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Protecting communications against forgery
DANIEL J. BERNSTEIN

ABSTRACT. This paper is an introduction to cryptography. It covers secret-
key message-authentication codes, unpredictable random functions, public-
key secret-sharing systems, and public-key signature systems.

1. Introduction

Cryptography protects communications against espionage: an eavesdropper
who intercepts a message will be unable to decipher it. This is useful for many
types of information: credit-card transactions, medical records, love letters.

Cryptography also protects communications against sabotage: a forger who
fabricates or modifies a message will be unable to deceive the receiver. This
is useful for all types of information. If the receiver does not care about the
authenticity of a message, why is he listening to the message in the first place?

This paper explains how cryptography prevents forgery. Section 2 explains
how to protect n messages if the sender and receiver share 128(n + 1) secret
bits. Section 3 explains how the sender and receiver can generate many shared
secret bits from a short shared secret. Section 4 explains how the sender and
receiver can generate a short shared secret from a public conversation. Section
5 explains how the sender can protect a message sent to many receivers, without
sharing any secrets.
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536 DANIEL J. BERNSTEIN

2. Unbreakable secret-key authenticators

Here is a protocol for transmitting a message when the sender and receiver
both know certain secrets:

Secrets p, k

��

Secrets p, k

��
Message m // Authenticated

message m, a
// Possibly forged
message m ′, a′

// Verification

The message is a polynomial m ∈ F[x] with m(0) = 0 and deg m ≤ 1000000.
Here F is the field (Z/2)[y]/(y128

+ y9
+ y7

+ y2
+ 1) of size 2128. The secrets

are two independent uniform random elements p, k of F .
The sender transmits (m, a) where a = m(p)+k. The forger replaces (m, a)

with some (m ′, a′); if the forger is inactive then (m ′, a′) = (m, a). The receiver
discards (m ′, a′) unless a′

= m ′(p) + k.
The extra information a is called an authenticator.

Security. I claim that the forger has chance smaller than 2−108 of fooling the
receiver, i.e., of finding (m ′, a′) with m ′

6= m and a′
= m ′(p) + k. The proof is

easy. Fix (m, a) and (m ′, a′), and count pairs (p, k):

• There are exactly 2128 pairs (p, k) satisfying a = m(p) + k. Indeed, there is
exactly one possible k for each possible p.

• Fewer than 220 of these pairs also satisfy a′
= m ′(p) + k, if m ′ is different

from m. Indeed, any qualifying p would have to be a root of the nonzero
polynomial m −m ′

−a +a′; this polynomial has degree at most 1000000, so
it has at most 1000000 < 220 roots.

Thus the conditional probability that a′
= m ′(p) + k, given that a = m(p) + k,

is smaller than 220/2128
= 2−108.

In practice, the receiver will continue listening for messages after discarding
a forgery, so the forger can try again and again. Consider a persistent, wealthy,
long-lived forger who tries nearly 275 forgeries by flooding the receiver with one
billion messages per second for one million years. His chance of success — his
chance of producing at least one (m ′, a′) with a′

= m ′(p) + k and with m ′ not
transmitted by the sender — is still smaller than 2−108275

= 2−33.
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Handling many messages. One can use a single p with many k’s to protect a
series of messages:

Secrets
p, k1, k2, . . .

��

Secrets
p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender and receiver share secrets p, k1, k2, k3, . . . ; as in the single-message
case, (p, k1, k2, k3, . . . ) is a uniform random sequence of elements of F . The
sender transmits the nth message m as (n, m, a) where a = m(p) + kn . The
receiver discards (n′, m ′, a′) unless a′

= m ′(p) + kn′ .
In this context n is called a nonce and a is again called an authenticator.

The random function (n, m) 7→ m(p) + kn is called a message-authentication
code (MAC).

The forger’s chance of success — his chance of producing at least one forgery
(n′, m ′, a′) with a′

= m ′(p)+kn′ and with m ′ different from all of the messages
transmitted by the sender — is smaller than 2−108 D, where D is the number of
forgery attempts. This is true even if the forger sees all the messages transmitted
by the sender. It is true even if the forger can influence the choice of those
messages, perhaps responding dynamically to previous authenticators. In fact,
it is true even if the forger has complete control over each message!

Define an attack as an algorithm that chooses a message m1, sees the sender’s
authenticator m1(p)+k1, chooses a message m2, sees the sender’s authenticator
m2(p)+k2, etc., and finally chooses (n′, m ′, a′). Define the attack as successful
if a′

= m ′(p) + kn′ and m ′ /∈ {m1, m2, . . . }. Then the attack is successful with
probability smaller than 2−108. The proof is, as in the single-message case, a
simple matter of counting.

Of course, if the forger actually has the power to choose a message m1 for
the sender to authenticate, then the forger does not need to modify messages
in transit. Real senders restrict the messages m1, m2, . . . that they authenticate,
and thus restrict the possible set of attacks. But the security guarantee does not
rely on any such restrictions.

History. Gilbert, MacWilliams, and Sloane [1974, Section 9] introduced the
first easy-to-compute unbreakable authenticator, using a long shared secret for a
long message. Wegman and Carter [1981, Section 3] proposed the form h(m)+

kn for an authenticator and pointed out that a short secret could handle a long
message.
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There is now a huge literature on unbreakable MACs. For two surveys see
[Nevelsteen and Preneel 1999] and [Bernstein 2004, Sections 8–10]. For three
state-of-the-art systems see [Black et al. 1999], [Bernstein 2005], and [Bernstein
2007].

3. Conjecturally unpredictable random functions

Here is a protocol that is conjectured to protect a series of messages:

Secret s // p, k1, k2, . . .

��

Secret s // p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender and receiver share a secret uniform random 128-bit string s. The
sender and receiver both compute p = SLASH(0, s), k1 = SLASH(1, s), k2 =

SLASH(2, s), etc. The sender transmits the nth message m as (n, m, a) where
a = m(p) + kn . The receiver discards (n′, m ′, a′) unless a′

= m ′(p) + kn′ .
The function SLASH — see below for the definition — takes 512 bits of input.

Message numbers n are assumed to be at most 2128
− 1; a pair (n, s) is then

encoded as a 512-bit input (n0, n1, . . . , n127, 0, 0, . . . , 0, s0, s1, . . . , s127) where
n = n0 + 2n1 + · · · + 2127n127. SLASH produces 128 bits of output. The result
has no apparent structure aside from its computability.

Note that the sender and receiver can compute SLASH(n, s) when they need
it, rather than storing the long string (p, k1, k2, . . . ).

Security. A forger, given several authenticated messages, might try to solve for
s. Presumably only one choice for s is consistent with all the authenticators.
However, the fastest known method of solving for s is to search through all 2128

possibilities. This is far beyond the computer power available today.
Is there a faster attack? Perhaps. We believe that this protocol is unbreakable,

but we have no proof. (The random string (p, k1, k2, . . . ) is not uniform, so
the proof in Section 2 does not apply.) On the other hand, this protocol has
the advantage of using only 128 shared secret bits to handle any number of
messages.

Unpredictability. Let u be a uniform random function from {0, 1, 2, . . . } to F .
Consider oracle algorithms A that print 0 or 1. What is the difference between

• the probability that A prints 1 using n 7→ SLASH(n, s) as an oracle and
• the probability that A prints 1 using u as an oracle?
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The difference is conjectured to be smaller than 2−40 for every A that finishes
in at most 280 steps. In other words, n 7→ SLASH(n, s) is conjectured to be
unpredictable.

If n 7→ SLASH(n, s) is, in fact, unpredictable, then this multiple-message
short-secret authentication protocol is unbreakable: a fast algorithm that makes
D forgery attempts cannot succeed with probability larger than 2−108 D + 2−40.

The SLASH definition. Say x0, x1, . . . , x15 are 32-bit strings. For i ≥ 16 define
xi = xi−16 + ((xi−1 + δi ) ⊕ (xi−1 <<< 7)). Then SLASH(x0, x1, . . . , x15) is the
256-bit string (x0 ⊕ x520, x1 ⊕ x521, . . . , x7 ⊕ x527). In contexts where only 128
bits are required, the first 128 bits are used.

Notation: (a0, a1, . . . , a31) + (b0, b1, . . . , b31) = (c0, c1, . . . , c31) means that
a0+2a1+· · ·+231a31+b0+2b1+· · ·+231b31 ≡ c0+2c1+· · ·+231c31 (mod 232);
(a0, a1, . . . , a31) ⊕ (b0, b1, . . . , b31) = (c0, c1, . . . , c31) means that ai + bi ≡

ci (mod 2) for each i ; (a0, a1, . . . , a31) <<< 7 = (c0, c1, . . . , c31) means that
c7 = a0, c8 = a1, . . . , c31 = a24, c0 = a25, . . . , c6 = a31; and δi means the string
(c0, c1, . . . , c31) such that c0+2c1+· · ·+231c31 ≡2654435769 bi/16c (mod 232).

History. Turing [1950] introduced the concept of unpredictability: “Suppose
we could be sure of finding [laws of behaviour] if they existed. Then given a
discrete-state machine it should certainly be possible to discover by observation
sufficient about it to predict its future behaviour, and this within a reasonable
time, say a thousand years. But this does not seem to be the case. I have set
up on the Manchester computer a small programme using only 1000 units of
storage, whereby the machine supplied with one sixteen figure number replies
with another within two seconds. I would defy anyone to learn from these replies
sufficient about the programme to be able to predict any replies to untried val-
ues.”

The literature is full of very quickly computable short random functions that
seem difficult to predict. Short means that the random function is determined by
a short uniform random string. See the surveys [Schneier 1996], [Menezes et al.
1996], [Nechvatal et al. 1999], and [Nechvatal et al. 2001] for many examples.
A typical example is more complicated than SLASH but somewhat faster.

Beware that the literature is also full of definitions that distract attention
from unpredictability. For example, a block cipher is a short random inverse
pair of functions ( f, f −1). One hopes that ( f, f −1) is indistinguishable from
a uniform random inverse pair of functions. This indistinguishability implies
unpredictability of f if the input size of f is large enough, say 256 bits; but
the extra constraint of invertibility is unnecessary for applications and excludes
many good designs.
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Blum, Blum, and Shub [1986] constructed a fast short random function with
a small input, and proved that any fast algorithm to predict that function could be
turned into a surprisingly fast algorithm to factor integers. Naor and Reingold
[1997] constructed fast random functions with large inputs and with similar
guarantees of unpredictability. These “provable” functions are never used in
practice, because they are not nearly as fast as state-of-the-art block ciphers; but
they show that unpredictability is not a silly concept.

Unpredictability has an interesting application to complexity theory: one can
use it to convert fast probabilistic algorithms into reasonably fast deterministic
algorithms. This was pointed out by Yao [1982]. It is now widely believed that
the complexity classes BPP and P are identical, i.e., that everything decidable
in polynomial time with the help of randomness is also decidable in polynomial
time deterministically. One exposition of the topic is [Goldreich 1999, Section
3.4].

The name “unpredictable” has several aliases in the literature. See [Bernstein
1999, Section 2] for further discussion.

4. Public-key secret sharing

Here is a protocol for the sender and receiver to generate a 128-bit shared
secret from a public conversation:

Sender’s
secret b

��

##

Receiver’s
secret c

��

{{

Sender’s
public key G(b)

))SSSSSSSSSSSSSS

Receiver’s
public key G(c)

uukkkkkkkkkkkkkk

Shared secret s =

SLASH(−1, G(b), G(bc))
Shared secret s =

SLASH(−1, G(b), G(bc))

The sender starts from a secret uniform random b ∈ 16Z with 0 < b ≤ 2225. The
sender computes and announces a public key G(b), namely the x-coordinate
of the bth multiples of the points (53(2224

− 1)/(28
− 1), ± . . . ) on the elliptic

curve y2
= x3

+ 7530x2
+ x over the field Z/(2226

− 5). It is not difficult to
compute G(b) from b; see, e.g., [Blake et al. 2000], [Hankerson et al. 2004],
[Doche and Lange 2005], and the chapter [Poonen 2008] in this volume.

Similarly, the receiver starts from a secret uniform random c ∈ 16Z with
0 < c ≤ 2225. The receiver computes and announces a public key G(c).
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The sender and receiver are assumed to receive correct copies of G(b) and
G(c) from each other. Subsequent messages are protected against forgery, but
the public keys themselves must be protected by something outside this protocol.

The sender now computes G(bc); it is not difficult to compute G(bc) from b
and G(c), both of which are known to the sender. The receiver computes G(bc)
from c and G(b) in the same way. Finally, the sender and receiver both compute
s = SLASH(−1, G(b), G(bc)). Here (−1, G(b), G(bc)) is encoded as the 512-
bit string (g0, g1, . . . , g225, 1, 1, 1, . . . , 1, h0, h1, . . . , h225) where G(b) = g0 +

2g1 + · · · + 2225g225 and G(bc) = h0 + 2h1 + · · · + 2225h225.
As in Section 3, the sender and receiver can use this shared secret s to protect

the authenticity of a series of messages:

Sender’s
secret b

��

##

Receiver’s
secret c

��

{{

Sender’s
public key G(b)

++WWWWWWWWWWWWWWWWWWWWWWW

Receiver’s
public key G(c)

ssggggggggggggggggggggggg

Shared secret s =

SLASH(−1, G(b), G(bc))

  @
@@

@@
@@

Shared secret s =

SLASH(−1, G(b), G(bc))

��7
77

77
77

p, k1, k2, . . .

��

p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender can also reuse his secret b with other receivers: given the public
key G(d) of another receiver, the sender computes the corresponding shared
secret SLASH(−1, G(b), G(bd)) and continues exactly as above. Furthermore,
the sender and receiver can reverse roles, using SLASH(−1, G(c), G(bc)) and
SLASH(−1, G(d), G(bd)) for messages sent in the opposite direction.

Security. The complete definition of security here is more complicated than
it was in Sections 2 and 3, because the forger has more power. In particular,
the forger is given the public keys. The forger can also feed a number G(c) to
the sender (without necessarily knowing what c is) and receive authenticators
computed using SLASH(−1, G(b), G(bc)).
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The fastest known attack is to start from the public key G(b), perform about
2112 elliptic-curve operations, and deduce the secret b, after which the forger
can compute s = SLASH(−1, G(b), G(bc)) in the same way as the sender. As
in Section 3, this is beyond the computer power available today, but there may
be faster attacks.

This attack does not depend on the details of SLASH. To formalize this
notion, consider a generic protocol in which the sender and receiver use an
oracle for any 128-bit function in place of SLASH; then there is a generic attack
in which the forger, having access to the same oracle, succeeds in forgeries after
about 2112 elliptic-curve operations.

A generic attack that succeeds for all 128-bit functions can be converted into
an algorithm at comparable speed that, given G(b) and G(c), computes G(bc).
A generic attack that succeeds with probability p on average over all 128-bit
functions can be converted into an algorithm at comparable speed that, given
G(b) and G(c), computes G(bc) with probability comparable to p. The idea of
the proof is that if the algorithm never feeds G(bc) to the oracle then it has no
information about the shared secret. Of course, the value of this proof is limited,
for two reasons: first, there might be faster non-generic attacks that exploit the
structure of SLASH; second, we have no proof that computing G(bc) from G(b)

and G(c) is difficult.

History. Diffie and Hellman [1976] introduced the general idea of sharing a
secret through a public channel. They also introduced the specific approach
of exchanging public keys 2b mod ` and 2c mod ` to share a secret 2bc mod `;
here ` is a fixed prime. The problem of computing 2bc mod ` from (2b mod `,

2c mod `) is called the Diffie–Hellman problem.
There are surprisingly fast techniques to compute b from 2b mod `. See

[Schirokauer 2008] in this volume. Consequently one must choose a rather
large prime ` in the Diffie–Hellman system.

Miller [1986], and independently Koblitz [1987], suggested replacing the unit
group (Z/`)∗ with an elliptic curve over Z/`. No surprisingly fast techniques
are known for the “elliptic-curve Diffie–Hellman problem” for most curves with
near-prime order, so we believe that a relatively small value of `, such as ` =

2226
−5, is safe. My elliptic curve y2

= x3
+7530x2

+x over the field Z/(2226
−5)

has order (2226
−5)+1−12000403261375786655687951397247436, which is

16 times a prime. See [Bernstein 2006] for discussion of a similar curve.
Elliptic-curve computations involve more effort than unit-group operations,

but this increase is outweighed by the reduction in the size of `, so the Miller–
Koblitz elliptic-curve variant is faster than the original Diffie–Hellman system.
It also has shorter keys. The variant is becoming increasingly popular.
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Fiat and Shamir [1987] proved that a generic attack on one protocol could
be converted into an algorithm to solve an easy-to-state mathematical problem.
Bellare and Rogaway [1993] expanded the idea to more protocols. Many such
proofs have now been published. For an exposition see [Koblitz and Menezes
2007].

5. Public-key signatures

Here is a protocol — with no shared secrets — for the sender to protect many
messages sent to many receivers:

Sender’s
secret
p, q, z

��

//
Sender’s

public key
pq

��
Message m //

Signed
message

m, e, f, h, r, s, t

//
Possibly forged

message
m ′, e′, f ′, h′, r ′, s ′, t ′

// Verification

The sender starts from a secret uniform random 256-bit string z, and secret
uniform random primes p, q in the interval [2768, 2768

+2766] with p mod 8 = 3
and q mod 8 = 7; primality can be tested quickly, as explained in [Schoof 2008]
in this volume. The sender computes and announces the product pq, which is
assumed to be transmitted correctly to all receivers. Subsequent messages are
protected against forgery as follows.

Given a message m, the sender computes

• r = SLASH(−2, z, m) mod 16;
• h = H(r, m) where H(r, m) = SLASH(−12, r, m)+2128 SLASH(−13, r, m)

+ · · · + 21408 SLASH(−23, r, m) + 1;
• u = h(q+1)/4 mod q;
• e = 1 if u2

≡ h (mod q), else e = −1;
• v = (eh)(p+1)/4 mod p;
• f = 1 if v2

≡ eh (mod p), else f = 2;
• w = f (3q−5)/4u mod q;
• x = f (3p−5)/4v mod p;
• y = w + q(q p−2(x − w) mod p);
• s = min{y, pq − y}; and
• t = ( f s2

− eh)/pq.

The sender then transmits (m, e, f, h, r, s, t).
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At this point (e, f, h, r, s, t) is a signature of m under the public key pq.
This means, by definition, that e ∈ {1, −1}; f ∈ {1, 2}; r ∈ {0, 1, . . . , 15}; s and
t are in

{
0, 1, . . . , 21536

− 1
}
; h = H(r, m); and f s2

= tpq + eh.
The receiver discards (m ′, e′, f ′, h′, r ′, s ′, t ′) if (e′, f ′, h′, r ′, s ′, t ′) is not a

signature of m ′. The receiver can save time here by checking the equation
f ′(s ′)2

= t ′ pq + e′h′ modulo a secret 128-bit prime.
Observe that signatures are different from authenticators: a signature can be

verified by anyone, while an authenticator can be verified only by people who
could have created the authenticator. The receiver can convince third parties
that the sender signed a message; the receiver cannot convince third parties
that the sender authenticated a message. Signatures are appropriate for public
communications; authenticators are appropriate for private communications.

Security. Like the protocols in Sections 3 and 4, this protocol appears to make
forgeries difficult, even if the forger can inspect signatures on messages under
his control. There are surprisingly fast techniques to factor pq into p, q — see
[Pomerance 2008] and [Stevenhagen 2008] in this volume — but for large pq
these computations are beyond the computer power available today.

One can prove that any generic attack against this protocol can be converted
into an algorithm at comparable speed to factor pq with comparable success
probability. However, as in Section 4, the value of this proof is limited: there
might be faster non-generic attacks, and we have no proof that factorization is
difficult.

Message length. The above description of signatures presumes that (−2, z, m)

and (−12, r, m) and so on are encoded as 512-bit strings to be fed to SLASH.
Thus messages m must be very short.

One can handle longer messages by modifying SLASH to allow larger inputs.
One can, for example, define SLASH(x0, x1, x2, x3), where each xi is a 256-bit
string, as SLASH(SLASH(SLASH(SLASH(0, 0, x0), 1, x1), 2, x2), 3, x3).

History. The concept of public-key signatures was introduced by Diffie and
Hellman [1976]. Rivest, Shamir, and Adleman [1978] are often credited with
the first useful example; but the original RSA system is obviously breakable.

(In the original RSA system, s is a signature of m under a public key (n, e)
if se

≡ m (mod n). First obvious attack: the forger immediately computes the
message 2e mod n with signature 2. Second obvious attack: starting from m,
the forger obtains from the sender a signature on the message 2em mod n, and
then divides the result by 2 modulo n.)

Rabin [1979] introduced the first useful signature system. Rabin’s signature
system, with various improvements by Williams [1980], Barwood, Wigley, and
me, is the system described in this section. Recent results of Bleichenbacher,
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Coppersmith, and Gentry show that signatures and public keys in this system
can be compressed to a surprising extent. See [Bernstein 2008] for a survey and
comparison of Rabin-type systems.

There are many “cryptographic hash functions” that can be used in place of
H ; see, e.g., the survey [Menezes et al. 1996, Sections 9.3–9.4]. On the other
hand, some hash functions have been broken; for example, Wang et al. [2004]
found collisions in the widely used “MD5” function. I offer $1000 to the first
person to publish a SLASH input whose output is 128 all-zero bits, or two
different 512-bit SLASH inputs with the same 256-bit output.

There are other signature systems. One interesting example is the ElGamal
system [1985b], which uses Diffie–Hellman public keys. Keys and signatures in
elliptic-curve variants of ElGamal’s system are smaller than keys and signatures
in Rabin-type systems; on the other hand, signature verification is slower. Rabin-
type systems and ElGamal-type systems are both widely used.
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