that “The conclusion that BJMM
algorithm is worse than MMT is incorrect because MMT is a special
case of BJMM”. However, as [95] illustrates, non-experts did not
find this obvious from the previous literature.

[69] also reported an inability to “reproduce the exact bit com-
plexities” from [13]; and then [55, Appendix A] pointed out a spe-
cific factor missing inside the MMT formulas in [13].

[69] includes further estimates, namely 2133.61 for MMT and
2127.12 for BJMM, with the explicit caveat that these numbers are
“likely to be underestimates, as poly(𝑛) factors are ignored”—i.e., the
numbers were counting only some of the operations inside attacks.
For comparison, the smallest number in this column of Table 1 is
150.59, and the smallest number for 𝑝 ′ = 2𝑝 ′′ and 𝐶 = 0 is 155.38.
The gap between 155.38 and 150.59 is similar to the gap between
133.61 and 127.12, but the gap between 127.12 and 150.59 makes an
obvious difference for, e.g., NIST comparing to the cost of breaking
AES-128.

N.8. 2022 Esser–Bellini. [55] claimed to “analyze the complexity
of all algorithms in a unified and practical model giving a fair
comparison and concrete hardness estimations”; claimed that the
analysis produced “formulas for the concrete complexity to solve
the syndrome decoding problem”; and claimed that the software
from [55] allowed “for an effortless recomputation of our results”.

The estimator from [55] consists of cost-prediction formulas.
Since the estimator is open-source, it is easy to ask a computer to
convert these formulas into concrete cost predictions for specific
problem sizes. However, this provides no assurance that the formu-
las correctly compute “the concrete complexity” of any particular
attacks.

Furthermore, evaluating whether formulas correctly compute
costs requires a definition of the cost metric. A reader who searches
for the definition of the “unified and practical model” in [55] will
not find a definition. There are merely assertions regarding the costs
of various algorithm steps in an unspecified model of computation,
as in earlier papers. See, e.g., the claim from [55] reviewed below
regarding the “cost” of finding collisions.

For (3488, 2720, 64), [55, Table 2] reports “bit security estimates”
of 2151 for “Stern” and 2142 for “BJMM”. For comparison, recall that
[13] said 2152.51 for “St” and 2149.91 for “BJMM”. Table 1 says 156.96
for isd1 and 150.59 for isd2.

These numbers are not very far apart, and all of themmight seem
comfortably beyond the 2111 bit operations carried out worldwide
by Bitcoin in 2022. However, the numbers matter for cryptosystems
designed for long-term security. In the NIST Post-Quantum Cryp-
tography Standardization Project, NIST required cryptosystems
to be at least as secure as AES-128, estimated AES-128 as requir-
ing 2143 bit operations to break (see Appendix D), and recently
made standardization decisions based on very close comparisons
to AES-128 (see Appendix A.3). In this context, one cannot ignore
the difference between 142 and 150.

It is natural to ask whether the lower numbers in [55], compared
to Table 1, come from [55] using different, better optimized, “Stern”
and “BJMM” algorithms, or instead from [55] missing important
components of attack costs. As an apparently critical example of
the latter, [55, Formula (1)] uses 2𝐿 + 𝐿2/2ℓ as the “cost” of finding
all (𝑢, 𝑣,𝑢 ′, 𝑣 ′) with

• (𝑢, 𝑣) from a given length-𝐿 list of pairs,
• (𝑢 ′, 𝑣 ′) from another given length-𝐿 list of pairs, and
• 𝑣 = 𝑣 ′, where 𝑣 and 𝑣 ′ have ℓ bits.

This “cost” is far below the cost of any known circuit for the same
collision-finding problem. One would have to multiply by the num-
ber of bits in each vector simply to reach the number of bits of
input and output; more importantly, there are many intermediate
bit operations, as illustrated by the sorting circuits in Section 5.

If there were a clear definition of the “unified and practical model”
in [55] then one could determine how much of this underestimate
comes from inaccuracies built into the model and how much comes
from inaccuracies in analyzing costs within that model. There are
some comments in [55] regarding cost metrics, such as “we measure
all running times in vector operations in F𝑚2 ”, but this does not
make clear which “vector operations” are counted, and how these
“operations” allow collision-finding at “cost” just 1 per input and
1 per output. Presumably such powerful “operations” can also be
exploited to reduce the “cost” of other algorithms, as in Appendix D.

The statement “we measure all running times in vector opera-
tions in F𝑚2 ” in [55] was reported in [8] as a reason that the num-
bers in [55] were underestimates (“the underlying estimator from
[33] counts each vector operation as just 1 operation” so “should
be expected to be superseded by larger numbers from future es-
timators that count bit operations”). The situation is, however,
more complicated than this: the software from [55] multiplied the
“cost”/“running time” formulas from [55] by 𝑛 to obtain the “bit
security” numbers in [55]. This fudge factor overstates most of the
vector lengths used in the algorithm, while it still does not account
for the intermediate bit operations needed for collision-finding. The
numbers in [55] generally end up several bits below the numbers in
Table 1, although the gap is narrower for small 𝑝, 𝑝 ′, 𝑝 ′′ for reasons
pointed out below.

N.9. 2022 Esser–Bellini, continued. There are also alternative
numbers in [55], for example indicating that 2142 jumps to 2156
if one switches to a “cube-root model”. This “model” multiplies
the previous “cost” by “ 3√

𝑀”, so it inherits all of the definitional
problems surrounding the concept of “cost” in [55].

A closer look at the underlying estimator output also shows the
estimator saying that this “model” compresses differences between
algorithms, for example compressing the Stern-vs.-BJMM gap for
𝑛 = 3488 from 9 bits to 0.2 bits. See [8, “Guide for security reviewers”,
Table 1].

Qualitatively, these effects are not surprising. It has been well
known for many years that accounting for long-distance commu-
nication costs changes the exponent of sorting and many other
large-memory algorithms; see Appendix F.6 for references. Simply
multiplying by “ 3√

𝑀” has a similar effect. Also, isd2 relies much
more than isd1 does on using large amounts of memory, as illus-
trated by the 𝑝 ′′ choices for isd2 in Table 1; assigning higher costs
to memory encourages smaller values of 𝑝 ′ and 𝑝 ′′, reducing the
isd2 benefit.

Quantitatively, a problem with the numbers in [55] for small
𝑝, 𝑝 ′, 𝑝 ′′ is that the algorithms in [55] make no use of randomwalks:
each algorithm iteration uses a full echelon-form computation. This
explains why the estimator from [55] recommends, e.g., 𝑝 ′ = 2 for
Stern and 𝑝 ′′ = 3 for BJMM in the case (𝑛, 𝑘, 𝑡) = (1284, 1020, 24),

CryptAttackTester: formalizing attack analyses

whereas the best parameters in Table 1 have 𝑝 ′ = 1 for isd1 and
𝑝 ′′ = 1 for isd2. The estimator from [55] is assigning very low costs
to memory-intensive collision-finding, while choosing algorithms
that make linear algebra unnecessarily expensive.

No matter how small 𝑝, 𝑝 ′, 𝑝 ′′ are, an ISD iteration carries out
matrix operations, so it requires communication across a consider-
ably larger circuit than, e.g., an AES key-search iteration. A real-
istic evaluation of the costs of ISD requires realistically modeling
these communication costs and properly optimizing low-memory
algorithms within this model. Obviously “ 3√

𝑀” was designed for
simplicity rather than for accuracy, and the necessary low-memory
optimizations are missing from [55].

N.10. How well do CPU timings predict large-scale attack
costs? A structurally different approach to predicting ISD costs is
taken in another paper, 2021 Esser–May–Zweydinger [57], which
claims to provide “precise bit-security estimates for code-based
cryptography such as McEliece”. In particular, the paper claims
that, with “the MMT/BJMM algorithm”, McEliece with parameters
(3488, 2720, 64) is 1.17 bits harder to break than AES-128. Given
NIST’s estimate of AES-128 as costing 2143 bit operations to break
(see Appendix D), [57] would appear to be claiming 2144 bit opera-
tions.

However, no definition of “bit security” is specified in [57]. The
computation of 1.17 instead comes from the following chain of
calculations:

• [57] reports that its (1284, 1020, 24) attack software takes on
average “37.47” days on a cluster “consisting of two nodes,
each one equipped with 2 AMD EPYC 7742 processors and
2 TB of RAM”, in total 256 cores.

• [57] reports 2.16 · 109 AES-128 encryptions/second on the
same cluster. In other words, the 𝑛 = 1284 attack software
took the same time on the cluster as 252.63 AES-128 encryp-
tions.

• Regarding memory-access costs, [57] uses a curve-fitting
technique to conclude that “a logarithmic access cost most
accurately models our experimental data”.

• [57] uses an ISD estimator with logarithmic access cost to
conclude that (3488, 2720, 64) is 276.54 times more difficult
to break than (1284, 1020, 24), and thus would take the same
time “on our hardware” as 2129.17 AES-128 encryptions,
which is then compared to 2128 AES-128 encryptions.

The attacks against cryptographic parameters considered in [57]
require roughly 2100 bits of storage, so it is not correct that they
could run on the same cluster (even if the cluster could last this
long). Presumably the intention was instead to extrapolate to the
capabilities of an attacker building hardware at a much larger scale.

The second step in the above chain of calculations overestimates
the real-world price-performance ratio of breaking AES-128 by five
orders of magnitude. Quantitatively, each 64-core EPYC 7742 CPU
has 32 · 109 transistors according to [108], so each CPU core has
0.5 ·109 transistors. According to [58, Zen2 tables, “AESENC”], each
of these CPU cores carries out at best two parallel AES rounds per
cycle. Each round uses a few thousand bit operations (see Appen-
dix D.4), accounting for only a tiny fraction of the transistors in
the CPU. The attacker will obtain a much better price-performance
ratio using dedicated key-search circuits, with most transistors

performing cipher operations at each moment, with only minor
overheads for key selection and comparison.

One might think that a special-purpose circuit dedicated to par-
allel bit operations would catch fire. To see that this is incorrect,
consider Bitcoin-mining ASICs (also mentioned in Appendix F):

• According to [10], the Antminer S17—which uses the same
7nm technology as the EPYC 7742 CPU—carries out 56
terahashes/second at 2520 watts, i.e., 45 · 10−12 joules per
hash. If these hashes are full Bitcoin hashes, double SHA-
256, then each hash is roughly 24 times as expensive as
AES-128 encryption, so a similar AES-128 attack machine
would use roughly 3 · 10−12 joules per AES-128 encryption.
• For comparison, the power consumption of the cluster in

[57] is not reported but presumably is roughly 1000 watts,
so the reported 2.16 · 109 AES-128 encryptions per second
correspond to roughly 500000 · 10−12 joules per AES-128
encryption.

This does not mean that special-purpose hardware is five orders
of magnitude more efficient than mass-market computers for all
computations. In particular, mass-market computers spend much
more hardware (and energy) on RAM.

A large-scale attacker targeting (3488, 2720, 64) with ISD would
also try to build special-purpose hardware for that, but cannot
hope to do better than indicated by the number of bit operations
in a Boolean-circuit model; see Appendix F.5. Furthermore, as the
parameters 𝑝, 𝑝 ′, 𝑝 ′′ grow, the attacker would be faced with increas-
ingly severe communication costs. The curve-fitting procedure in
[57] appears to have considered only experiments within a single
level of the CPU’s memory hierarchy, missing the larger changes
in memory-access costs on the same CPU between L1 cache, L2
cache, L3 cache, and DRAM. See [2].

If [57] had selected Bitcoin-mining ASICs as its baseline then
its final 2144 would have jumped to about 2160. If it had chosen
different boundaries in the memory hierarchy then its curve-fitting
procedure could have produced an even larger jump, depending
on tiny measurement details and on arbitrary choices of scaling
functions. Given the lack of a definition of “bit security”, the “bit-
security estimates” obtained by any of these procedures would not
meet the requirement of falsifiability; the same comment applies to
the estimates in [57].

N.11. The future. This paper provides a framework that enforces
links between a clearly defined general-purpose model of computa-
tion, a clearly defined general-purpose cost metric, clearly defined
attack algorithms, and clearly defined predictions of attack effec-
tiveness. Prediction errors might still occur (see Appendix L), but
they cannot hide behind ambiguities in the meaning of what is
being predicted.

It would be interesting, although challenging, to add a more
realistic circuit-layout model. As noted in Appendix F.6, this would
make more difference for lattice attacks than for ISD. It is in any
case clear that models should not be created ad-hoc for each attack:
these are the foundations of algorithm analysis, and comparability
requires these foundations to be shared.

	Abstract
	1 Introduction
	1.1 The obvious path to high assurance, and why the path fails for cryptanalysis.
	1.2 Formalizing and automating attack simulations
	1.3 The case of ISD
	1.4 Reasons to take ISD as a case study

	2 Choosing a model of computation and a cost metric
	2.1 The selected circuit model and cost metric

	3 Structure of the formalization
	3.1 External interface
	3.2 Comparison to previous ISD analyses
	3.3 The process of adding more attacks
	3.4 Formalizing the problem
	3.5 An example of a problem
	3.6 Formalizing the model of computation

	4 ISD variants
	4.1 Relationship to the literature
	4.2 Notation
	4.3 Attack overview
	4.4 Column-permutation phase
	4.5 Search and post-processing phases
	4.6 Failure to maintain generalized systematic form
	4.7 isd0: 0 levels of collision search
	4.8 isd1: 1 level of collision search
	4.9 isd2: 2 levels of collision search

	5 Circuits for the ISD variants
	5.1 Queues.
	5.2 Hamming-weight computation.
	5.3 Computing Sd(A, v).
	5.4 Random-access memory (RAM) operations
	5.5 Sorting.
	5.6 Computing the sum of specific columns.
	5.7 Computing the size of symmetric difference.
	5.8 Computing reduced row-echelon form
	5.9 Permuting columns
	5.10 Search phase in isd0
	5.11 Search phase in isd1
	5.12 Search phase in isd2

	6 Numerical results
	6.1 Comparing simulations to predictions
	6.2 Predictions for cryptographic sizes

	References
	A The importance of cryptographic security-level assessments
	A.1 The Data Encryption Standard
	A.2 Sabotaging cryptographic selection
	A.3 NTRU-509 vs. Kyber-512
	A.4 The dangers of underestimates
	A.5 The process of attack discovery

	B The tension between proving attack costs and optimizing attacks
	B.1 Why unproven attack speedups should be unsurprising
	B.2 Existence of unprovable speedups
	B.3 Factorization
	B.4 Elliptic-curve discrete logarithms
	B.5 Lattice problems

	C Examples of errors that comprehensive formalization would have prevented
	C.1 A mismatch of models of computation
	C.2 A mismatch of problem parameters
	C.3 The value of post-mortems

	D Breaking security claims for Kyber-512 and AES-128
	D.1 Which definition of ``gates'' is being used?
	D.2 Components of the 2137.4 claim for Kyber-512
	D.3 Exploiting tables to reduce the number of ``gates''
	D.4 The AES-128 baseline
	D.5 Confidence that attacks have been optimized?

	E Definitions of Boolean circuits and cost metrics
	F Validation of the selected model
	F.1 Special-purpose circuits
	F.2 Formalizing main computations after precomputations
	F.3 Formalizing randomized computations
	F.4 Formalizing computations with variable costs
	F.5 Bit-operation counts as lower bounds for real-world costs
	F.6 How close are bit-operation counts to real-world costs?
	F.7 Further validation

	G RAM models
	G.1 Which RAM model?
	G.2 Different roles of models of computation.
	G.3 Are RAM metrics more realistic than circuit metrics?
	G.4 Do RAM metrics prevent hidden precomputation?
	G.5 Do RAM metrics improve optimization quality?

	H Limitations in CAT
	I AES-128 in CAT
	I.1 AES-128 key search.
	I.2 Enumerating AES-128 keys.
	I.3 The analysis.
	I.4 Cost reductions not included in this attack.

	J Accounting for queue losses and window losses
	J.1 Queue analysis
	J.2 Window analysis
	J.3 Windows into queues

	K Accounting for multiple preimages
	K.1 Do multiple preimages matter?
	K.2 Options for addressing the discrepancy
	K.3 The uniform-random-function model
	K.4 Accounting for local injectivity
	K.5 Accounting for excluded information sets

	L Risks of mispredictions
	M Other ISD cost reductions
	M.1 Minor optimizations for computing Sd(A, v)
	M.2 Computing |I J| by merging sorted lists
	M.3 Finding collisions in isd2 by merging sorted lists
	M.4 Sorting elements in SR(0) and R(0) in isd2.

	N Previous analyses of ISD effectiveness
	N.1 1978 McEliece and 1987 Adams–Meijer
	N.2 1988 Lee–Brickell
	N.3 1998 Canteaut–Chabaud
	N.4 2008 Bernstein–Lange–Peters
	N.5 Interlude: Challenges
	N.6 2017 Classic McEliece
	N.7 2019 Baldi–Barenghi–Chiaraluce–Pelosi–Santini
	N.8 2022 Esser–Bellini
	N.9 2022 Esser–Bellini, continued
	N.10 How well do CPU timings predict large-scale attack costs?
	N.11 The future

