
Algorithmic Number Theory
MSRI Publications
Volume 44, 2008

Protecting communications against forgery
DANIEL J. BERNSTEIN

ABSTRACT. This paper is an introduction to cryptography. It covers secret-
key message-authentication codes, unpredictable random functions, public-
key secret-sharing systems, and public-key signature systems.

1. Introduction

Cryptography protects communications against espionage: an eavesdropper
who intercepts a message will be unable to decipher it. This is useful for many
types of information: credit-card transactions, medical records, love letters.

Cryptography also protects communications against sabotage: a forger who
fabricates or modifies a message will be unable to deceive the receiver. This
is useful for all types of information. If the receiver does not care about the
authenticity of a message, why is he listening to the message in the first place?

This paper explains how cryptography prevents forgery. Section 2 explains
how to protect n messages if the sender and receiver share 128(n + 1) secret
bits. Section 3 explains how the sender and receiver can generate many shared
secret bits from a short shared secret. Section 4 explains how the sender and
receiver can generate a short shared secret from a public conversation. Section
5 explains how the sender can protect a message sent to many receivers, without
sharing any secrets.

Mathematics Subject Classification: 94A62.

Permanent ID of this document: 9774ae5a1749a7b256cc923a7ef9d4dc. Date: 2008.05.01.

535

536 DANIEL J. BERNSTEIN

2. Unbreakable secret-key authenticators

Here is a protocol for transmitting a message when the sender and receiver
both know certain secrets:

Secrets p, k

��

Secrets p, k

��
Message m // Authenticated

message m, a
// Possibly forged
message m ′, a′

// Verification

The message is a polynomial m ∈ F[x] with m(0) = 0 and deg m ≤ 1000000.
Here F is the field (Z/2)[y]/(y128

+ y9
+ y7

+ y2
+ 1) of size 2128. The secrets

are two independent uniform random elements p, k of F .
The sender transmits (m, a) where a = m(p)+k. The forger replaces (m, a)

with some (m ′, a′); if the forger is inactive then (m ′, a′) = (m, a). The receiver
discards (m ′, a′) unless a′

= m ′(p) + k.
The extra information a is called an authenticator.

Security. I claim that the forger has chance smaller than 2−108 of fooling the
receiver, i.e., of finding (m ′, a′) with m ′

6= m and a′
= m ′(p) + k. The proof is

easy. Fix (m, a) and (m ′, a′), and count pairs (p, k):

• There are exactly 2128 pairs (p, k) satisfying a = m(p) + k. Indeed, there is
exactly one possible k for each possible p.

• Fewer than 220 of these pairs also satisfy a′
= m ′(p) + k, if m ′ is different

from m. Indeed, any qualifying p would have to be a root of the nonzero
polynomial m −m ′

−a +a′; this polynomial has degree at most 1000000, so
it has at most 1000000 < 220 roots.

Thus the conditional probability that a′
= m ′(p) + k, given that a = m(p) + k,

is smaller than 220/2128
= 2−108.

In practice, the receiver will continue listening for messages after discarding
a forgery, so the forger can try again and again. Consider a persistent, wealthy,
long-lived forger who tries nearly 275 forgeries by flooding the receiver with one
billion messages per second for one million years. His chance of success — his
chance of producing at least one (m ′, a′) with a′

= m ′(p) + k and with m ′ not
transmitted by the sender — is still smaller than 2−108275

= 2−33.

PROTECTING COMMUNICATIONS AGAINST FORGERY 537

Handling many messages. One can use a single p with many k’s to protect a
series of messages:

Secrets
p, k1, k2, . . .

��

Secrets
p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender and receiver share secrets p, k1, k2, k3, . . . ; as in the single-message
case, (p, k1, k2, k3, . . .) is a uniform random sequence of elements of F . The
sender transmits the nth message m as (n, m, a) where a = m(p) + kn . The
receiver discards (n′, m ′, a′) unless a′

= m ′(p) + kn′ .
In this context n is called a nonce and a is again called an authenticator.

The random function (n, m) 7→ m(p) + kn is called a message-authentication
code (MAC).

The forger’s chance of success — his chance of producing at least one forgery
(n′, m ′, a′) with a′

= m ′(p)+kn′ and with m ′ different from all of the messages
transmitted by the sender — is smaller than 2−108 D, where D is the number of
forgery attempts. This is true even if the forger sees all the messages transmitted
by the sender. It is true even if the forger can influence the choice of those
messages, perhaps responding dynamically to previous authenticators. In fact,
it is true even if the forger has complete control over each message!

Define an attack as an algorithm that chooses a message m1, sees the sender’s
authenticator m1(p)+k1, chooses a message m2, sees the sender’s authenticator
m2(p)+k2, etc., and finally chooses (n′, m ′, a′). Define the attack as successful
if a′

= m ′(p) + kn′ and m ′ /∈ {m1, m2, . . . }. Then the attack is successful with
probability smaller than 2−108. The proof is, as in the single-message case, a
simple matter of counting.

Of course, if the forger actually has the power to choose a message m1 for
the sender to authenticate, then the forger does not need to modify messages
in transit. Real senders restrict the messages m1, m2, . . . that they authenticate,
and thus restrict the possible set of attacks. But the security guarantee does not
rely on any such restrictions.

History. Gilbert, MacWilliams, and Sloane [1974, Section 9] introduced the
first easy-to-compute unbreakable authenticator, using a long shared secret for a
long message. Wegman and Carter [1981, Section 3] proposed the form h(m)+

kn for an authenticator and pointed out that a short secret could handle a long
message.

538 DANIEL J. BERNSTEIN

There is now a huge literature on unbreakable MACs. For two surveys see
[Nevelsteen and Preneel 1999] and [Bernstein 2004, Sections 8–10]. For three
state-of-the-art systems see [Black et al. 1999], [Bernstein 2005], and [Bernstein
2007].

3. Conjecturally unpredictable random functions

Here is a protocol that is conjectured to protect a series of messages:

Secret s // p, k1, k2, . . .

��

Secret s // p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender and receiver share a secret uniform random 128-bit string s. The
sender and receiver both compute p = SLASH(0, s), k1 = SLASH(1, s), k2 =

SLASH(2, s), etc. The sender transmits the nth message m as (n, m, a) where
a = m(p) + kn . The receiver discards (n′, m ′, a′) unless a′

= m ′(p) + kn′ .
The function SLASH — see below for the definition — takes 512 bits of input.

Message numbers n are assumed to be at most 2128
− 1; a pair (n, s) is then

encoded as a 512-bit input (n0, n1, . . . , n127, 0, 0, . . . , 0, s0, s1, . . . , s127) where
n = n0 + 2n1 + · · · + 2127n127. SLASH produces 128 bits of output. The result
has no apparent structure aside from its computability.

Note that the sender and receiver can compute SLASH(n, s) when they need
it, rather than storing the long string (p, k1, k2, . . .).

Security. A forger, given several authenticated messages, might try to solve for
s. Presumably only one choice for s is consistent with all the authenticators.
However, the fastest known method of solving for s is to search through all 2128

possibilities. This is far beyond the computer power available today.
Is there a faster attack? Perhaps. We believe that this protocol is unbreakable,

but we have no proof. (The random string (p, k1, k2, . . .) is not uniform, so
the proof in Section 2 does not apply.) On the other hand, this protocol has
the advantage of using only 128 shared secret bits to handle any number of
messages.

Unpredictability. Let u be a uniform random function from {0, 1, 2, . . . } to F .
Consider oracle algorithms A that print 0 or 1. What is the difference between

• the probability that A prints 1 using n 7→ SLASH(n, s) as an oracle and
• the probability that A prints 1 using u as an oracle?

PROTECTING COMMUNICATIONS AGAINST FORGERY 539

The difference is conjectured to be smaller than 2−40 for every A that finishes
in at most 280 steps. In other words, n 7→ SLASH(n, s) is conjectured to be
unpredictable.

If n 7→ SLASH(n, s) is, in fact, unpredictable, then this multiple-message
short-secret authentication protocol is unbreakable: a fast algorithm that makes
D forgery attempts cannot succeed with probability larger than 2−108 D + 2−40.

The SLASH definition. Say x0, x1, . . . , x15 are 32-bit strings. For i ≥ 16 define
xi = xi−16 + ((xi−1 + δi) ⊕ (xi−1 <<< 7)). Then SLASH(x0, x1, . . . , x15) is the
256-bit string (x0 ⊕ x520, x1 ⊕ x521, . . . , x7 ⊕ x527). In contexts where only 128
bits are required, the first 128 bits are used.

Notation: (a0, a1, . . . , a31) + (b0, b1, . . . , b31) = (c0, c1, . . . , c31) means that
a0+2a1+· · ·+231a31+b0+2b1+· · ·+231b31 ≡ c0+2c1+· · ·+231c31 (mod 232);
(a0, a1, . . . , a31) ⊕ (b0, b1, . . . , b31) = (c0, c1, . . . , c31) means that ai + bi ≡

ci (mod 2) for each i ; (a0, a1, . . . , a31) <<< 7 = (c0, c1, . . . , c31) means that
c7 = a0, c8 = a1, . . . , c31 = a24, c0 = a25, . . . , c6 = a31; and δi means the string
(c0, c1, . . . , c31) such that c0+2c1+· · ·+231c31 ≡2654435769 bi/16c (mod 232).

History. Turing [1950] introduced the concept of unpredictability: “Suppose
we could be sure of finding [laws of behaviour] if they existed. Then given a
discrete-state machine it should certainly be possible to discover by observation
sufficient about it to predict its future behaviour, and this within a reasonable
time, say a thousand years. But this does not seem to be the case. I have set
up on the Manchester computer a small programme using only 1000 units of
storage, whereby the machine supplied with one sixteen figure number replies
with another within two seconds. I would defy anyone to learn from these replies
sufficient about the programme to be able to predict any replies to untried val-
ues.”

The literature is full of very quickly computable short random functions that
seem difficult to predict. Short means that the random function is determined by
a short uniform random string. See the surveys [Schneier 1996], [Menezes et al.
1996], [Nechvatal et al. 1999], and [Nechvatal et al. 2001] for many examples.
A typical example is more complicated than SLASH but somewhat faster.

Beware that the literature is also full of definitions that distract attention
from unpredictability. For example, a block cipher is a short random inverse
pair of functions (f, f −1). One hopes that (f, f −1) is indistinguishable from
a uniform random inverse pair of functions. This indistinguishability implies
unpredictability of f if the input size of f is large enough, say 256 bits; but
the extra constraint of invertibility is unnecessary for applications and excludes
many good designs.

540 DANIEL J. BERNSTEIN

Blum, Blum, and Shub [1986] constructed a fast short random function with
a small input, and proved that any fast algorithm to predict that function could be
turned into a surprisingly fast algorithm to factor integers. Naor and Reingold
[1997] constructed fast random functions with large inputs and with similar
guarantees of unpredictability. These “provable” functions are never used in
practice, because they are not nearly as fast as state-of-the-art block ciphers; but
they show that unpredictability is not a silly concept.

Unpredictability has an interesting application to complexity theory: one can
use it to convert fast probabilistic algorithms into reasonably fast deterministic
algorithms. This was pointed out by Yao [1982]. It is now widely believed that
the complexity classes BPP and P are identical, i.e., that everything decidable
in polynomial time with the help of randomness is also decidable in polynomial
time deterministically. One exposition of the topic is [Goldreich 1999, Section
3.4].

The name “unpredictable” has several aliases in the literature. See [Bernstein
1999, Section 2] for further discussion.

4. Public-key secret sharing

Here is a protocol for the sender and receiver to generate a 128-bit shared
secret from a public conversation:

Sender’s
secret b

��

##

Receiver’s
secret c

��

{{

Sender’s
public key G(b)

))SSSSSSSSSSSSSS

Receiver’s
public key G(c)

uukkkkkkkkkkkkkk

Shared secret s =

SLASH(−1, G(b), G(bc))
Shared secret s =

SLASH(−1, G(b), G(bc))

The sender starts from a secret uniform random b ∈ 16Z with 0 < b ≤ 2225. The
sender computes and announces a public key G(b), namely the x-coordinate
of the bth multiples of the points (53(2224

− 1)/(28
− 1), ± . . .) on the elliptic

curve y2
= x3

+ 7530x2
+ x over the field Z/(2226

− 5). It is not difficult to
compute G(b) from b; see, e.g., [Blake et al. 2000], [Hankerson et al. 2004],
[Doche and Lange 2005], and the chapter [Poonen 2008] in this volume.

Similarly, the receiver starts from a secret uniform random c ∈ 16Z with
0 < c ≤ 2225. The receiver computes and announces a public key G(c).

PROTECTING COMMUNICATIONS AGAINST FORGERY 541

The sender and receiver are assumed to receive correct copies of G(b) and
G(c) from each other. Subsequent messages are protected against forgery, but
the public keys themselves must be protected by something outside this protocol.

The sender now computes G(bc); it is not difficult to compute G(bc) from b
and G(c), both of which are known to the sender. The receiver computes G(bc)
from c and G(b) in the same way. Finally, the sender and receiver both compute
s = SLASH(−1, G(b), G(bc)). Here (−1, G(b), G(bc)) is encoded as the 512-
bit string (g0, g1, . . . , g225, 1, 1, 1, . . . , 1, h0, h1, . . . , h225) where G(b) = g0 +

2g1 + · · · + 2225g225 and G(bc) = h0 + 2h1 + · · · + 2225h225.
As in Section 3, the sender and receiver can use this shared secret s to protect

the authenticity of a series of messages:

Sender’s
secret b

��

##

Receiver’s
secret c

��

{{

Sender’s
public key G(b)

++WWWWWWWWWWWWWWWWWWWWWWW

Receiver’s
public key G(c)

ssggggggggggggggggggggggg

Shared secret s =

SLASH(−1, G(b), G(bc))

 @
@@

@@
@@

Shared secret s =

SLASH(−1, G(b), G(bc))

��7
77

77
77

p, k1, k2, . . .

��

p, k1, k2, . . .

��Message m,
number n

// Authenticated
message n, m, a

// Possibly forged
message n′, m ′, a′

// Verification

The sender can also reuse his secret b with other receivers: given the public
key G(d) of another receiver, the sender computes the corresponding shared
secret SLASH(−1, G(b), G(bd)) and continues exactly as above. Furthermore,
the sender and receiver can reverse roles, using SLASH(−1, G(c), G(bc)) and
SLASH(−1, G(d), G(bd)) for messages sent in the opposite direction.

Security. The complete definition of security here is more complicated than
it was in Sections 2 and 3, because the forger has more power. In particular,
the forger is given the public keys. The forger can also feed a number G(c) to
the sender (without necessarily knowing what c is) and receive authenticators
computed using SLASH(−1, G(b), G(bc)).

542 DANIEL J. BERNSTEIN

The fastest known attack is to start from the public key G(b), perform about
2112 elliptic-curve operations, and deduce the secret b, after which the forger
can compute s = SLASH(−1, G(b), G(bc)) in the same way as the sender. As
in Section 3, this is beyond the computer power available today, but there may
be faster attacks.

This attack does not depend on the details of SLASH. To formalize this
notion, consider a generic protocol in which the sender and receiver use an
oracle for any 128-bit function in place of SLASH; then there is a generic attack
in which the forger, having access to the same oracle, succeeds in forgeries after
about 2112 elliptic-curve operations.

A generic attack that succeeds for all 128-bit functions can be converted into
an algorithm at comparable speed that, given G(b) and G(c), computes G(bc).
A generic attack that succeeds with probability p on average over all 128-bit
functions can be converted into an algorithm at comparable speed that, given
G(b) and G(c), computes G(bc) with probability comparable to p. The idea of
the proof is that if the algorithm never feeds G(bc) to the oracle then it has no
information about the shared secret. Of course, the value of this proof is limited,
for two reasons: first, there might be faster non-generic attacks that exploit the
structure of SLASH; second, we have no proof that computing G(bc) from G(b)

and G(c) is difficult.

History. Diffie and Hellman [1976] introduced the general idea of sharing a
secret through a public channel. They also introduced the specific approach
of exchanging public keys 2b mod ` and 2c mod ` to share a secret 2bc mod `;
here ` is a fixed prime. The problem of computing 2bc mod ` from (2b mod `,

2c mod `) is called the Diffie–Hellman problem.
There are surprisingly fast techniques to compute b from 2b mod `. See

[Schirokauer 2008] in this volume. Consequently one must choose a rather
large prime ` in the Diffie–Hellman system.

Miller [1986], and independently Koblitz [1987], suggested replacing the unit
group (Z/`)∗ with an elliptic curve over Z/`. No surprisingly fast techniques
are known for the “elliptic-curve Diffie–Hellman problem” for most curves with
near-prime order, so we believe that a relatively small value of `, such as ` =

2226
−5, is safe. My elliptic curve y2

= x3
+7530x2

+x over the field Z/(2226
−5)

has order (2226
−5)+1−12000403261375786655687951397247436, which is

16 times a prime. See [Bernstein 2006] for discussion of a similar curve.
Elliptic-curve computations involve more effort than unit-group operations,

but this increase is outweighed by the reduction in the size of `, so the Miller–
Koblitz elliptic-curve variant is faster than the original Diffie–Hellman system.
It also has shorter keys. The variant is becoming increasingly popular.

PROTECTING COMMUNICATIONS AGAINST FORGERY 543

Fiat and Shamir [1987] proved that a generic attack on one protocol could
be converted into an algorithm to solve an easy-to-state mathematical problem.
Bellare and Rogaway [1993] expanded the idea to more protocols. Many such
proofs have now been published. For an exposition see [Koblitz and Menezes
2007].

5. Public-key signatures

Here is a protocol — with no shared secrets — for the sender to protect many
messages sent to many receivers:

Sender’s
secret
p, q, z

��

//
Sender’s

public key
pq

��
Message m //

Signed
message

m, e, f, h, r, s, t

//
Possibly forged

message
m ′, e′, f ′, h′, r ′, s ′, t ′

// Verification

The sender starts from a secret uniform random 256-bit string z, and secret
uniform random primes p, q in the interval [2768, 2768

+2766] with p mod 8 = 3
and q mod 8 = 7; primality can be tested quickly, as explained in [Schoof 2008]
in this volume. The sender computes and announces the product pq, which is
assumed to be transmitted correctly to all receivers. Subsequent messages are
protected against forgery as follows.

Given a message m, the sender computes

• r = SLASH(−2, z, m) mod 16;
• h = H(r, m) where H(r, m) = SLASH(−12, r, m)+2128 SLASH(−13, r, m)

+ · · · + 21408 SLASH(−23, r, m) + 1;
• u = h(q+1)/4 mod q;
• e = 1 if u2

≡ h (mod q), else e = −1;
• v = (eh)(p+1)/4 mod p;
• f = 1 if v2

≡ eh (mod p), else f = 2;
• w = f (3q−5)/4u mod q;
• x = f (3p−5)/4v mod p;
• y = w + q(q p−2(x − w) mod p);
• s = min{y, pq − y}; and
• t = (f s2

− eh)/pq.

The sender then transmits (m, e, f, h, r, s, t).

544 DANIEL J. BERNSTEIN

At this point (e, f, h, r, s, t) is a signature of m under the public key pq.
This means, by definition, that e ∈ {1, −1}; f ∈ {1, 2}; r ∈ {0, 1, . . . , 15}; s and
t are in

{
0, 1, . . . , 21536

− 1
}
; h = H(r, m); and f s2

= tpq + eh.
The receiver discards (m ′, e′, f ′, h′, r ′, s ′, t ′) if (e′, f ′, h′, r ′, s ′, t ′) is not a

signature of m ′. The receiver can save time here by checking the equation
f ′(s ′)2

= t ′ pq + e′h′ modulo a secret 128-bit prime.
Observe that signatures are different from authenticators: a signature can be

verified by anyone, while an authenticator can be verified only by people who
could have created the authenticator. The receiver can convince third parties
that the sender signed a message; the receiver cannot convince third parties
that the sender authenticated a message. Signatures are appropriate for public
communications; authenticators are appropriate for private communications.

Security. Like the protocols in Sections 3 and 4, this protocol appears to make
forgeries difficult, even if the forger can inspect signatures on messages under
his control. There are surprisingly fast techniques to factor pq into p, q — see
[Pomerance 2008] and [Stevenhagen 2008] in this volume — but for large pq
these computations are beyond the computer power available today.

One can prove that any generic attack against this protocol can be converted
into an algorithm at comparable speed to factor pq with comparable success
probability. However, as in Section 4, the value of this proof is limited: there
might be faster non-generic attacks, and we have no proof that factorization is
difficult.

Message length. The above description of signatures presumes that (−2, z, m)

and (−12, r, m) and so on are encoded as 512-bit strings to be fed to SLASH.
Thus messages m must be very short.

One can handle longer messages by modifying SLASH to allow larger inputs.
One can, for example, define SLASH(x0, x1, x2, x3), where each xi is a 256-bit
string, as SLASH(SLASH(SLASH(SLASH(0, 0, x0), 1, x1), 2, x2), 3, x3).

History. The concept of public-key signatures was introduced by Diffie and
Hellman [1976]. Rivest, Shamir, and Adleman [1978] are often credited with
the first useful example; but the original RSA system is obviously breakable.

(In the original RSA system, s is a signature of m under a public key (n, e)
if se

≡ m (mod n). First obvious attack: the forger immediately computes the
message 2e mod n with signature 2. Second obvious attack: starting from m,
the forger obtains from the sender a signature on the message 2em mod n, and
then divides the result by 2 modulo n.)

Rabin [1979] introduced the first useful signature system. Rabin’s signature
system, with various improvements by Williams [1980], Barwood, Wigley, and
me, is the system described in this section. Recent results of Bleichenbacher,

PROTECTING COMMUNICATIONS AGAINST FORGERY 545

Coppersmith, and Gentry show that signatures and public keys in this system
can be compressed to a surprising extent. See [Bernstein 2008] for a survey and
comparison of Rabin-type systems.

There are many “cryptographic hash functions” that can be used in place of
H ; see, e.g., the survey [Menezes et al. 1996, Sections 9.3–9.4]. On the other
hand, some hash functions have been broken; for example, Wang et al. [2004]
found collisions in the widely used “MD5” function. I offer $1000 to the first
person to publish a SLASH input whose output is 128 all-zero bits, or two
different 512-bit SLASH inputs with the same 256-bit output.

There are other signature systems. One interesting example is the ElGamal
system [1985b], which uses Diffie–Hellman public keys. Keys and signatures in
elliptic-curve variants of ElGamal’s system are smaller than keys and signatures
in Rabin-type systems; on the other hand, signature verification is slower. Rabin-
type systems and ElGamal-type systems are both widely used.

References

[Ashby 1993] Victoria Ashby (editor), First ACM conference on computer and commu-
nications security, Association for Computing Machinery, New York. See [Bellare
and Rogaway 1993].

[Bellare and Rogaway 1993] Mihir Bellare and Phillip Rogaway, “Random oracles are
practical: a paradigm for designing efficient protocols”, pp. 62–73 in [Ashby 1993].
Citations in this document: §4.

[Bernstein 1999] Daniel J. Bernstein, “How to stretch random functions: the security
of protected counter sums”, Journal of Cryptology 12, 185–192. ISSN 0933–2790.
URL: http://cr.yp.to/papers.html#stretch. Citations in this document: §3.

[Bernstein 2004] Daniel J. Bernstein, “Floating-point arithmetic and message
authentication”. URL: http://cr.yp.to/papers.html#hash127. ID dabadd3095644704
c5cbe9690ea3738e. Citations in this document: §2.

[Bernstein 2005] Daniel J. Bernstein, “The Poly1305-AES message-authentication
code”, pp. 32–49 in [Gilbert and Handschuh 2005]. URL: http://cr.yp.to/
papers.html#poly1305. ID 0018d9551b5546d97c340e0dd8cb5750. Citations in this
document: §2.

[Bernstein 2006] Daniel J. Bernstein, “Curve25519: new Diffie-Hellman speed
records”, pp. 207–228 in [Yung et al. 2006]. URL: http://cr.yp.to/papers.
html#curve25519. ID 4230efdfa673480fc079449d90f322c0. Citations in this
document: §4.

[Bernstein 2007] Daniel J. Bernstein, “Polynomial evaluation and message
authentication”. URL: http://cr.yp.to/papers.html#pema. ID b1ef3f2d385a926123e
1517392e20f8c. Citations in this document: §2.

546 DANIEL J. BERNSTEIN

[Bernstein 2008] Daniel J. Bernstein, “RSA signatures and Rabin–Williams signatures:
the state of the art”. URL: http://cr.yp.to/papers.html#rwsota. ID 5e92b45abdf8abc4
e55ea02607400599. Citations in this document: §5.

[Black et al. 1999] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and
Phillip Rogaway, “UMAC: fast and secure message authentication”, pp. 216–233 in
[Wiener 1999]. URL: http://www.cs.ucdavis.edu/˜rogaway/umac/. Citations in this
document: §2.

[Blake et al. 2000] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, Elliptic curves in
cryptography, Cambridge University Press, Cambridge. ISBN 0–521–65374–6. MR
1 771 549. Citations in this document: §4.

[Blakley and Chaum 1985] G. R. Blakley and David Chaum (editors), Advances in
cryptology: CRYPTO ’84, Lecture Notes in Computer Science 196, Springer-Verlag,
Berlin. ISBN 3–540–15658–5. MR 86j:94003. See [ElGamal 1985a].

[Blum et al. 1986] Lenore Blum, Manuel Blum, and Michael Shub, “A simple
unpredictable pseudo-random number generator”, SIAM Journal on Computing
15, 364–383. ISSN 0097–5397. MR 87k:65007. URL: http://cr.yp.to/bib/entries.
html#1986/blum. Citations in this document: §3.

[Buhler and Stevenhagen 2008] Joe P. Buhler and Peter Stevenhagen (editors), Sur-
veys in algorithmic number theory, Mathematical Sciences Research Institute
Publications 44, Cambridge University Press, New York; this book. See [Pomerance
2008], [Poonen 2008], [Schirokauer 2008], [Schoof 2008], [Stevenhagen 2008].

[Cohen and Frey 2005] Henri Cohen and Gerhard Frey (editors), Handbook of ellip-
tic and hyperelliptic curve cryptography, CRC Press. ISBN 1–58488–518–1. See
[Doche and Lange 2005].

[Diffie and Hellman 1976] Whitfield Diffie and Martin Hellman, “New directions
in cryptography”, IEEE Transactions on Information Theory 22, 644–654. ISSN
0018–9448. MR 55:10141. Citations in this document: §4, §5.

[Doche and Lange 2005] Christophe Doche and Tanja Lange, “Arithmetic of elliptic
curves”, pp. 267–302 in [Cohen and Frey 2005]. MR 2162729. Citations in this
document: §4.

[ElGamal 1985a] Taher ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms”, pp. 10–18 in [Blakley and Chaum 1985]; see also
newer version [ElGamal 1985b]. MR 87b:94037.

[ElGamal 1985b] Taher ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms”, IEEE Transactions on Information Theory 31,
469–472; see also older version [ElGamal 1985a]. ISSN 0018–9448. MR 86j:94045.
Citations in this document: §5.

[Fiat and Shamir 1987] Amos Fiat and Adi Shamir, “How to prove yourself: practical
solutions to identification and signature problems”, pp. 186–194 in [Odlyzko 1987].
MR 88m:94023. Citations in this document: §4.

PROTECTING COMMUNICATIONS AGAINST FORGERY 547

[FOCS 1979] — (no editor), 20th annual symposium on foundations of computer
science, IEEE Computer Society, New York. MR 82a:68004. See [Wegman and
Carter 1979].

[FOCS 1982] — (no editor), 23rd annual symposium on foundations of computer
science, IEEE Computer Society, New York. MR 85k:68007. See [Yao 1982].

[FOCS 1997] — (no editor), 38th annual symposium on foundations of computer
science, IEEE Computer Society Press, Los Alamitos. ISBN 0–8186–8197–7. See
[Naor and Reingold 1997].

[Gilbert and Handschuh 2005] Henri Gilbert and Helena Handschuh (editors), Fast soft-
ware encryption: 12th international workshop, FSE 2005, Paris, France, February
21–23, 2005, revised selected papers, Lecture Notes in Computer Science 3557,
Springer, Berlin. ISBN 3–540–26541–4. See [Bernstein 2005].

[Gilbert et al. 1974] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane,
“Codes which detect deception”, Bell System Technical Journal 53, 405–424. ISSN
0005–8580. MR 55:5306. Citations in this document: §2.

[Goldreich 1999] Oded Goldreich, Modern cryptography, probabilistic proofs and pseu-
dorandomness, Springer-Verlag, Berlin. ISBN 3–540–64766–X. MR 2000f:94029.
Citations in this document: §3.

[Hankerson et al. 2004] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, Guide
to elliptic curve cryptography, Springer, New York. ISBN 0–387–95273–X. MR
2054891. Citations in this document: §4.

[Koblitz 1987] Neal Koblitz, “Elliptic curve cryptosystems”, Mathematics of Compu-
tation 48, 203–209. ISSN 0025–5718. MR 88b:94017. Citations in this document:
§4.

[Koblitz and Menezes 2005] Neal Koblitz and Alfred J. Menezes, “Another look at
‘provable security’ ”, revised 4 May 2005; see also newer version [Koblitz and
Menezes 2007]. URL: http://eprint.iacr.org/2004/152/.

[Koblitz and Menezes 2007] Neal Koblitz and Alfred J. Menezes, “Another look at
‘provable security’ ”, Journal of Cryptology 20, 3–37; see also older version [Koblitz
and Menezes 2005]. ISSN 0933–2790. Citations in this document: §4.

[Menezes et al. 1996] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone, Handbook of applied cryptography, CRC Press, Boca Raton, Florida.
ISBN 0–8493–8523–7. MR 99g:94015. URL: http://cacr.math.uwaterloo.ca/hac.
Citations in this document: §3, §5.

[Miller 1986] Victor S. Miller, “Use of elliptic curves in cryptography”, pp. 417–426 in
[Williams 1986]. MR 88b:68040. Citations in this document: §4.

[Naor and Reingold 1997] Moni Naor and Omer Reingold, “Number-theoretic
constructions of efficient pseudo-random functions”, pp. 458–467 in [FOCS
1997]. URL: http://www.wisdom.weizmann.ac.il/˜naor/onpub.html. Citations in this
document: §3.

548 DANIEL J. BERNSTEIN

[Nechvatal et al. 1999] James Nechvatal, Elaine Barker, Donna Dodson, Morris
Dworkin, James Foti, and Edward Roback, “Status report on the first round of the
development of the Advanced Encryption Standard”, Journal of Research of the
National Institute of Standards and Technology 104. URL: http://nvl.nist.gov/pub/
nistpubs/jres/104/5/cnt104-5.htm. Citations in this document: §3.

[Nechvatal et al. 2001] James Nechvatal, Elaine Barker, Lawrence Bassham, William
Burr, Morris Dworkin, James Foti, and Edward Roback, “Report on the development
of the Advanced Encryption Standard (AES)”, Journal of Research of the National
Institute of Standards and Technology 106. URL: http://nvl.nist.gov/pub/nistpubs/
jres/106/3/cnt106-3.htm. Citations in this document: §3.

[Nevelsteen and Preneel 1999] Wim Nevelsteen and Bart Preneel, “Software
performance of universal hash functions”, pp. 24–41 in [Stern 1999]. Citations in
this document: §2.

[Odlyzko 1987] Andrew M. Odlyzko (editor), Advances in cryptology — CRYPTO ’86:
proceedings of the conference on the theory and applications of cryptographic
techniques held at the University of California, Santa Barbara, Calif., August 11–
15, 1986, Lecture Notes in Computer Science 263, Springer-Verlag, Berlin. ISBN
3–540–18047–8. MR 88h:94004. See [Fiat and Shamir 1987].

[Pomerance 2008] Carl Pomerance, “Smooth numbers and the quadratic sieve”,
pp. 69–81 in [Buhler and Stevenhagen 2008]. Citations in this document: §5.

[Poonen 2008] Bjorn Poonen, “Elliptic curves”, pp. 183–207 in [Buhler and
Stevenhagen 2008]. Citations in this document: §4.

[Rabin 1979] Michael O. Rabin, Digitalized signatures and public-key functions as
intractable as factorization, Technical Report 212, MIT Laboratory for Computer
Science. URL: http://ncstrl.mit.edu/Dienst/UI/2.0/Describe/ncstrl.mit lcs/MIT/LCS/
TR-212. Citations in this document: §5.

[Rivest et al. 1978] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, “A method
for obtaining digital signatures and public-key cryptosystems”, Communications
of the ACM 21, 120–126. ISSN 0001–0782. URL: http://cr.yp.to/bib/entries.html#
1978/rivest. Citations in this document: §5.

[Schirokauer 2008] Oliver Schirokauer, “The impact of the number field sieve on the
discrete logarithm problem in finite fields”, pp. 397–420 in [Buhler and Stevenhagen
2008]. Citations in this document: §4.

[Schneier 1996] Bruce Schneier, Applied cryptography: protocols, algorithms, and
source code in C, 2nd edition, Wiley, New York. ISBN 0–471–12845–7. Citations
in this document: §3.

[Schoof 2008] René Schoof, “Four primality testing algorithms”, pp. 101–125 in
[Buhler and Stevenhagen 2008]. Citations in this document: §5.

[Stern 1999] Jacques Stern (editor), Advances in cryptology: EUROCRYPT ’99, Lecture
Notes in Computer Science 1592, Springer-Verlag, Berlin. ISBN 3–540–65889–0.
MR 2000i:94001. See [Nevelsteen and Preneel 1999].

PROTECTING COMMUNICATIONS AGAINST FORGERY 549

[Stevenhagen 2008] Peter Stevenhagen, “The number field sieve”, pp. 83–100 in
[Buhler and Stevenhagen 2008]. Citations in this document: §5.

[Turing 1950] Alan M. Turing, “Computing machinery and intelligence”, MIND 59,
433–460. ISSN 0026–4423. MR 12,208c. Citations in this document: §3.

[Wang et al. 2004] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu,
“Collisions for hash functions MD4, MD5, HAVAL–128 and RIPEMD”. URL:
http://eprint.iacr.org/2004/199/. Citations in this document: §5.

[Wegman and Carter 1979] Mark N. Wegman and J. Lawrence Carter, “New classes and
applications of hash functions”, pp. 175–182 in [FOCS 1979]; see also newer version
[Wegman and Carter 1981]. URL: http://cr.yp.to/bib/entries.html#1979/wegman.

[Wegman and Carter 1981] Mark N. Wegman and J. Lawrence Carter, “New hash
functions and their use in authentication and set equality”, Journal of Computer
and System Sciences 22, 265–279; see also older version [Wegman and Carter
1979]. ISSN 0022–0000. MR 82i:68017. URL: http://cr.yp.to/bib/entries.html#1981/
wegman. Citations in this document: §2.

[Wiener 1999] Michael Wiener (editor), Advances in cryptology — CRYPTO ’99,
Lecture Notes in Computer Science 1666, Springer-Verlag, Berlin. ISBN
3–5540–66347–9. MR 2000h:94003. See [Black et al. 1999].

[Williams 1980] Hugh C. Williams, “A modification of the RSA public-key
encryption procedure”, IEEE Transactions on Information Theory 26, 726–729.
ISSN 0018–9448. URL: http://cr.yp.to/bib/entries.html#1980/williams. Citations in
this document: §5.

[Williams 1986] Hugh C. Williams (editor), Advances in cryptology: CRYPTO ’85,
Lecture Notes in Computer Science 218, Springer, Berlin. ISBN 3–540–16463–4.
See [Miller 1986].

[Yao 1982] Andrew C. Yao, “Theory and applications of trapdoor functions”, pp. 80–91
in [FOCS 1982]. Citations in this document: §3.

[Yung et al. 2006] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin
(editors), 9th international conference on theory and practice in public-key cryp-
tography, New York, NY, USA, April 24–26, 2006, Proceedings, Lecture Notes
in Computer Science 3958, Springer, Berlin. ISBN 978–3–540–33851–2. See
[Bernstein 2006].

DANIEL J. BERNSTEIN
DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE
M/C 249
THE UNIVERSITY OF ILLINOIS AT CHICAGO
CHICAGO, IL 60607–7045
UNITED STATES

djb@cr.yp.to

