
Faster batch forgery identification

Daniel J. Bernstein1,3, Jeroen Doumen2, Tanja Lange3, and Jan-Jaap
Oosterwijk3

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7053, USA

djb@cr.yp.to
2 Irdeto, CTO Research Group, Taurus Avenue 105, 2132 LS, Hoofddorp, The

Netherlands
jdoumen@irdeto.com

3 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The

Netherlands
tanja@hyperelliptic.org, j.oosterwijk@tue.nl

Abstract. Batch signature verification detects whether a batch of sig-
natures contains any forgeries. Batch forgery identification pinpoints the
location of each forgery. Existing forgery-identification schemes vary in
their strategies for selecting subbatches to verify (individual checks, bi-
nary search, combinatorial designs, etc.) and in their strategies for veri-
fying subbatches. This paper exploits synergies between these two levels
of strategies, reducing the cost of batch forgery identification for elliptic-
curve signatures.

Keywords: Signatures, batch verification, elliptic curves, scalar multi-
plication

1 Introduction

Our goal in this paper is to minimize the cost of elliptic-curve signature verifica-
tion. As an illustration of our results, one of our algorithms verifies a sequence
of 64 elliptic-curve signatures (from 64 different signers) at a 2128 security level
using

– a total of 0.9 · 64 · 128 additions if all signatures turn out to be valid,
– a total of 1.3 · 64 · 128 additions if 2 signatures turn out to be invalid,
– a total of 2.3 · 64 · 128 additions if 10 signatures turn out to be invalid, and
– a total of 3.6 · 64 · 128 additions if all 64 signatures turn out to be invalid.

This work was supported by the National Science Foundation under grant
1018836, by the Netherlands Organisation for Scientific Research (NWO) under
grant 639.073.005, by the Dutch Technology Foundation STW (which is part of
NWO, and which is partly funded by the Ministry of Economic Affairs, Agri-
culture and Innovation) under grant 10518, and by the European Commission
under Contract ICT-2007-216676 ECRYPT II. Permanent ID of this document:
3bde3ab884b9aa2995cb5589e3037232. Date: 2012.09.19.

2 Bernstein, Doumen, Lange, Oosterwijk

For comparison, we use a total of 2.8 · 64 · 128 additions to separately verify the
same 64 signatures.

We emphasize that our algorithms pinpoint the forgeries. These algorithms
are not merely “batch signature verification” algorithms, saying yes if and only if
all of the signatures are valid; these algorithms are “batch forgery identification”
algorithms, telling the user separately for each signature whether that signature
is valid. The main challenge we address is to locate each forgery as efficiently as
possible.

Cost metric. We systematically report the costs of our algorithms in group
operations: the total number of elliptic-curve doublings, additions, and subtrac-
tions. For conciseness we write “additions” rather than “group operations”, but
readers evaluating costs in more detail should be aware that doublings are less ex-
pensive than additions in typical elliptic-curve coordinate systems, that “mixed
additions” save time, etc.

We also caution the reader that elliptic-curve computations often involve sig-
nificant overhead beyond group operations. For example, the CHES 2011 elliptic-
curve-signatures paper [4] by Bernstein, Duif, Lange, Schwabe, and Yang reports
quite noticeable time, even after various speedups, for decompressing points and
for manipulating a priority queue of scalars. We would expect our algorithms
to use the same amount of time for decompression and less time for manipulat-
ing scalars, but properly verifying these predictions would require an optimized
assembly-language implementation at the level of [4].

Our verification algorithms are randomized. Performance depends somewhat
on these random choices, but our experiments indicate that the variance in
performance (for any particular number of forgeries) is quite small.

The total cost of separately verifying n signatures at a 2b security level scales
linearly in n and almost linearly in b: it has the form αnb where α is indepen-
dent of n and nearly independent of b. This paper’s batch-forgery-identification
algorithms use αnb additions where α is a more complicated function of n, b, the
number of forgeries, and various algorithm parameters. We systematically report
the number of additions in the form αnb, as illustrated by the 0.9nb example
above with n = 64 and b = 128.

Choice of signature system. We focus on the EdDSA signature system pro-
posed in [4]. This system is a tweaked version of the classic Schnorr signature
system [35]; one of the tweaks allows much faster batch verification.

In EdDSA, verifying a signature (R,S) on a message M under a public key
A means verifying an equation of the form SB = R+ hA. Here B is a standard
elliptic-curve point, R and A are elliptic-curve points, S is a scalar, and the
scalar h is a hash of R, A, and M .

For comparison, in Schnorr’s system, the signature is (h, S) rather than (R,S).
The verifier recomputes R = SB−hA and then checks that the hash matches h.
This is not compatible with our verification algorithms: our algorithms require
R as input.

An analogous tweak for DSA (and the general idea of sending R instead of
h) was introduced much earlier by Naccache, M’Räıhi, Vaudenay, and Raphaeli

Faster batch forgery identification 3

in [23]. We prefer Schnorr to ECDSA (and prefer EdDSA to tweaked ECDSA)
for several reasons: Schnorr eliminates inversions, for example, and is resilient
to hash-function collisions.

For elliptic-curve signatures at a 2b security level it is standard practice to use
about 2b bits for hashes, scalars, and field elements, and to compress points to
single coordinates. EdDSA and Schnorr’s system then have the same signature
size, about 4b bits. Additions require uncompressed points, so the standard way
to verify a signature in Schnorr’s system is to decompress the public key A,
compute SB − hA, compress the result to obtain R, compute the hash, and
check for a match with h. We emphasize that the same operations, in a different
order, verify a signature in EdDSA: compute the hash h, decompress the public
key A, compute SB − hA, compress the result, and check for a match with
R. The advantage of EdDSA is that it allows further choices for the verifier:
fast batch verification, as discussed in [4], and fast batch forgery identification,
as discussed in this paper. These algorithms require decompression of both A
and R for each signature, but amply compensate for the extra decompression (an
extra square-root computation) by eliminating a large fraction of the subsequent
elliptic-curve operations.

One can merge EdDSA with Schnorr’s system, simultaneously allowing sig-
natures of the form (h, S) and signatures of the form (R,S). The first step in
verifying an EdDSA signature computes, as a side effect, a Schnorr signature
for the same message; similarly, one of the (later) steps in verifying a Schnorr
signature computes, as a side effect, an EdDSA signature. It is not commonly
appreciated that Schnorr’s system actually allows hashes as short as b bits (as
pointed out by Schnorr), reducing a signature to about 3b bits; users then have
the flexibility to convert signatures from EdDSA format to Schnorr format to
save space, and to convert signatures from Schnorr format to EdDSA format for
fast batch forgery identification. One can of course also save decompression time
by transmitting uncompressed signatures and uncompressed public keys.

Pairing-based signatures allow shorter signatures, about 2b bits, but pairing-
based verification is an order of magnitude slower than elliptic-curve verification.
Consider, for example, [21, Figures 1(a), 2(a), 3(a), 4(a)]: batch verification of
pairing-based signatures with b = 80 costs about 214 field multiplications per
signature, i.e., about 200nb field multiplications. This is the cost in the best
case, when there are no forgeries; the cost increases rapidly with the number of
forgeries. For comparison, Hisil et al. showed in [12] how to reduce the cost of
an elliptic-curve addition to at most 8 field multiplications; we never use more
than 4nb additions, i.e., 32nb field multiplications.

Previous work on elliptic-curve signature verification. There is an exten-
sive literature analyzing and optimizing various techniques to verify one elliptic-
curve signature. The main bottleneck here is double-scalar multiplication, com-
puting an expression of the form `P +mQ where ` and m are scalars (typically
256 bits) and P and Q are elliptic-curve points. Typical speedups include signed
digits, windows, sliding windows, fractional windows, and merged doublings;
combining these speedups typically reduces the number of additions by a fac-

4 Bernstein, Doumen, Lange, Oosterwijk

tor between 2 and 3 compared to the simplest binary methods of computing
`P + mQ. There are also many lower-level speedups inside elliptic-curve addi-
tions, field arithmetic, etc., but these speedups have no effect on the number-of-
additions metric used for the rest of this paper.

There are, as mentioned above, some papers proposing batch verification of
elliptic-curve signatures. The central idea is to check that several quantities
V1 = R1 + h1A1 − S1B, V2 = R2 + h2A2 − S2B, etc. are all 0 by checking
whether a random linear combination

V = z1R1 + z2R2 + · · ·+ (z1h1)A1 + (z2h2)A2 + · · · − (z1S1 + z2S2 + · · ·)B

is 0. If the verifier chooses the “randomizers” z1, z2, . . . as independent uniform
random 128-bit integers then this test cannot be fooled with probability above
2−128. We emphasize the importance of including these randomizers; in Section 2
we explain how to break the non-randomized batch-verification system from a
very recent paper.

This linear-combination idea was proposed in [23] for (tweaked) DSA, in the
simpler (and faster but obviously less useful) case of verifying multiple signatures
of the same user, i.e. A1 = A2 = · · · . The speedup in [23] was only a small
constant for high security levels, because [23] computed V using only very simple
techniques for multi-scalar multiplication, but [4] showed that the Bos–Coster
multi-scalar multiplication method produced a much larger speedup. It is easy to
see that the speedup here is asymptotically Θ(lg n) for a batch of n signatures.
The first paper to point out a non-constant speedup was [2] by Bellare, Garay,
and Rabin, using a different technique that does not appear to be competitive
with advanced multi-scalar multiplication methods.

What is missing from all of these papers is an efficient way to handle forgeries.
Consider, for example, the following quote from [4]:

If verification fails then there must be at least one invalid signature. We
then fall back to verifying each signature separately. There are several
techniques to identify a small number of invalid signatures in a batch,
but all known techniques become slower than separate verification as the
number of invalid signatures increases; separate verification provides the
best defense against denial-of-service attacks.

This strategy means that an attacker sending a low volume of forgeries, enough
to have one forgery in each batch, causes a severe slowdown in the software from
[4]: each signature ends up being verified separately. It is of course desirable
to reduce this damage, if that can be done without compromising performance
under heavier denial-of-service floods; what is most desirable is to simultaneously
reduce the cost of handling a few forgeries, the cost of handling many forgeries,
and every case in between.

Previous work on forgery identification. Pastuszak, Michalek, Pieprzyk,
and Seberry in [25] proposed a binary-splitting method of identifying forgeries:
if a batch is bad (i.e., fails verification), split it into two halves and apply the same
algorithm to each half separately. It is easy to see that this algorithm rapidly

Faster batch forgery identification 5

becomes slower than separate verification as the number of forgeries increases;
however, this algorithm is the foundation for several improved algorithms dis-
cussed below.

If one measures algorithm speed by simply counting the number of batch
verifications then the binary-splitting method seems quite fast, identifying each
forgery in lg n batch verifications where n is the batch size; this is optimal for a
single forgery, and diverges only slowly from optimality as the number of forgeries
grows. However, the number of batch verifications is not a good measure for
the actual amount of time needed to identify the forgeries. Not all verifications
require the same amount of time: a larger batch takes longer. Counting additions
is a much more realistic cost measure and shows that the binary-splitting method
of [25] is actually quite slow.

Pastuszak, Pieprzyk, and Seberry in [26] considered the possibility of non-
adaptively choosing subbatches to verify. All available evidence suggests that this
non-adaptivity restriction compromises performance even when the number of
forgeries is somehow known in advance, and it certainly does not improve perfor-
mance. Furthermore, non-adaptivity is clearly a disaster when the approximate
number of forgeries is not known in advance. We therefore focus on the more
flexible adaptive case.

Zaverucha and Stinson in [39] pointed out that there was already a long lit-
erature on the number of tests required by adaptive and non-adaptive “group
testing” algorithms. Aside from terminology, a “group testing” algorithm is pre-
cisely a forgery-identification algorithm built on top of batch verification; in
particular, both [25] and [26] fit into this framework. However, the following
papers (some of which predate [39]) do not fit into this framework.

Law and Matt in [18] were the first to point out, in the context of pairing-
based signatures, that batch verification is providing more information than a
simple “yes” or “no”. The most important idea, transported to the elliptic-curve
case discussed in this paper, is that one can reuse the randomizers z1, . . . , zn
from V = z1V1 + · · · + znVn. If V 6= 0 then the binary-splitting method begins
with a half-size multi-scalar multiplication to compute a left-half sum z1V1 +
· · ·+ zn/2Vn/2; and then the right-half sum zn/2+1Vn/2+1 + · · ·+ znVn is trivially
computed with a single subtraction, rather than another half-size multi-scalar
multiplication.

Law and Matt also suggested computing V ′ = z1V1 + 2z2V2 + · · ·+ nznVn. If
there is just one invalid signature, say Vi 6= 0, then V ′ = iV , and one can compute
i in O(

√
n) additions by the baby-step-giant-step method. Further development

of this approach appears in [18], [20], and [21].
We start from the same ideas, move from pairing-based signatures to elliptic-

curve signatures for extra speed, and then point out additional speedups. For
example, we introduce two ways to drastically reduce the cost of computing the
left-half sum described above, without penalizing other parts of the algorithm.
To simplify verifiability and reuse of our results we have posted public-domain
implementations of our main algorithms at http://cr.yp.to/badbatch.html.

http://cr.yp.to/badbatch.html

6 Bernstein, Doumen, Lange, Oosterwijk

2 On the importance of being random

The paper [16] by Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Iyer,
appearing at Africacrypt 2012 earlier this year, proposed a scheme for batch
verification of ECDSA signatures. This section shows that the scheme is insecure.
The main problem is that the scheme does not randomize the linear combination
being verified.

ECDSA. The basic ECDSA signature scheme works as follows. The system
parameters are a prime `, a generator B of an order-` group 〈B〉, and a cryp-
tographic hash function H. The secret key of a user is a random integer a in
[1, `]; the user’s public key is A = aB. The group is a subgroup of the set of Fp-
rational points on an elliptic curve given in Weierstrass form y2 = x3 + c4x+ c6
for c4, c6 ∈ Fp. An affine point is a tuple P = (x(P), y(P)) satisfying the curve
equation; the negative of this point is −P = (x(P),−y(P)). The curve consists
of the affine points and the point at infinity P∞, which is the neutral element of
the group of points.

A signature on message M under public key A is a tuple (r, s) such that the
x-coordinate of (H(M)/s)B+ (r/s)A is congruent to r modulo `. The standard
approach to verification is to compute R = (H(M)/s)B + (r/s)A and to check
that x(R) is congruent to r modulo `.

The scheme from [16] for batch ECDSA verification. The batch verifi-
cation scheme described in [16] verifies signatures (ri, si) on messages Mi and
public keys Ai for 1 ≤ i ≤ n by reconstructing Ri from ri and checking whether∑n

i=1Ri equals (
∑n

i=1H(Mi)/si)B +
∑n

i=1(ri/si)Ai.
The obvious approach to reconstructing Ri from ri is to first compute x(Ri)

from x(Ri) mod ` = ri and then compute y(Ri) from the curve equation. The
first step is straightforward in the common case that ` ≈ p: there is almost
always a unique integer x(Ri) ∈ {0, 1, . . . , p− 1} satisfying x(Ri) mod ` = ri.
The second step is more difficult: it seems to require a square-root computation,
and furthermore can at best determine ±y(Ri); in a batch of n signatures one
needs to guess as many as 2n combinations of signs. This implies that the batches
need to be chosen small; in [16] the maximum batch size considered is 8. The
paper puts the main effort into developing new techniques for computing

∑
Ri

from the x-coordinates in a more efficient manner and reports a good speed-up
factor compared to individual verification.

First attack. A batch signature system is broken if invalid signatures pass as
valid. The easiest way to break the above scheme is to submit (r, s) as a signature
on a target message M under a target public key A and also (r,−s) as a signature
on the same message under the same public key, where r is any x-coordinate of
a curve point. The verification algorithm reconstructs two points R,−R having
x-coordinate r, and then the contributions of these signatures cancel out in both
sums:

R+ (−R) = P∞ = (H(M)/s)B + (r/s)A+ (H(M)/(−s))B + (r/(−s))A.

Faster batch forgery identification 7

This attack relies on the fact that r does not pinpoint a unique R: it can be
expanded to R and to −R.

These forgeries are easy to detect once the system is altered to check for them.
Excluding a sum of P∞ is not adequate if the batch includes other signatures
along with these two forgeries, but checking for repeated r values is adequate.
However, as we will see in a moment, there are other attacks on the scheme that
are much more difficult to detect.

Second attack. Assume that the attacker knows the secret key a2 for a public
key A2. The following attack convinces the verifier to accept a signature on any
target message M1 under any target public key A1, along with a signature on
M2 under A2.

The attacker picks a random k1, and computes R1 = k1B and r1 = x(R1)
as in proper signature generation. He then picks a random s1 and computes
R2 = (r1/s1)A1, r2 = x(R2), and s2 = (H(M2) + r2a2)/(k1 − H(M1)/s1);
the denominators are nonzero with overwhelming probability. The attacker then
submits (r1, s1) as signature on M1 from A1 and (r2, s2) as signature on M2

from A2 to the batch system.
The verifier now reconstructs the same R1 and R2, and computes R1 + R2

and (H(M1)/s1 + H(M2)/s2)B + (r1/s1)A1 + (r2/s2)A2, both of which equal
k1B + (r1/s1)A1. These forgeries thus pass verification, even though neither of
them is valid individually and the attacker does not know the secret key for A1.
The forgeries also work if they are batched together with other signatures in the
same verification.

As far as we can tell, the most efficient way to distinguish (r1, s1) and (r2, s2)
from properly formed signatures is to verify them separately. This trivial batch-
verification scheme is obviously secure but also sacrifices all of the speedup re-
ported in [16].

Consequences. These attacks show that the scheme considered in [16] is inse-
cure. The second attack would work even if the ECDSA signature system were
replaced by a signature system such as EdDSA that transmits R instead of r,
removing the ±R ambiguity. The second attack shows that it is important to use
randomness in the tests: to introduce n sufficiently random integers zi to scale
the equations and verify

∑n
i=1 ziRi = (

∑n
i=1 ziH(Mi)/si)B +

∑n
i=1(ziri/si)Ai

instead.
Randomizers were used in the original batch signature scheme introduced

by Naccache, M’Räıhi, Vaudenay, and Raphaeli in [23]. There is no discussion
of randomizers in [16], and in particular no explanation of why the randomiz-
ers were omitted in [16], but it is clear that computing

∑n
i=1 ziRi would take

much longer than computing
∑n

i=1Ri, and it is even harder to compute its x-
coordinate from the ri without square-root computations to recover each point
Ri first.

8 Bernstein, Doumen, Lange, Oosterwijk

3 High level: Binary search

This section presents a family of algorithms for verifying a batch of n EdDSA
signatures. We begin with a simple binary-search algorithm and then discuss
several variants of the algorithm.

These algorithms rely on multi-scalar multiplication as a lower-level subrou-
tine. Section 4 presents several multi-scalar multiplication algorithms usable in
this context, pointing out new synergies between these two levels of algorithms.
Section 5 analyzes the overall algorithm cost and reports the results of computer
experiments with particular algorithm parameters.

For simplicity we assume that the batch size n is a power of 2. Other batch
sizes can be split into power-of-2 batch sizes, or handled directly by straightfor-
ward generalizations of the algorithms here.

We also assume for simplicity that B has prime order `, and that all input
points Ri, Ai are known in advance to be in the group generated by B. For
elliptic-curve groups with small cofactors the usual way to ensure this is to
multiply all input points by the cofactor, such as the cofactor 8 in [3] and [4]. A
closer look shows that this multiplication can safely be suppressed in the context
of signature verification, but since the multiplication has very low cost we skip
further discussion.

Randomizers. All of our algorithms use the randomizers zi discussed in Sec-
tions 1 and 2. As precomputation we choose z1, z2, . . . , zn independently and
uniformly at random from the set

{
1, 2, 3, . . . , 2b

}
, where b is the security level.

There are several reasonable ways to do this: for example, generate a uniform
random b-bit integer and add 1, or generate a uniform random b-bit integer and
replace 0 with 2b.

Of course, it is also safe to simply generate zi as a uniform random b-bit
integer, disregarding the negligible chance that zi = 0; but this requires minor
technical modifications to the security guarantees stated below, so we prefer
to require zi 6= 0. It is also safe to simulate random numbers as outputs of a
strong stream cipher using a long-term random secret key; this is helpful on
platforms where generating randomness is expensive. Rather than maintaining
stream-cipher state (e.g., the counter in the AES-CTR stream cipher) one can
safely encrypt a collision-resistant hash of the input batch.

We also precompute integers h1, h2, . . . , hn as the standard (system-specified)
hashes of (R1, A1,M1), (R2, A2,M2), . . . , (Rn, An,Mn) respectively. By defini-
tion the ith signature is valid if SiB = Ri+hiAi, and a forgery if SiB 6= Ri+hiAi.

Leaf randomizers. In this section we define Vi = zi(Ri + hiAi − SiB). Note
the inclusion of zi here, deviating from Section 1. This is not merely a change of
notation: to verify a single signature (when this is required), our algorithm com-
putes this Vi, whereas the standard verification approach from [4] is to compute
SiB − hiAi. Note that signature i is valid if and only if Vi = 0.

The standard approach would seem at first glance to be more efficient: com-
puting SiB − hiAi involves two full-size (2b-bit) scalars Si, hi, while computing
Vi as ziRi + zihiAi − ziSiB involves two full-size scalars zihi mod `, ziSi mod `

Faster batch forgery identification 9

V

dddddddddddddddddddddddddddddddd

V1,8

jjjjjjjjjjjjjj V9,16

jjjjjjjjjjjjjj

V1,4

tttttt
V5,8

tttttt
V9,12

tttttt
V13,16

tttttt

V1,2

����
V3,4

����
V5,6

����
V7,8

����
V9,10

����
V11,12

����
V13,14

����
V15,16

����

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

Fig. 3.1. Tree of sums of randomized leaves V1, V2, . . . , Vn for n = 16.

and a half-size scalar zi, for a total of 25% more scalar bits. However, the cost
of multi-scalar multiplication (see Section 4) is affected much more by the max-
imum number of scalar bits than by the total number of scalar bits; the cost of
computing Vi turns out to be only slightly higher than the cost of computing
SiB − hiAi. This slight extra expense pays off in subsequent steps of the batch
algorithm, as discussed below.

Shared randomizers. Starting from these randomized quantities V1, . . . , Vn
we draw a binary tree as illustrated in Figure 3.1, with V1,2 = V1 + V2 and
V3,4 = V3 + V4 and so on at the second level, V1,4 = V1,2 + V3,4 and so on at the
third level, etc. In general we write Vj,k for the sum

∑
j≤i≤k Vi of leaf nodes. If

all of the signatures at positions j, j + 1, . . . , k are valid then Vj,k = 0, while if
any of the signatures are invalid then with overwhelming probability Vj,k 6= 0.
The root node V1,n at the top represents the randomized signature verification
of the entire batch; we denote this sum by V as a shorthand.

The set of tree nodes actually computed by the algorithm is determined adap-
tively; see below.

We emphasize that one sequence of randomizers is shared across all levels of
the tree, including the leaf nodes. This reuse does not compromise the security
of the algorithm: if signature i is invalid then with overwhelming probability all
of the ancestor tree nodes Vj,k with j ≤ i ≤ k are nonzero. More precisely, fix a
batch of signatures, and define a randomizer sequence (z1, . . . , zn) as “bad” if it
produces any zeros among ancestor tree nodes of any invalid signature; then the
probability of a randomizer sequence being bad is at most (n−1)/2b. The point is
that if signature i is invalid (i.e., Ri+hiAi−SiB 6= 0), then any equation Vj,k = 0
for j ≤ i ≤ k is equivalent to a linear equation · · ·+zi(Ri+hiAi−SiB)+ · · · = 0.
For each choice of z1, . . . , zi−1, zi+1, . . . , zn this equation is satisfied by exactly
one integer zi modulo `, and therefore at most one out of the 2b permitted choices
of zi. A randomizer sequence is therefore “(j, k)-bad” with probability at most
1/2b for j < k (i.e., non-leaf nodes), and with probability 0 for j = k (i.e., leaf

10 Bernstein, Doumen, Lange, Oosterwijk

nodes). There are n − 1 non-leaf nodes, so a randomizer sequence is bad with
probability at most (n− 1)/2b.

The basic batch-forgery-identification algorithm. The following algorithm
takes as input public keys A1, A2, . . . , An, signatures (R1, S1), . . . , (Rn, Sn), pre-
computed hashes h1, h2, . . . , hn, and precomputed randomizers z1, z2, . . . , zn.
The algorithm also takes an optional input V ; this is used when the algorithm
calls itself recursively in Step 5.

The algorithm provides two outputs: first, V , whether or not V was provided
as input; second, an n-bit string (b1, b2, . . . , bn). With overwhelming probability
bi = 1 if and only if signature i is valid.

The algorithm has six steps:

1. Batch verification: Compute V =
∑

i zi(Ri + hiAi − SiB), if V was not
provided as input. Output V . If V = 0, output n bits (1, 1, . . . , 1) and stop.

2. Forgery rejection: If n = 1, output (0) and stop. (At this point V 6= 0, so
the signature is invalid.)

3. Left subtree: Apply the same algorithm recursively to A1, A2, . . . , An/2;
(R1, S1), . . . , (Rn/2, Sn/2); h1, . . . , hn/2; and z1, . . . , zn/2; obtaining outputs
V1,n/2 and (b1, . . . , bn/2).

4. Right root: If V1,n/2 = 0, set Vn/2+1,n = V . If V1,n/2 = V , set Vn/2+1,n = 0.
Otherwise compute Vn/2+1,n = V − V1,n/2.

5. Right subtree: Apply the same algorithm recursively to An/2+1, . . . , An;
(Rn/2+1, Sn/2+1), . . . , (Rn, Sn); hn/2+1, . . . , hn; zn/2+1, . . . , zn; and Vn/2+1,n;
obtaining outputs Vn/2+1,n and (bn/2+1, . . . , bn).

6. Final output: Output (b1, . . . , bn).

This algorithm is optimistic, hoping that there are no forgeries: Step 1 finishes
the algorithm as quickly as possible in this case. See Section 4 for details of the
computation in this step. The overall binary-splitting structure of this algorithm
is taken from [25]. The fast computation of Vn/2+1,n in Step 4, using at most
one subtraction, is taken from [18]; this is also the reason for treating V as
an output and an optional input. This fast computation means that at most n
nodes require a multi-scalar multiplication in Step 1; Figure 3.2 illustrates the
worst case.

Another way to organize essentially the same computation is to record a
partial tree of known Vj,k values, and to very quickly update the tree whenever
a forgery is discovered, in effect retroactively removing the forgery from the
batch. Start the computation at the root; after computing a zero node, deduce
without further computation that all descendants of the node are also zero; after
computing a nonzero leaf node Vi 6= 0, replace all ancestors Vj,k by Vj,k − Vi,
skipping the subtraction in the common case that Vj,k = Vi; after computing a
nonzero non-leaf node, compute the left child node (and all of its descendants
in order), and then simply copy this (possibly updated) node to the right child
node.

Leaf randomizers, continued. In the case n = 1 this algorithm computes V1 =
z1(R1 + h1A1 − S1B). As discussed above, this is only slightly more expensive

Faster batch forgery identification 11

1

ddddddddddddddddddddddddddddddddd

2

jjjjjjjjjjjjjjjjj .

jjjjjjjjjjjjjjjj

3

tttttttt
.

ttttttttt 10

ttttttt
.

tttttttt

4

�����
.

����� 7

�����
.

����� 11

�����
.

����� 14

�����
.

�����

5 . 6 . 8 . 9 . 12 . 13 . 15 . 16 .

Fig. 3.2. Tests in worst case are depicted in order.

than computing S1B − h1A1. We now explain the compensating advantage of
computing V1.

Consider a batch of two signatures that fails batch verification. i.e., V1,2 6= 0.
This algorithm computes V1 (showing whether the first signature is valid), and
then deduces V2 (showing whether the second signature is valid) with at most
one subtraction. For comparison, one could instead compare S1B−h1A1 to R1 to
see whether the first signature is valid, but one then still needs to check whether
the second signature is valid. One could check the second signature separately,
or multiply R1 +h1A1−S1B by z1 to obtain V1 and thus V2, but simply starting
with V1 is less expensive.

Early abort. This algorithm is faster than separate verification when there are
not many forgeries, but as discussed in subsequent sections it becomes noticeably
slower than separate verification when there are many forgeries. The gap is not
very large, but we would still like to minimize it.

We thus propose (1) using the fraction of invalid signatures found so far as
an estimate for the expected fraction of invalid signatures in the rest of the tree,
and (2) deciding on this basis whether it is best to abort the tree structure and
check individual signatures.

An attacker might try to spoil the estimate by, e.g., placing several invalid
signatures at the beginning of a large batch. After those signatures the algorithm
will confidently, but incorrectly, estimate that the entire batch is invalid. To
prevent such attacks one can simply apply a random permutation to the sequence
of signatures before applying the algorithm. (One can also imagine tracking
forgery percentages long term from one batch to another, but for simplicity we
handle each batch separately.)

There is, furthermore, no need for aborts to be permanent: one can return to
binary search for the next part of the tree if the fraction of invalid signatures
has become small enough again. We actually propose making a new decision

12 Bernstein, Doumen, Lange, Oosterwijk

1

ddddddddddddddddddddddddddddddddd

2

jjjjjjjjjjjjjjjjj .

jjjjjjjjjjjjjjjjj

3

tttttttt
.

ttttttttt .

ttttttttt

��

.

ttttttttt

4

�����
.

�����
.

�����

��

.

�����
.

�����

��

.

�����
.

�����

��

.

�����

5 . 6 . 7 8 9 . 10 11 12 13 14 15 16 .

Fig. 3.3. Tests performed for n = 16 when all signatures are invalid, using the early
abort. Arrows denote the test replacements and savings.

whenever a node is about to be computed. In the notation of the basic algorithm
above, we dynamically choose between

– optimism: computing V , and then, if V 6= 0, computing V1,n/2 and deducing
Vn/2+1,n = V − V1,n/2; or

– pessimism: computing V1,n/2 and Vn/2+1,n, and then deducing V = V1,n/2 +
Vn/2+1,n.

If V is provided as input then optimism is better. If V is not provided as input
then we use (1 − p)n as an estimate of the chance that V = 0, where p is
the fraction of invalid signatures found so far (or 0 at the beginning of the
algorithm), and then compare the expected costs of optimism and pessimism,
using straightforward models of the costs of computing V, V1,n/2, Vn/2+1,n.

When there are few forgeries, this approach performs the same computations
as the basic algorithm. When there are many forgeries, this approach rapidly con-
verges on checking each signature separately, as shown in Figure 3.3. Compared
to the previous worst case, where we computed the top node of each vertical
branch, we now only need to compute the top nodes of the main left diagonal
branch. In all other vertical branches, the leaf node is computed directly. (One
can do marginally better in this extreme case by immediately updating p after
discovering V1,16 6= 0: there must be a forgery somewhere, even though it has
not been located yet.)

When there is a medium fraction of forgeries, this approach skips roots of large
subtrees (since those roots are likely to fail verification and require computations
of descendant nodes), but computes roots of small subtrees. For example, assume
that we identified exactly 2 forgeries out of the first 16 signatures. We expect the
same fraction of 1/8 invalid signatures in the next group of 16, so we estimate
that V17,32 = 0 with probability only 11%, that V17,24 = 0 with probability 34%,
and that V17,20 = 0 with probability 59%. The next step depends on scalar-
multiplication costs; we might decide to skip V17,32 and V17,24, and proceed

Faster batch forgery identification 13

directly to V17,20. If the fraction of invalid signatures remains stable then we will
check these 16 signatures as 4 batches of 4 signatures each. We then decide anew
how to check the next 32 signatures.

Smaller randomizers. Large randomizers zi are critical for detecting multi-
forgeries, as discussed in Section 2, but this does not mean that large randomizers
are required at each step of the tree. An alternative approach is to use one
sequence of large randomizers at the root, and to use a second sequence of much
smaller randomizers, say 20 bits each, for the subsequent levels of the tree.

This approach slightly speeds up multi-scalar multiplication at non-root nodes.
However, this approach also has several costs. First, the right child of the root
node is no longer obtained for free. Second, the sharing described in Section 4
begins only at the children of the root node, not at the root node itself. Third,
an attacker can fool the smaller randomizers with noticeable probability, on the
scale of 2−20, so after identifying forgeries using the smaller randomizers one
must recompute the corresponding portion of the root node. If this root-node
update shows that any forgeries remain then one must choose a new sequence of
smaller randomizers and try the computation again on the remaining signatures.

4 Low level: Trees of optional multi-scalar multiplications

This section looks more closely at the first step of the algorithm of Section 3:
namely, batch verification, i.e., computing a linear combination

V = z1R1 + · · ·+ znRn + (z1h1)A1 + · · ·+ (znhn)An − (z1S1 + · · ·+ znSn)B

of known elliptic-curve points R1, . . . , Rn, A1, . . . , An, B. If V 6= 0 then the al-
gorithm calls itself recursively and computes a smaller linear combination

V1,m = z1R1 + · · ·+zmRm +(z1h1)A1 + · · ·+(zmhm)Am− (z1S1 + · · ·+zmSm)B

with m = n/2.
The computation of V by itself is a standard (2n + 1)-scalar-multiplication

problem. The only mildly uncommon feature of this problem is that the scalars
have variable size, typically n 128-bit scalars (the zi’s) and n+ 1 256-bit scalars;
but typical scalar-multiplication algorithms can trivially take advantage of the
shorter scalars. Similarly, the computation of V1,m by itself is a standard (2m+1)-
scalar-multiplication problem.

Quite nonstandard, however, is the multi-scalar-multiplication problem that
we actually face: computing V and then perhaps computing V1,m. If we knew
that we wanted to compute both V and V1,m then the obvious approach would be
two separate half-size computations, one for V1,m and one for Vm+1,n = V −V1,m;
but we do not know this in advance. If V turns out to be 0 then we will not need
V1,m and Vm+1,n, and a single full-size computation of V will be more efficient
than two separate half-size computations.

The point of this section is that some — although certainly not all — state-of-
the-art algorithms to compute V can be modified at negligible cost to remember

14 Bernstein, Doumen, Lange, Oosterwijk

many intermediate results useful for computing V1,m. The same idea can easily
be pushed to further levels: for example, computing V , then optionally V1,m,
then optionally V1,bm/2c and optionally Vm+1,m+1+b(n−m)/2c.

Overlap in the Bos–Coster approach. As an illustration of what does not
seem to work very well in this context, consider the Bos–Coster algorithm re-
ported in [8, Section 4]. This algorithm computes a1P1 + a2P2 + a3P3 + · · · ,
where a1 ≥ a2 ≥ a3 ≥ · · · , by recursively computing (a1−a2)P1 +a2(P1 +P2)+
a3P3 + · · · . This algorithm was used in [4] to compute V .

The first few additions performed in the Bos–Coster algorithm depend only
on the largest scalars. If we permute signatures so that z1h1 ≥ z2h2 ≥ · · · , and
handle z1S1+· · ·+znSn separately, then the first ≈ m additions in the algorithm
will involve only A1, . . . , Am, and will thus be the same as the first additions
involved in computing V1,m. However, this is only a slight speedup.

Overlap in the Straus approach. As a better example, consider the Straus
algorithm [37], often miscredited to Shamir. This algorithm computes a1P1 +
a2P2 + · · · + anPn by recursively computing ba1/2ccP1 + ba2/2ccP2 + · · · +
ban/2ccPn, doubling c times, and then adding the precomputed quantity (a1 mod
2c)P1 + (a2 mod 2c)P2 + · · · + (an mod 2c)Pn. Here 2c is a radix chosen by the
algorithm; for example, it is reasonable to take c = 5 for 256-bit scalars. We skip
discussion of standard speedups such as signed digits.

This algorithm scales poorly to large values of n (because it involves too
much precomputation, even for c = 1), but a standard variant scales well to
large values of n: at the last step one instead adds the separate precomputed
quantities (a1 mod 2c)P1, (a2 mod 2c)P2, etc.

Evidently one can reuse these precomputed quantities for a subsequent multi-
scalar multiplication involving P1, . . . , Pm with the same choice of c. Further-
more, if the precomputed quantities are added from left to right in each step, then
one of the intermediate results is exactly (a1 mod 2c)P1 + · · ·+ (am mod 2c)Pm.
This drastically reduces the cost of computing a1P1 + · · · + amPm when m is
large: each step of the recursion drops from cost c + m (c doublings and m
additions) down to just c+ 1.

The same overlap applies immediately to a1P1 + · · · + abm/2cPbm/2c. Even
better, if we change the order to add precomputed quantities, recursively adding
the P1, . . . , Pm part and the Pm+1, . . . , Pn part, then the same overlap applies
not just to left descendants but to arbitrary descendants.

Overlap in the Pippenger approach. As a more advanced example, consider
Pippenger’s multi-scalar-multiplication method. This method was published in
[28] almost forty years ago; various special cases of the method were subsequently
reinvented and published in the papers [6] and [19] and continue to be frequently
miscredited to those papers. We comment that the patent accompanying [6]
(U.S. patent 5299262) expired this year.

Pippenger’s method is not as simple as the Bos–Coster method or the Straus
method, but it is considerably faster when there are many large scalars. It is
almost twice as fast in some cases, and it is within 1 + o(1) of optimal for

Faster batch forgery identification 15

essentially all sequences of scalars; see generally [30]. Of course, this does not
imply that Pippenger’s method is optimal for the problem of computing V and
then perhaps V1,m, but inspecting the details shows that Pippenger’s approach
does allow considerable savings in computing V1,m.

The following special case of Pippenger’s algorithm has similar performance
to the Bos–Coster method and is adequate to illustrate the idea. Choose a radix
2c as above, and proceed as in Straus’s algorithm, but replace the last step
with the following computation. Sort the points P1, P2, . . . , Pn into 2c buckets
according to the values a1 mod 2c, a2 mod 2c, . . . , an mod 2c. Discard bucket 0
and add the points in the remaining buckets, obtaining sums S1, . . . , S2c−1. Now
compute

(a1 mod 2c)P1 + · · ·+ (an mod 2c)Pn = S1 + 2S2 + · · ·+ (2c − 1)S2c−1

as the sum of the intermediate quantities S2c−1, S2c−1 + S2c−2, . . ., S2c−1 +
S2c−2 + · · ·+ S1.

Observe that computing a1P1 + · · ·+ amPm in the same way, using the same
value of c, puts P1, P2, . . . , Pm into exactly the same buckets. If for the a1P1 +
· · · + anPn computation we are careful to add points in each bucket from left
to right then the intermediate result after P1, P2, . . . , Pm will be exactly the
sum relevant to a1P1 + · · · + amPm. For typical parameters there are several
points in each bucket, so this approach is several times faster than a standard
computation of a1P1 + · · · + amPm. As before, it is even better to change the
order to add points in each bucket, recursively adding the points that come from
P1, P2, . . . , Pm and the points that come from Pm+1, . . . , Pn.

Handling the base point. These modified versions of the Straus and Pippenger
methods apply directly to

z1R1 + (z1h1)A1 + · · ·+ znRn + (znhn)An

but do not apply directly to (z1S1 + · · ·+ znSn)B, the last component of V .
The simplest way to handle these multiples of B is to compute them sepa-

rately. Because B is a fixed base point, one can afford a precomputed table of,
e.g., B, 2B, 3B, . . . , (2c − 1)B and 2cB, 2 · 2cB, 3 · 2cB, . . . , (2c − 1) · 2cB and so
on. Computing any desired multiple of B then takes fewer than 1/c additions
for each bit of the scalar, a very small cost compared to the other computations
discussed here.

5 Analysis

This section analyzes the cost of identifying all of the forgeries among n elliptic-
curve signatures at a 2b security level. Full-size scalars such as hi, Si, zihi mod
`, ziSi mod ` then have 2b bits as discussed in Section 1, while the randomizers
zi have b bits.

Our web page http://cr.yp.to/badbatch.html includes all of the software
mentioned in this section.

http://cr.yp.to/badbatch.html

16 Bernstein, Doumen, Lange, Oosterwijk

Separate signature verification. Solinas’ widely used Joint Sparse Form [36]
handles a double-scalar multiplication hiAi − SiB using 2b doublings and on
average b additions, for a total cost of 3nb to handle n signatures.

Straus’s method is asymptotically more efficient, handling n signatures at
cost (2 + o(1))nb as b → ∞. Straus’s method involves approximately 2b dou-
blings; every c doublings are followed by 2 additions, and on average a fraction
1/2c of the additions are skippable additions of 0. The additions rely on an initial
computation of 2A1, 3A1, . . . , (2

c−1)A1, which costs 2c−2, and a free precompu-
tation of 2B, 3B, . . . , (2c− 1)B. The total cost for n signatures is approximately
(2b+ (1− 1/2c)(2/c)2b+ 2c − 2)n. One can balance the terms (1− 1/2c)(4/c)b
and 2c − 2 by taking c close to 2 + lg b − lg lg b; the total cost is then roughly
(2 + 8/ lg b)nb.

Our separate3.py software uses Straus’s method with c = 4 and with two
standard speedups, namely signed digits and sliding windows. This software uses,
on average, fewer than 2.8nb additions for b = 128. There is a small variance:
2.75nb and 2.82nb are not unusual. We would expect more detailed optimization
here, in particular using more precomputed multiples of B, to beat 2.7nb.

Batch verification. All of our batch-forgery-identification algorithms start with
batch verification, computing V . If there are no forgeries — no attackers attempt-
ing to fool the receiver or deny service — then this is the end of the computation.

Straus’s algorithm computes V with 2b doublings as above, approximately
n(b/c) additions for parts of ziRi, approximately n(2b/c) additions for parts of
(zihi)Ai, and negligible cost for B. The additions rely on initial computations
costing 2n(2c − 2). The total cost is approximately (2/n+ 3/c+ 2(2c − 2)/b)nb.
If c is chosen close to lg(1.5b)− lg lg b then this cost is roughly (2/n+ 6/ lg b)nb.

Our straus6.py software, with b = 128 and c = 5, uses 1.15nb additions for
n = 16; 0.98nb additions for n = 16; 0.90nb additions for n = 32; and 0.86nb
additions for n = 64.

We also experimented with the Bos–Coster algorithm (boscoster2.py) and
did some preliminary analysis of Pippenger’s algorithm. Compared to Straus’s
algorithm, we obtained better batch-verification speeds with the Bos–Coster al-
gorithm (e.g., cost 0.55nb for n = 64 and b = 128) and we expect to obtain better
batch-verification speeds with Pippenger’s algorithm. Asymptotically the Bos–
Coster algorithm costs O(nb/ lg n) and Pippenger’s algorithm costs O(nb/ lg nb).
However, we decided to focus on Straus’s algorithm for our experiments because
Straus’s algorithm allows much better reuse of intermediate results inside batch
forgery identification.

Batch forgery identification. For concreteness we focus on the overlap inside
Straus’s algorithm inside binary search using shared randomizers (including leaf
randomizers), without early aborts. After the root node (i.e., the batch verifi-
cation discussed above), reuse of intermediate results reduces each subsequent
multi-scalar multiplication to approximately 2b doublings and 4b/c additions.

We emphasize that, no matter how many forgeries there are, this strategy is
within 1+o(1) of separate signature verification as b→∞. At most n tree nodes
require multi-scalar multiplication, and each multi-scalar multiplication costs

Faster batch forgery identification 17

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

 0 1 2 3 4 5 6 7 8

Fig. 5.1. Observed cost αnb of identifying forgeries among n = 8 signatures for b = 128.
Horizontal axis is number of forgeries. Vertical axis is α. Each circle indicates average
cost over 101 experiments; error bars indicate quartiles.

(2+o(1))b after O(nb/ lg b) for the root, so the total cost is at most (2+o(1))nb,
just like separate signature verification. If a positive constant fraction of the
signatures are valid then the number of nodes required is a constant factor below
n and this strategy is a constant factor faster than separate signature verification;
if the number of forgeries drops then this strategy becomes a logarithmic factor
faster than separate signature verification.

For constant b, such as b = 128, the picture is more complicated. Each com-
puted non-root node has similar cost to a separate signature verification (in fact
slightly lower cost), but the root node adds a significant extra cost, so this al-
gorithm becomes noticeably slower than separate signature verification as the
number of forgeries increases. Our straus6.py computer experiments indicate
that the cutoff is around n/3 forgeries for b = 128. See Figures 5.1, 5.2, and 5.3.

References

[1] — (no editor), 17th annual symposium on foundations of computer science, IEEE
Computer Society, Long Beach, California, 1976. MR 56:1766. See [28].

[2] Mihir Bellare, Juan A. Garay, Tal Rabin, Fast batch verification for modular ex-
ponentiation and digital signatures, in Eurocrypt ’98 [24] (1998), 236–250. URL:
http://cseweb.ucsd.edu/~mihir/papers/batch.html. Citations in this docu-
ment: §1.

[3] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006
[38] (2006), 207–228. URL: http://cr.yp.to/papers.html#curve25519. Cita-
tions in this document: §3.

[4] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-
speed high-security signatures, in CHES 2011 [31] (2011). URL: http://eprint.
iacr.org/2011/368. Citations in this document: §1, §1, §1, §1, §1, §1, §1, §3, §3,
§4.

[5] Gilles Brassard (editor), Advances in cryptology — CRYPTO ’89, 9th annual in-
ternational cryptology conference, Santa Barbara, California, USA, August 20–24,

http://cseweb.ucsd.edu/~mihir/papers/batch.html
http://cr.yp.to/papers.html#curve25519
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2011/368

18 Bernstein, Doumen, Lange, Oosterwijk

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 5.2. Same as Figure 5.1 but for n = 16.

1989, proceedings, Lecture Notes in Computer Science, 435, Springer, 1990. ISBN
3-540-97317-6. MR 91b:94002. See [34].

[6] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, David B. Wilson, Fast
exponentiation with precomputation (extended abstract), in Eurocrypt ’92 [33]
(1993), 200–207; see also newer version [7]. Citations in this document: §4, §4.

[7] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, David B. Wilson, Fast
exponentiation with precomputation: algorithms and lower bounds (1995); see also
older version [6]. URL: http://research.microsoft.com/~dbwilson/bgmw/.

[8] Peter de Rooij, Efficient exponentiation using precomputation and vector addi-
tion chains, in Eurocrypt ’94 [9] (1995), 389–399. MR 1479665. Citations in this
document: §4.

[9] Alfredo De Santis (editor), Advances in cryptology — EUROCRYPT ’94, work-
shop on the theory and application of cryptographic techniques, Perugia, Italy,
May 9–12, 1994, proceedings, Lecture Notes in Computer Science, 950, Springer,
1995. ISBN 3-540-60176-7. MR 98h:94001. See [8], [23].

[10] Yvo Desmedt (editor), Advances in cryptology — CRYPTO ’94, 14th annual in-
ternational cryptology conference, Santa Barbara, California, USA, August 21–25,
1994, proceedings, Lecture Notes in Computer Science, 839, Springer, 1994. ISBN
3-540-58333-5. See [19].

[11] Steven D. Galbraith (editor), Cryptography and coding, 11th IMA international
conference, Cirencester, UK, December 18–20, 2007, proceedings, Lecture Notes
in Computer Science, 4887, Springer, 2007. ISBN 978-3-540-77271-2. See [18].

[12] Hüseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, Ed Dawson, Twisted Ed-
wards curves revisited, in Asiacrypt 2008 [27] (2008), 326–343. URL: http://

eprint.iacr.org/2008/522. Citations in this document: §1.
[13] Hideki Imai, Yuliang Zheng (editors), Public key cryptography, third international

workshop on practice and theory in public key cryptography, PKC 2000, Mel-
bourne, Victoria, Australia, January 18–20, 2000, proceedings, Lecture Notes in
Computer Science, 1751, Springer, 2000. ISBN 3-540-66967-1. See [25].

[14] Stanislaw Jarecki, Gene Tsudik (editors), Public key cryptography — PKC 2009,
12th international conference on practice and theory in public key cryptography,
Irvine, CA, USA, March 18–20, 2009, proceedings, Lecture Notes in Computer
Science, 5443, Springer, 2009. ISBN 978-3-642-00467-4. See [20].

http://research.microsoft.com/~dbwilson/bgmw/
http://eprint.iacr.org/2008/522
http://eprint.iacr.org/2008/522

Faster batch forgery identification 19

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fig. 5.3. Same as Figure 5.1 but for n = 32.

[15] Marc Joye, Atsuko Miyaji, Akira Otsuka (editors), Pairing-based cryptography —
Pairing 2010 — 4th international conference, Yamanaka Hot Spring, Japan, De-
cember 2010, proceedings, Lecture Notes in Computer Science, 6487, Springer,
2010. ISBN 978-3-642-17454-4. See [21].

[16] Sabyasachi Karati, Abhijit Das, Dipanwita Roychowdhury, Bhargav Bellur, De-
bojyoti Bhattacharya, Aravind Iyer, Batch verification of ECDSA signatures, in
Africacrypt 2012 [22] (2012), 1–18. Citations in this document: §2, §2, §2, §2, §2,
§2, §2, §2.

[17] Kaoru Kurosawa (editor), Information theoretic security, 4th international confer-
ence, ICITS 2009, Shizuoka, Japan, December 3–6, 2009, revised selected papers,
Lecture Notes in Computer Science, 5973, Springer, 2010. ISBN 978-3-642-14495-
0. See [39].

[18] Laurie Law, Brian J. Matt, Finding invalid signatures in pairing-based batches,
in Cirencester 2007 [11] (2007), 34–53. Citations in this document: §1, §1, §3.

[19] Chae Hoon Lim, Pil Joong Lee, More flexible exponentiation with precomputation,
in Crypto ’94 [10] (1994), 95–107. Citations in this document: §4.

[20] Brian J. Matt, Identification of multiple invalid signatures in pairing-based batched
signatures, in PKC 2009 [14] (2009), 337–356. Citations in this document: §1.

[21] Brian J. Matt, Identification of multiple invalid pairing-based signatures in con-
strained batches, in Pairing 2010 [15] (2010), 78–95. Citations in this document:
§1, §1.

[22] Aikaterini Mitrokotsa, Serge Vaudenay (editors), Progress in cryptology —
AFRICACRYPT 2012, 5th international conference on cryptology in Africa,
Ifrane, Morocco, July 10-12, 2012, proceedings, Lecture Notes in Computer Sci-
ence, 7374, Springer, 2012. See [16].

[23] David Naccache, David M’Räıhi, Serge Vaudenay, Dan Raphaeli, Can D.S.A. be
improved? Complexity trade-offs with the digital signature standard, in Eurocrypt
’94 [9] (1994). Citations in this document: §1, §1, §1, §1, §2.

[24] Kaisa Nyberg (editor), Advances in cryptology — EUROCRYPT ’98, interna-
tional conference on the theory and application of cryptographic techniques, Espoo,
Finland, May 31–June 4, 1998, proceedings, Lecture Notes in Computer Science,
1403, Springer, 1998. ISBN 3-540-64518-7. See [2].

20 Bernstein, Doumen, Lange, Oosterwijk

[25] Jaroslaw Pastuszak, Dariusz Michalek, Josef Pieprzyk, Jennifer Seberry, Identifi-
cation of bad signatures in batches, in PKC 2000 [13] (2000), 28–45. Citations in
this document: §1, §1, §1, §3.

[26] Jaroslaw Pastuszak, Josef Pieprzyk, Jennifer Seberry, Codes identifying bad sig-
nature in batches, in Indocrypt 2000 [32] (2000), 143–154. Citations in this doc-
ument: §1, §1.

[27] Josef Pieprzyk (editor), Advances in cryptology — ASIACRYPT 2008, 14th inter-
national conference on the theory and application of cryptology and information
security, Melbourne, Australia, December 7–11, 2008, Lecture Notes in Computer
Science, 5350, 2008. ISBN 978-3-540-89254-0. See [12].

[28] Nicholas Pippenger, On the evaluation of powers and related problems (prelimi-
nary version), in FOCS ’76 [1] (1976), 258–263; newer version split into [29] and
[30]. MR 58:3682. Citations in this document: §4.

[29] Nicholas Pippenger, The minimum number of edges in graphs with prescribed
paths, Mathematical Systems Theory 12 (1979), 325–346; see also older version
[28]. ISSN 0025-5661. MR 81e:05079.

[30] Nicholas Pippenger, On the evaluation of powers and monomials, SIAM Journal
on Computing 9 (1980), 230–250; see also older version [28]. ISSN 0097-5397.
MR 82c:10064. Citations in this document: §4.

[31] Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded
systems — CHES 2011, 13th international workshop, Nara, Japan, September 28–
October 1, 2011, proceedings, Lecture Notes in Computer Science, 6917, Springer,
2011. ISBN 978-3-642-23950-2. See [4].

[32] Bimal K. Roy, Eiji Okamoto (editors), Progress in cryptology — INDOCRYPT
2000, first international conference in cryptology in India, Calcutta, India, De-
cember 10–13, 2000, proceedings, Lecture Notes in Computer Science, 1977,
Springer, 2000. ISBN 3-540-41452-5. See [26].

[33] Rainer A. Rueppel (editor), Advances in cryptology — EUROCRYPT ’92, work-
shop on the theory and application of cryptographic techniques, Balatonfüred,
Hungary, May 24–28, 1992, proceedings, Lecture Notes in Computer Science,
658, Springer, 1993. ISBN 3-540-56413-6. MR 94e:94002. See [6].

[34] Claus P. Schnorr, Efficient identification and signatures for smart cards, in Crypto
’89 [5] (1990), 239–252; see also newer version [35].

[35] Claus P. Schnorr, Efficient signature generation by smart cards, Journal of Cryp-
tology 4 (1991), 161–174; see also older version [34]. URL: http://www.mi.

informatik.uni-frankfurt.de/research/papers.html. Citations in this docu-
ment: §1.

[36] Jerome A. Solinas, Low-weight binary representations for pairs of integers CORR
2001-41 (2001). URL: http://www.cacr.math.uwaterloo.ca/techreports/

2001/corr2001-41.ps. Citations in this document: §5.
[37] Ernst G. Straus, Addition chains of vectors (problem 5125), American Mathe-

matical Monthly 70 (1964), 806–808. Citations in this document: §4.
[38] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key

cryptography — 9th international conference on theory and practice in public-key
cryptography, New York, NY, USA, April 24–26, 2006, proceedings, Lecture Notes
in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [3].

[39] Gregory M. Zaverucha, Douglas M. Stinson, Group testing and batch verification,
in ICITS 2009 [17] (2010), 140–157. Citations in this document: §1, §1.

http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.mi.informatik.uni-frankfurt.de/research/papers.html
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps
http://www.cacr.math.uwaterloo.ca/techreports/2001/corr2001-41.ps

