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Abstract. It is well known that, inside any cryptographic protocol, a
uniform random function can be safely replaced with a uniform random
injective function: as long as the number of function queries is small, the
attacker’s success probability does not noticeably increase. This paper
presents a quantitatively stronger theorem that handles a larger number
of function queries. This quantitative improvement can be viewed as a
generalization of the author’s recent improvement in security bounds for
Wegman-Carter-Shoup authenticators.

1 Introduction

Let p be a uniform random permutation of S = {0, 1, . . . , 255}16, and let f be a
uniform random function from S to S. A cryptographic protocol using p is almost
as hard to break as the same cryptographic protocol using f : it is well known
that the difference in attacker success probabilities is at most n(n − 1)/2129 if
there are n function queries.

Section 2 of this paper presents a quantitatively stronger theorem: if the
attacker’s success probability against f is at most ε then the attacker’s success
probability against p is at most (1 − (n − 1)/2128)−n/2ε. For example, if n =
260 and ε = 1/270, then the standard bound says that the attacker’s success
probability against p is at most 1/270 + 260(260 − 1)/2129 ≈ 1/29, while my

bound says that it is at most 1/(1 − (260 − 1)/2128)2
59

270 ≈ 1/270 + 1/279.
As an illustration of the stronger theorem, this paper gives a new proof of

my recent security bounds for Wegman-Carter-Shoup authenticators. The new
proof can be viewed as a factorization of the original proof into (1) the main
theorem of this paper and (2) the usual intuitive security bound for Wegman-
Carter authenticators. See Sections 3 through 5.
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In a separate paper, as another illustration of the stronger theorem, I prove
new security bounds for counter-mode encryption using p. I also show that CBC
encryption is far below the same security level.

Application to short-key systems

Consider a cryptographic protocol using AESk, where k is a uniform random
16-byte sequence. The attacker’s success chance against this protocol is at most
the sum of (1) the attacker’s success chance against the same protocol using p
and (2) the attacker’s chance of distinguishing AESk from p.

It is reasonable to conjecture that AESk is hard to distinguish from p, even
after a very large number of queries. This was an explicit design goal for AES;
see [1, Section 4]. If the conjecture is true then this paper’s improved security
bounds for p imply improved security bounds for AESk.

It is not reasonable to conjecture that AESk is hard to distinguish from
f . A simple n-query collision test distinguishes AESk from f with probability
approximately n(n − 1)/2129. This is what motivates studying p rather than f .

Previous work

As mentioned above, it is well known that the attacker’s success probability
against p is at most ε + n(n − 1)/2129. This bound can be found in, e.g., [3,
Section 2] and [8, Section 5.2].

Shoup in [7] proved better bounds for p in the specific context of Wegman-
Carter authentication. I proved even better bounds in [4]. This paper generalizes
those bounds to all protocols using p.

2 Main theorem

Theorem 2.3 is the permutation theorem announced in Section 1. Theorem 2.2
is a more general theorem, replacing a uniform random permutation with any
random function having small interpolation probabilities. See [4, Section 4] for
background on interpolation probabilities.

Theorem 2.1. Let p be a random function from a set S to a nonempty finite set

T . Let f be a uniform random function from S to T . Let n be an integer with 0 ≤
n ≤ #S. Let A be an algorithm that performs exactly n distinct oracle queries.

Let δ be a positive real number. Assume that p has maximum n-interpolation

probability at most δ/#T n. Then Pr[A(p) = 1] ≤ δ Pr[A(f) = 1].

Here Pr[A(p) = 1] means the probability that A prints 1 using p as an oracle;
similarly for Pr[A(f) = 1]. The hypothesis on interpolation probabilities is that
Pr[(p(s1), p(s2), . . . , p(sn)) = (t1, t2, . . . , tn)] ≤ δ/#T n for all (t1, t2, . . . , tn) ∈
Tn and all (s1, s2, . . . , sn) ∈ Sn with s1, s2, . . . , sn distinct.



Proof. In a nutshell: Write α(t1, t2, . . . , tn) for the conditional probability that A
prints 1 given that the responses to A’s distinct oracle queries are t1, t2, . . . , tn.
Then Pr[A(p) = 1] ≤ ∑

t∈T n α(t)δ/#T n = δ
∑

t α(t)/#T n = δ Pr[A(f) = 1].
What follows is a more detailed version of the same proof.
Everything that A does is determined by (1) an infinite sequence b of coin

flips, by definition independent of A’s input, and (2) the responses r1, r2, . . . , rn

to A’s distinct oracle queries. In particular, A’s first oracle query is q1(b) for
some function q1; its second distinct oracle query is q2(b, r1) for some function
q2; etc.; its final distinct oracle query is qn(b, r1, r2, . . . , rn−1) for some function
qn; and its output is z(b, r1, r2, . . . , rn) for some function z.

Fix (t1, t2, . . . , tn) ∈ T n. The set {b : z(b, t1, t2, . . . , tn) = 1} is recognizable
and thus measurable; define α(t1, t2, . . . , tn) as its measure. Then α(t1, t2, . . . , tn)
is exactly the conditional probability that A prints 1, given that (r1, r2, . . . , rn) =
(t1, t2, . . . , tn).

Consider A using p as an oracle. The probability that (r1, r2, . . . , rn) =
(t1, t2, . . . , tn) is exactly the probability that

(p(q1(b)), p(q2(b, t1)), . . . , p(qn(b, t1, t2, . . . , tn−1))) = (t1, t2, . . . , tn).

The inputs q1(b), q2(b, t1), . . . are independent of p, so this probability is at most
the maximum n-interpolation probability of p, which by hypothesis is at most
δ/#T n.

Hence the probability that (r1, r2, . . . , rn) = (t1, t2, . . . , tn) and A prints 1 is
at most α(t1, t2, . . . , tn)δ/#T n. Sum over all choices of (t1, t2, . . . , tn) to see that
Pr[A(p) = 1] ≤ ∑

t∈T n α(t)δ/#T n.
Similarly, when A uses f as an oracle, the probability that (r1, r2, . . . , rn) =

(t1, t2, . . . , tn) and A prints 1 is exactly α(t1, t2, . . . , tn)/#T n. Sum over all
choices of (t1, t2, . . . , tn) to see that Pr[A(f) = 1] =

∑
t∈T n α(t)/#T n.

Hence Pr[A(p) = 1] ≤ δ Pr[A(f) = 1]. ut
Theorem 2.2. Let p be a random function from a set S to a nonempty finite

set T . Let f be a uniform random function from S to T . Let n be an integer

with 0 ≤ n ≤ #S. Let A be an algorithm that performs at most n distinct

oracle queries. Let δ be a positive real number. Assume that p has maximum

n-interpolation probability at most δ/#T n. Then Pr[A(p) = 1] ≤ δ Pr[A(f) = 1].

Proof. Modify A into an algorithm A′ that produces the same results but always
performs exactly n distinct oracle queries. This means caching the oracle queries
and—just before finishing—performing more queries if necessary, throwing away
the results, to raise the total number of distinct queries to n. Note that new
elements of S are available since n ≤ #S.

Now Pr[A(p) = 1] = Pr[A′(p) = 1] ≤ δ Pr[A′(f) = 1] = δ Pr[A(f) = 1] by
Theorem 2.1. ut
Theorem 2.3. Let p be a uniform random permutation of a nonempty finite

set S. Let f be a uniform random function from S to S. Let n be an integer

with 0 ≤ n ≤ #S. Let A be an algorithm that performs at most n distinct oracle

queries. Then Pr[A(p) = 1] ≤ (1 − (n − 1)/#S)−n/2 Pr[A(f) = 1].



Proof. Write δ = (1 − (n − 1)/#S)−n/2. Then p has maximum n-interpolation
probability at most δ/#Sn by [4, Theorem 4.2]. Apply Theorem 2.2 with T = S:
Pr[A(p) = 1] ≤ δ Pr[A(f) = 1]. ut

Comparison to the standard bound

Substitute (1−(n−1)/#S)n/2 ≥ 1−n(n−1)/2#S into Theorem 2.3 to see that
Pr[A(f) = 1] ≥ Pr[A(p) = 1] − (n(n − 1)/2#S) Pr[A(p) = 1]. Then substitute
Pr[A(p) = 1] ≤ 1 to see that Pr[A(f) = 1] ≥ Pr[A(p) = 1] − n(n − 1)/2#S,
i.e., Pr[A(p) = 1] ≤ Pr[A(f) = 1] + n(n − 1)/2#S. This is exactly the standard
bound.

The first substitution is unnoticeable when n is small. Even for n as large
as

√
#S, the first substitution does not lose very much: (1 − (n − 1)/#S)n/2 ≈

exp(−1/2) ≈ 0.6 while 1 − n(n − 1)/2#S ≈ 0.5. But the second substitution is
awful whenever Pr[A(f) = 1] is small: for example, it changes Pr[A(p) = 1] ≤
2Pr[A(f) = 1] into Pr[A(p) = 1] ≤ Pr[A(f) = 1] + 0.5.

I am not aware of a simpler proof of the standard bound. (The proofs in
[3, Section 2] and [8, Section 5.1] are buried under a thicket of “game-playing”
notation. The partial proof in [3, Appendix A], correcting the folklore “proof”
criticized in [3, Section 2], follows the same strategy as Theorem 2.1.) In other
words, the new bound is not only quantitatively better, but it is easier to prove:
simply skip the extra substitutions!

3 MAC application, step 1: handle the uniform-random-

function case

The Wegman-Carter message-authentication protocol uses, among other things,
a uniform random function f . This section reviews the Wegman-Carter protocol
and proves the usual security bound for the protocol against a single forgery
attempt.

The next section will illustrate Theorem 2.3 by switching from a uniform
random function f to a uniform random permutation p. Section 5 will generalize
to a variable number of forgery attempts.

The final theorem is identical to my recent security bound [4, Theorem 5.3].
See [4] for further background. What is new in this paper is a factorization of
the proof, one factor being Theorem 2.3 and another factor being the simpler
security bound in this section.

The Wegman-Carter protocol

The Wegman-Carter protocol has several parameters: a finite commutative group
G of authenticators; a nonempty set M of messages; and a finite set N of
nonces with #N ≤ #G. The protocol has two independent secrets: a random
function h from M to G, and a uniform random function f from N to G. The
protocol has several participants:



• a message generator creates messages;

• a nonce generator attaches a nonce n to each message m, never using the
same nonce for two different messages;

• a sender converts each pair (n,m) into (n,m, h(m) + f(n));

• a network accepts a sequence of vectors (n,m, a) and transmits a sequence
of vectors (n′,m′, a′);

• a receiver receives vectors (n′,m′, a′) from the network and accepts them
if a′ = h(m′) + f(n′).

The secrets are shared by the sender and receiver.

The objective of the protocol is forgery elimination: ensuring that each
(n′,m′, a′) accepted by the receiver is one of the vectors (n,m, a) produced by
the sender.

This protocol is usually stated in much less generality. In particular, Wegman
and Carter did not actually consider group operations other than exclusive-or—
but state-of-the-art choices of h require other group operations. See [4, Sections
1–2] for further background.

Attacks against the Wegman-Carter protocol

The combined behavior of the message generator, nonce generator, and network
is called an “attack.” The attack can access h and f only through the limited
functions computed by the sender and receiver.

Formally: An attack is an algorithm given two oracles S,R as input. The
algorithm feeds the first oracle any number of chosen messages (n,m), obeying
the rule that distinct messages have distinct nonces. Meanwhile, the algorithm
feeds the second oracle any number of forgery attempts (n′,m′, a′). The attack
succeeds against S and R if at least one forgery attempt (n′,m′, a′) has
R(n′,m′, a′) = 1 with (n′,m′) different from the previous queries to the first
oracle.

Note that attackers are presumed to have control over messages; attackers
can try to gain information from the sender and receiver; and forgery attempts
are not required to be chosen in advance. See [4, Section 3] for further discussion
of the definition of an attack.

Theorem 3.1. Let h be a random function from a nonempty set M to a finite

commutative group G. Let f be a uniform random function from a finite set N to

G. Let ε be a real number with ε ≥ 1/#G. Assume, for all g ∈ G and all distinct

m,m′ ∈ M , that h(m) = h(m′)+g with probability at most ε. Assume that h and

f are independent. Then any attack that performs exactly one forgery attempt

succeeds against (n,m) 7→ h(m) + f(n) and (n,m, a) 7→ [a = h(m) + f(n)] with

probability at most ε.

The following proof is standard, although it is normally stated in much less
generality.



Proof. For each choice of h, the sequence of responses from the first oracle has
the same distribution, namely the uniform distribution. Indeed, each response
is h(m) + f(n) for a unique n; the values f(n) are independent uniform random
elements of G.

Consequently, the responses from the first oracle provide no information
about h: the conditional distribution of h, given the responses, is identical to
the original distribution of h. In particular, h(m) = h(m′) + g with conditional
probability at most ε.

I now claim, for each possible sequence of previous responses from the first
oracle and each possible sequence of coin flips in the attack, that the resulting
forgery attempt (n′,m′, a′) succeeds with conditional probability at most ε.

Case 1: (n′,m′) was a previous query to the first oracle. Then the forgery
attempt is successful with conditional probability 0.

Case 2: (n′,m) was a previous query to the first oracle for some m 6= m′.
Write a for the oracle response; i.e., a = h(m)+f(n′). Then the forgery attempt
is successful if and only if h(m′) − h(m) = a′ − a; this occurs with conditional
probability at most ε.

Case 3: The nonce n′ was not used in previous queries to the first oracle.
Then f(n′) is independent of the responses, so the conditional distribution of
a′ − h(m′) − f(n′) is uniform. The forgery attempt succeeds with conditional
probability 1/#G ≤ ε. ut

4 MAC application, step 2: apply the main theorem

Here is a generalization of the Wegman-Carter authentication protocol discussed
in the previous section: replace the uniform random function f with any random
function having small interpolation probabilities. For example, the Wegman-
Carter-Shoup authentication protocol takes N = G and replaces the uniform
random function f with a uniform random permutation p.

This section uses Theorem 2.2 to deduce security bounds for the general case
from security bounds for the uniform random case.

Theorem 4.1. Let h be a random function from a nonempty set M to a finite

commutative group G. Let p be a random function from a finite set N to G.

Let C be a positive integer with C + 1 ≤ #N . Let δ be a positive real number.

Let ε be a real number with ε ≥ 1/#G. Assume that p has maximum (C + 1)-
interpolation probability at most δ/#T C+1. Assume, for all g ∈ G and all distinct

m,m′ ∈ M , that h(m) = h(m′) + g with probability at most ε. Assume that h
and p are independent. Then any attack that uses at most C distinct chosen

messages and exactly one forgery attempt succeeds against (n,m) 7→ h(m)+p(n)
and (n,m, a) 7→ [a = h(m) + p(n)] with probability at most δε.

In particular, consider the special case that p is a uniform random injective
function from N to G. Then p has maximum (C +1)-interpolation probability at
most (1 − C/#G)−(C+1)/2/#T C+1 by [4, Theorem 4.2], so the forgery attempt
succeeds with probability at most (1 − C/#G)−(C+1)/2ε.



Proof. Convert the random function h into a random algorithm A that, given
as input an oracle for a function z, carries out the attack against (n,m) 7→
h(m) + z(n) and (n,m, a) 7→ [a = h(m) + z(n)], and prints 1 if the attack
succeeds. Note that A performs at most C + 1 distinct queries to z: one query
for each distinct chosen message and one query for the forgery attempt.

Let f be a uniform random function from N to G, independent of h and p.
Then f and p are independent of A. Apply Theorem 2.2 with S = N , T = G,
and n = C + 1 to see that Pr[A(p) = 1] ≤ δ Pr[A(f) = 1].

Now Pr[A(f) = 1] is exactly the probability that the attack succeeds against
(n,m) 7→ h(m)+f(n) and (n,m, a) 7→ [a = h(m)+f(n)], so Pr[A(f) = 1] ≤ ε by
Theorem 3.1. Similarly, Pr[A(p) = 1] is exactly the probability that the attack
succeeds against (n,m) 7→ h(m)+p(n) and (n,m, a) 7→ [a = h(m)+p(n)]. Hence
the latter probability is at most δε as claimed. ut

The algorithms A considered in this proof are restricted by the structure
of the authentication protocol and by the meaning of a successful attack. These
restrictions produce bounds on Pr[A(f) = 1]; Theorem 2.2 then produces bounds
on Pr[A(p) = 1]. Other cryptographic protocols put other constraints on A, and
thus require different proofs that Pr[A(f) = 1] is small; but Theorem 2.2 then
applies in exactly the same way to show that Pr[A(p) = 1] is small.

5 MAC application, step 3: allow more forgery attempts

Theorem 4.1 states that an attack against h(m)+p(n) succeeds with probability
at most δε if it tries exactly one forgery attempt. This section generalizes to any
number of forgery attempts: Theorem 5.2 states that an attack succeeds with
probability at most Dδε if it tries at most D forgery attempts.

This has nothing to do with the particular shape h(m) + p(n). Theorem
5.1 switches from single-forgery attacks to multiple-forgery attacks for arbitrary
message-authentication codes (n,m) 7→ S(n,m).

It is important to perform the switch of the last section, generalizing from
f to p, before the switch of this section, generalizing from single-forgery attacks
to multiple-forgery attacks. There are at most C + 1 invocations of f in a C-
chosen-message single-forgery attack, whereas there could be as many as C + D
invocations of f in a C-chosen-message D-forgery attack.

One could reduce both C +1 and C +D to C, and thus allow the switches to
be performed in either order, by modifying the definition of an attack, requiring
all forgery attempts to repeat nonces that were used for chosen messages. But I
prefer to keep the definition of an attack as broad as possible. A proof of security
against restricted attacks forces the user to worry that the restriction artificially
increases the protocol’s security level (as this restriction does for #M = 1).
To the extent that security against restricted attacks implies security against
all attacks, the cryptographer should take advantage of that to prove security
against all attacks, rather than shifting the burden of proof to the user.



Theorem 5.1. Let M be a nonempty set. Let N be a finite set. Let S be a

random function from N ×M to a finite commutative group G. Let C and D be

positive integers. Let ε be a positive real number. Assume that any attack that

uses at most C distinct chosen messages and exactly one forgery attempt succeeds

against (n,m) 7→ S(n,m) and (n,m, a) 7→ [a = S(n,m)] with probability at most

ε. Then any attack that uses at most C distinct chosen messages and at most

D forgery attempts succeeds against (n,m) 7→ S(n,m) and (n,m, a) 7→ [a =
S(n,m)] with probability at most Dε.

There is nothing special here about the particular restriction “at most C
distinct chosen messages,” but that restriction is natural whenever Theorem 5.1
is combined with Theorem 2.2.

As pointed out by Bellare, Goldreich, and Mityagin in [2], the same switch
does not work for authentication protocols in which the receiver accepts several
authenticators for a single (n,m). Each unsuccessful forgery attempt can leak
as much as one bit of information, perhaps doubling the success probability of
subsequent forgery attempts.

The crucial point in Theorem 5.1 is that the attacker can recognize all
(n′,m′, a′) that will be accepted by the receiver without being forgeries: namely,
the results already obtained from the sender.

The theorems in [2] illustrate the same point but are not general enough. [2,
Theorem 5.1] does not allow nonces; [2, Proposition 6.3] allows nonces but is
limited to the Wegman-Carter protocol. The proof here is slightly more direct
than the proof of [2, Theorem 5.1] and much more general than the proof of [2,
Proposition 6.3].

Proof. Induct on D. For D = 1, there is nothing to prove, so assume that D ≥ 2.
Let A be an attack that uses at most C distinct chosen messages and at most

D forgery attempts. There are two ways for A to succeed: (1) it succeeds on its
first forgery attempt; (2) it fails on its first forgery attempt but succeeds on a
subsequent forgery attempt. I will show that the first way occurs with probability
at most ε, and the second way occurs with probability at most (D − 1)ε, for a
total of Dε as claimed.

(1) Define A1 as A with one change: A1 stops immediately after the first
forgery attempt (if there are any forgery attempts).

A1 uses at most C distinct chosen messages and at most 1 forgery attempt,
so it succeeds with probability at most ε. Success of A on its first forgery attempt
is equivalent to success of A1, and therefore occurs with probability at most ε.

(2) Define A2 as A with one change: A2 simulates the first forgery attempt
internally (if there are any forgery attempts) rather than sending the forgery
attempt as an oracle query. The simulator returns 1 if the forgery attempt
(n′,m′, a′) matches an authenticator a′ already provided in response to a chosen
message (n′,m′); otherwise the simulator returns 0.

A2 uses at most C distinct chosen messages and at most D − 1 forgery
attempts, so by the inductive hypothesis it succeeds with probability at most
(D − 1)ε. Failure of A on its first forgery attempt, combined with success on a



subsequent attempt, implies success of A2, and therefore occurs with probability
at most (D − 1)ε. ut

Theorem 5.2. Let h be a random function from a nonempty set M to a finite

commutative group G. Let p be a random function from a finite set N to G.

Let C and D be positive integers. Let δ be a positive real number. Let ε be a

real number with ε ≥ 1/#G. Assume that C + 1 ≤ #N . Assume that p has

maximum (C + 1)-interpolation probability at most δ/#T C+1. Assume, for all

g ∈ G and all distinct m,m′ ∈ M , that h(m) = h(m′) + g with probability

at most ε. Assume that h and p are independent. Then any attack that uses

at most C distinct chosen messages and at most D forgery attempts succeeds

against (n,m) 7→ h(m)+p(n) and (n,m, a) 7→ [a = h(m)+p(n)] with probability

at most Dδε.

In particular, if p is a uniform random injective function from N to G, then
the attack succeeds with probability at most D(1−C/#G)−(C+1)/2ε. This special
case is exactly [4, Theorem 5.3]. What is new here is the proof, factoring my
previous proof into

• Theorem 3.1, the Wegman-Carter security bound;
• Theorem 2.2, the switch from a uniform random function f to a uniform

random injective function p; and
• Theorem 5.1, the switch from single-forgery attacks to D-forgery attacks.

The third factor was reasonably explicit in my previous proof, but the first and
second factors were not visible.

For general p, Theorem 5.2 is almost exactly [4, Theorem 5.1], the main
theorem of [4]. The only difference is that Theorem 5.2 has a slightly simpler
(and conceivably slightly stronger) interpolation-probability hypothesis.

Proof. Define S(n,m) = h(m) + p(n).
By Theorem 4.1, any attack that uses at most C distinct chosen messages and

exactly one forgery attempt succeeds against (n,m) 7→ S(n,m) and (n,m, a) 7→
[a = S(n,m)] with probability at most δε.

By Theorem 5.1, any attack that uses at most C distinct chosen messages and
at most D forgery attempts succeeds against (n,m) 7→ S(n,m) and (n,m, a) 7→
[a = S(n,m)] with probability at most Dδε. ut
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