
Smaller decoding exponents:
ball-collision decoding

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. Very few public-key cryptosystems are known that can encrypt and decrypt in time
b2+o(1) with conjectured security level 2b against conventional computers and quantum comput-
ers. The oldest of these systems is the classic McEliece code-based cryptosystem.

The best attacks known against this system are generic decoding attacks that treat McEliece’s
hidden binary Goppa codes as random linear codes. A standard conjecture is that the best
possible w-error-decoding attacks against random linear codes of dimension k and length n take
time 2(α(R,W )+o(1))n if k/n→ R and w/n→W as n→∞.

Before this paper, the best upper bound known on the exponent α(R, W ) was the exponent
of an attack introduced by Stern in 1989. This paper introduces “ball-collision decoding” and
shows that it has a smaller exponent for each (R, W ): the speedup from Stern’s algorithm to
ball-collision decoding is exponential in n.

Keywords: McEliece cryptosystem, Niederreiter cryptosystem, post-quantum cryptography, at-
tacks, information-set decoding, collision decoding

1 Introduction

In 1978, McEliece introduced a code-based public-key cryptosystem that has maintained
remarkable strength against every proposed attack. The top threats against McEliece’s system
have always been generic decoding algorithms that decode random linear codes. The standard
conjecture is that the best possible generic decoding algorithm takes exponential time for
any constant asymptotic code rate R and constant asymptotic error fraction W : i.e., time
2(α(R,W )+o(1))n for some positive real number α(R,W ) if k/n → R and w/n → W as n →∞.
Here n is the code length, k is the code dimension, and w is the number of errors.

Two decades ago a flurry of fundamental algorithmic improvements produced a new upper
bound on the optimal decoding exponent α(R,W ). The upper bound is the exponent of a
1989 algorithm by Stern [67]. This upper bound arises from an asymptotic binomial-coefficient
optimization and does not have a simple formula, but it can be straightforwardly computed to
high precision for any particular (R,W ). For example, for W = 0.04 and R = 1+W log2 W +
(1−W ) log2(1−W ) = 0.7577 . . ., Stern’s algorithm shows that α(R,W ) ≤ 0.0809 . . ..

There have also been many polynomial-factor speedups in generic decoding algorithms;
there are dozens of papers on this topic, both inside and outside cryptography. Here is an
illustration of the cumulative impact of many of the speedups. McEliece’s original parameter

Permanent ID of this document: 0e8c929565e20cf63e6a19794e570bb1. Date: 2011.03.07. This work was
supported by the Cisco University Research Program and by the European Commission under Contract
ICT-2007-216646 ECRYPT II.



2 D. J. Bernstein, T. Lange, C. Peters

suggestions (“n = 1024, k = 524, t = 50”) take about 5243
(
1024
50

)
/
(
500
50

)
≈ 281 operations to

break by the simple information-set-decoding attack explained in McEliece’s original paper
[54, Section 3]. (McEliece estimated the attack cost as 5243(1 − 50/1024)−524 ≈ 265; this
underestimate was corrected by Adams and Meijer in [2, Section 3].) The attack presented
by Bernstein, Lange, and Peters in [9], thirty years after McEliece’s paper, builds on several
improvements and takes only about 260.5 operations for the same parameters. That attack
was carried out successfully, decrypting a challenge ciphertext. More recent improvements
include [32] and [59]; see Section 4 for a more comprehensive discussion of the literature.

However, polynomial factors are asymptotically 2o(n), and thus have no relevance to the
exponent α(R,W ) in 2(α(R,W )+o(1))n. The best known upper bound on α(R,W ) has been
unchanged since 1989.

Contents of this paper. This paper presents smaller upper bounds on the decoding expo-
nent α(R,W ). Specifically, this paper introduces a generic decoding algorithm and demon-
strates that this algorithm is, for every (R,W ), faster than Stern’s algorithm by a factor
exponential in n. We call this algorithm “ball-collision decoding” because of a geometric
interpretation explained in Section 4. The change in the exponent is not very large — for ex-
ample, this paper uses ball-collision decoding to demonstrate that α(R,W ) ≤ 0.0807 . . . for
the (R,W ) given above —but it is the first exponential improvement in decoding complexity
in more than twenty years.

Constant rates R and constant error fractions W are traditional in the study of coding-
theory asymptotics, but we comment that they are not exactly right in the study of code-based
cryptography. Typical code-based cryptosystems limit the error fraction W to (1−R)/log2 n,
so W decreases slowly to 0 as n → ∞. (In theory one could replace the Goppa codes in the
McEliece system with explicit “asymptotically good” families of codes for which k/n and w/n
converge to nonzero constants R and W ; however, the security of these families has never been
evaluated.) It seems reasonable to conjecture that the best possible algorithms take time

(1−R)−(1−R)n/log2 n+(β(R)+o(1))n/(log2 n)2

if k/n → R and w/(n/log2 n) → 1 − R as n → ∞; see generally [10]. Ball-collision decoding
produces better upper bounds on β(R) for the same reason that it produces better upper
bounds on α(R,W ). We consider the two-variable function α(R,W ) so that our results can
be applied to a wider range of choices of W and compared to a wider range of previous papers,
including papers that make the traditional coding-theory assumption R = 1 + W log2 W +
(1−W ) log2(1−W ).

This paper also evaluates the exact cost of ball-collision decoding, using the same bit-
operation-counting rules as in the previous literature, and uses this evaluation to illustrate
the impact of ball-collision decoding upon cryptographic applications. For example, the pa-
rameters (6624, 5129, 117) were proposed in [9, Section 7] at a 256-bit security level against a
state-of-the-art refinement of Stern’s algorithm; this paper shows that ball-collision decoding
costs 2.6 times fewer bit operations. At a theoretical 1000-bit security level the improvement
grows to 15.5. These concrete figures are consistent with the asymptotic analysis.

Of course, actually breaking these parameters remains very far out of reach, and these
results should not be interpreted as damaging the viability of the McEliece cryptosystem.
However, these results do raise new questions regarding the proper choice of parameters for
the McEliece cryptosystem. Appendix B discusses the problem of parameter selection for
code-based cryptography.



Smaller decoding exponents: ball-collision decoding 3

Attack model. “Attacks” above refer only to passive single-target inversion attacks. The
original McEliece cryptosystem, like the original RSA cryptosystem, is really just a trapdoor
one-way function; when used naively as a public-key cryptosystem it is trivially broken by
chosen-ciphertext attacks such as Berson’s attack [11] and the Verheul–Doumen–van Tilborg
attack [71].

Protecting the McEliece system against these attacks, to meet the standard notion of
IND-CCA2 security for a public-key cryptosystem, requires appropriate padding and random-
ization, similar to RSA-OAEP. As shown by Kobara and Imai in [48], adding this protection
does not significantly increase the cost of the McEliece cryptosystem.

2 Review of the McEliece cryptosystem

This section reviews how the McEliece cryptosystem works. Appendix A discusses the bigger
picture of McEliece, RSA, ECC, etc.

The public key in the McEliece cryptosystem consists of a random-looking rank-k matrix
G ∈ Fk×n

2 . The sender encrypts a message m in Fk
2 by first multiplying it with the matrix G,

producing mG; choosing uniformly at random a word e in Fn
2 of Hamming weight w; and

adding e to mG, producing a ciphertext mG + e. The cryptosystem parameters are n, k, w.
The legitimate receiver decrypts mG + e using a secret key which consists of a secret

decoding algorithm producing the error vector e given mG + e. The details are not relevant
to the attacks described in this paper and can be found in, e.g., [58].

An attacker is faced with the problem of determining e given G and mG + e. Note that
finding e is equivalent to finding the message m: subtracting e from mG + e produces mG,
and then simple linear transformations produce m.

The set Fk
2G =

{
mG : m ∈ Fk

2

}
is called a linear code of length n and dimension k, specif-

ically the linear code generated by G. The matrix G is called a generator matrix for this code.
The elements of Fk

2G are called codewords. If the linear code Fk
2G equals {c ∈ Fn

2 : Hc = 0}
then the matrix H is called a parity-check matrix for the code.

Without loss of generality one can assume that the matrix G in a CCA2-secure version
of the McEliece cryptosystem is given in systematic form G = (Ik|−AT ) where Ik is a k × k
identity matrix and A an (n−k)×k matrix. Then the matrix H = (A|In−k) is a parity-check
matrix for the code generated by G.

An information set Z for H is a set of k integers in {1, 2, . . . , n} for which the n−k columns
of H that are not indexed by Z are linearly independent. Applying Gaussian elimination to
those n − k columns shows that codewords are determined by their Z-indexed components.
For example, {1, 2, . . . , k} is an information set for H = (A|In−k); codewords are determined
by their first k components.

Let c = mG for m ∈ Fk
2 and e ∈ Fn

2 with wt(e) = w. Then by linearity one has H(c+e) =
Hc + He = He since Hc = 0. The result s = He is called the syndrome of e. It is the sum
of the w columns of H that are indexed by the positions of 1’s in e. The attacker’s task is
equivalent to finding e given H and s = He.

3 The ball-collision-decoding algorithm

This section introduces ball-collision decoding. It first presents a simplified statement of the
algorithm and then discusses various optimizations. Section 4 explains how this algorithm
relates to previous algorithms.



4 D. J. Bernstein, T. Lange, C. Peters

The algorithm is given a parity-check matrix H ∈ F(n−k)×n
2 , a syndrome s ∈ Fn−k

2 , and a
weight w ∈ {0, 1, 2, . . .}. The goal of the algorithm is to find a corresponding error vector e:
i.e., a vector e ∈ Fn

2 of weight w such that s = He.
Ball-collision decoding has its roots in information-set decoding, which was used against

the McEliece system in, e.g., [67], [17], [18], and [9]. The previous algorithms select a random
information set in the parity-check matrix and then search for vectors having a particular pat-
tern of non-zero entries. Ball-collision decoding is similar but searches for a more complicated,
and more likely, pattern. See Section 4 for further discussion of the previous work.

The reader is encouraged to consider, while reading the algorithm, the case that the
algorithm is given a matrix H already in systematic form and that it chooses Z = {1, 2, . . . , k}
as information set. The matrix U in Step 4 is then the identity matrix In−k. The algorithm
divides H into blocks, and divides the syndrome s into corresponding blocks, as specified by
algorithm parameters `1, `2:

H =
(

A1 I1 0
A2 0 I2

)
, s =

(
s1

s2

)
,

where s1 ∈ F`1+`2
2 , s2 ∈ Fn−k−`1−`2

2 , A1 ∈ F(`1+`2)×k
2 , A2 ∈ F(n−k−`1−`2)×k

2 , and each Ii is an
identity matrix.

One iteration of ball-collision decoding:
Constants: n, k, w ∈ Z with 0 ≤ w ≤ n and 0 ≤ k ≤ n.
Parameters: p1, p2, q1, q2, k1, k2, `1, `2 ∈ Z with 0 ≤ k1, 0 ≤ k2, k = k1 + k2, 0 ≤ p1 ≤ k1,

0 ≤ p2 ≤ k2, 0 ≤ q1 ≤ `1, 0 ≤ q2 ≤ `2, and 0 ≤ w− p1 − p2 − q1 − q2 ≤ n− k− `1 − `2.
Input: H ∈ F(n−k)×n

2 and s ∈ Fn−k
2 .

Output: Zero or more vectors e ∈ Fn
2 with He = s and wt(e) = w.

1. Choose a uniform random information set Z. Subsequent steps of the algorithm write
“FZ

2 ” to refer to the subspace of Fn
2 supported on Z.

2. Choose a uniform random partition of Z into parts of sizes k1 and k2. Subsequent steps
of the algorithm write “Fk1

2 ” and “Fk2
2 ” to refer to the corresponding subspaces of FZ

2 .
3. Choose a uniform random partition of {1, 2, . . . , n} \ Z into parts of sizes `1, `2, and

n−k−`1−`2. Subsequent steps of the algorithm write “F`1
2 ” and “F`2

2 ” and “Fn−k−`1−`2
2 ”

to refer to the corresponding subspaces of F{1,2,...,n}\Z
2 .

4. Find an invertible U ∈ F(n−k)×(n−k)
2 such that the columns of UH indexed by {1, 2, . . . , n}\

Z are an (n − k) × (n − k) identity matrix. Write the columns of UH indexed by Z as(
A1

A2

)
with A1 ∈ F(`1+`2)×k

2 , A2 ∈ F(n−k−`1−`2)×k
2 .

5. Write Us as
(

s1

s2

)
with s1 ∈ F`1+`2

2 , s2 ∈ Fn−k−`1−`2
2 .

6. Compute the set S consisting of all triples (A1x0+x1, x0, x1) where x0 ∈ Fk1
2 , wt(x0) = p1,

x1 ∈ F`1
2 , wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0+y1+s1, y0, y1) where y0 ∈ Fk2
2 , wt(y0) =

p2, y1 ∈ F`2
2 , wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output x0 + y0 + x1 + y1 + A2(x0 + y0) + s2.



Smaller decoding exponents: ball-collision decoding 5

Note that Step 8 is a standard “join” operation between S and T ; it can be implemented
efficiently by sorting, by hashing, or by simple table indexing. Bernstein, Lange, and Peters
in [9, Section 6] describe an efficient implementation of essentially the same operation using
only about 2`1+`2+1 bits of memory. See Sections 5 and 6 for further discussion of arithmetic
costs and memory-access costs.

Theorem 3.1 (Correctness of ball-collision decoding) The set of output vectors e of
the ball-collision decoding algorithm is the set of vectors e that satisfy He = s and have
weights p1, p2, q1, q2, w− p1 − p2 − q1 − q2 in Fk1

2 , Fk2
2 , F`1

2 , F`2
2 , and Fn−k−`1−`2

2 respectively.

Proof. Each element (v, x0, x1) ∈ S satisfies x0 ∈ Fk1
2 with wt(x0) = p1; v = A1x0 + x1 and

x1 ∈ F`1
2 with wt(x1) = q1. Similarly each element (v, y0, y1) ∈ T satisfies y0 ∈ Fk2

2 with
wt(y0) = p2; v = A1y0 + y1 + s1; y1 ∈ F`2

2 with wt(y1) = q2. Now, with Z-indexed columns
visualized as coming before the remaining columns, we have

UHe = UH

 x0 + y0

x1 + y1

A2(x0 + y0) + s2

 =
(

A1(x0 + y0) + x1 + y1

A2(x0 + y0) + A2(x0 + y0) + s2

)
=
(

s1

s2

)
= Us

so He = s. Furthermore, x0 + y0 ∈ Fk1+k2
2 has weights p1, p2 in Fk1

2 ,Fk2
2 ; x1 + y1 ∈ F`1+`2

2 has
weights q1, q2 in F`1

2 ,F`2
2 ; and wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2.

Conversely, the iteration finds every vector e having this weight distribution and satisfying
He = s. Indeed, write e as x0 + y0 + x1 + y1 + e2 with x0 ∈ Fk1

2 , y0 ∈ Fk2
2 , x1 ∈ F`1

2 , y1 ∈ F`2
2 ,

and e2 ∈ Fn−k−`1−`2
2 . By hypothesis the weights of x0, y0, x1, y1, e2 are p1, p2, q1, q2, w − p1 −

p2 − q1 − q2, respectively. Now define v = A1x0 + x1. The equation UHe = Us implies
v = A1y0 + y1 + s1; and e2 = A2(x0 + y0) + s2. Hence (v, x0, x1) ∈ S and (v, y0, y1) ∈ T .
Finally wt(A2(x0 + y0) + s2) = wt(e2) = w − p1 − p2 − q1 − q2 so the algorithm prints e as
claimed. ut

Finding an information set. The simplest way to choose a uniform random information
set is to repeatedly choose a uniform random size-k subset Z ⊆ {1, 2, . . . , n} until the n − k
columns of H indexed by {1, 2, . . . , n} \ Z are linearly independent. Standard practice (see,
e.g., Stern [67]) is to eliminate the fruitless Gaussian-elimination steps here, at the expense
of negligible bias, by assembling the information set one column at a time, ensuring that each
newly added column is linearly independent of the previously selected columns. After this
optimization there is only one Gaussian-elimination step per iteration.

Reusing intermediate sums. Computing the vector A1x0 for a weight-p1 word x0 in Fk1
2

can be done by adding the specified p1 columns of A1 in p1 − 1 additions in F`1+`2
2 .

Computing A1x0 for all the
(
k1

p1

)
vectors x0 can be done more efficiently than repeating

this process for each of them. Start by computing all
(
k1

2

)
sums of 2 columns of A1; each

sum costs one addition in F`1+`2
2 . Then compute all

(
k1

3

)
sums of 3 columns of A1 by adding

one extra column to the previous results. Proceed in the same way until all
(
k1

p1

)
sums of p1

columns of A1 are computed. This produces all required sums in only marginally more than
one F`1+`2

2 addition per sum; see Section 5 for a precise operation count.

Early abort. The vector A2(x0 + y0) + s2 is computed as a sum of p1 + p2 + 1 vectors of
length n − k − `1 − `2. Instead of computing the sum on all n − k − `1 − `2 positions one



6 D. J. Bernstein, T. Lange, C. Peters

computes the sum row by row and simultaneously checks the weight. If the weight exceeds
w − p1 − p2 − q1 − q2 one can discard this particular pair (x0, y0).

We comment that one can further reduce the cost of this step by precomputing sums of
smaller sets of columns, but we do not use this idea in our analysis, because it is not critical
for the algorithm’s performance.

4 Relationship to previous algorithms

This section discusses the relationship of ball-collision decoding to previous information-set-
decoding algorithms.

Collision decoding vs. ball-collision decoding. We use the name “collision decoding”
for the special case q1 = q2 = 0 of ball-collision decoding. The idea of collision decoding is
more than twenty years old: Stern’s algorithm in [67] is, aside from trivial details, exactly the
special case q1 = q2 = 0, p1 = p2, k1 ≈ k2. Dumer in [27] independently introduced the core
idea, although in a more limited form, and in [28] achieved an algorithm similar to Stern’s.

All state-of-the-art decoding attacks since [67] have been increasingly optimized forms of
collision decoding. Other approaches to decoding, such as “gradient decoding” ([4]), “super-
code decoding” ([5]), and “statistical decoding” (see [3] and [57]), have never been competitive
with Stern’s algorithm. This does not mean that those approaches should be ignored; our gen-
eralization from collision decoding to ball-collision decoding is inspired by one of the steps in
supercode decoding.

Collision decoding searches for collisions in F`1+`2
2 between points A1x0 and points A1y0 +

s1. Ball-collision decoding expands each point A1x0 into a small ball (in the Hamming metric),
namely {A1x0 + x1 : x1 ∈ F`1

2 ,wt(x1) = q1}; similarly expands each point A1y0 into a small
ball; and searches for collisions between these balls.

From the perspective of ball-collision decoding, the fundamental disadvantage of collision
decoding is that errors are required to avoid an asymptotically quite large stretch of `1 + `2

positions. Ball-collision decoding makes a much more reasonable hypothesis, namely that
there are asymptotically increasingly many errors in those positions. It requires extra work
to enumerate the points in each ball, but the extra work is only about the square root of
the improvement in success probability. The cost ratio is exponential when all parameters are
optimized properly; see Section 7.

Collision decoding also has a secondary disadvantage compared to ball-collision decoding:
its inner loop is slower, since computing A1x0 for a new x0 is considerably more expensive
than adding x1 for a new x1. The cost ratio here is only polynomial, and is not relevant to
the exponents (see Section 7), but is accounted for in the bit-operation count (see Section 5).
This disadvantage of collision decoding is also visible in the number of memory accesses to
A1 (see Section 6); however, standard practice in the literature on this topic is to count the
number of bit operations involved in arithmetic and to ignore the cost of memory access.

Additional credits. The simplest form of information-set decoding, introduced by Prange
in [61], did not allow errors in the information set. For asymptotic analyses see [54], [1], and
[2].

The idea of allowing errors was published by Lee and Brickell in [50], by Leon in [52],
and by Krouk in [49], but without Stern’s collision idea; in the terminology of ball-collision
decoding, with p2 = 0, q1 = q2 = 0, and `2 = 0. For each pattern of p1 errors in k columns, Lee
and Brickell checked the weight of the remaining n− k columns; Leon and Krouk required `1



Smaller decoding exponents: ball-collision decoding 7

columns to have weight 0, and usually checked only those columns. For asymptotic analyses
see [49], [24], and [25].

Overbeck and Sendrier [58] give a visual comparison of the algorithms by comparing to
which interval they restrict how many errors. Figure 4.1 extends their picture to include ball-
collision decoding. It shows that the new algorithm allows errors in an interval that had to
be error-free in Leon’s and Stern’s algorithms.

Plain information-set decoding

0 w

Lee-Brickell
p w − p

k ℓ n− k − ℓ
Leon

p 0 w − p

Stern
p p 0 w − 2p

Ball-collision decoding (new)

p p q q w − 2p− 2q

Fig. 4.1. Error positions hypothesized by various decoding algorithms.

The idea of allowing errors everywhere can be extracted, with considerable effort, from the
description of supercode decoding in [5]. After a detailed analysis we have concluded that the
algorithm in [5] is much slower than collision decoding. The same algorithm is claimed in [5]
to have smaller exponents than collision decoding (with astonishing gaps, often 15% or more),
but this claim is based on a chain of exponentially large inaccuracies in the algorithm analysis
in [5]. The starting point of the chain is [5, “Corollary 12”], which claims size

(
k
e1

)(
y
e2

)
/2by for

lists that actually have size
(

k
e1

)(
y
e2

)b
/2by.

The idea of allowing errors everywhere can also be found in the much more recent pa-
per [32], along with a polynomial-factor “birthday” speedup obtained by dropping Stern’s
left-right separation. The algorithm analysis by Finiasz and Sendrier in [32] concludes that
the overall “gain compared with Stern’s algorithm” is a constant times “ 4

√
πp/2”, which is

bounded by a polynomial in n. Our own assessment is that if parameters had been chosen
more carefully then the algorithm of [32] would have led to an exponential improvement over
collision decoding, contrary to the conclusions in [32]. This algorithm would still have retained
the secondary disadvantage described above, and therefore would not have been competitive
with ball-collision decoding.

A more detailed analysis of the “birthday” speedup in collision decoding appeared in
[59] along with an optimized generalization to Fq. These modifications can be adapted to
ball-collision decoding but would complicate the algorithm statement and analysis without
changing the exponent of binary decoding; we have skipped these modifications for simplicity.

One way to speed up Gaussian elimination is to change only one information-set element
in each iteration. This idea was introduced by Omura, according to [22, Section 3.2.4]. It was
applied to increasingly optimized forms of information-set decoding by van Tilburg in [68]
and [69], by Chabanne and Courteau in [19], by Chabaud in [20], by Canteaut and Chabanne



8 D. J. Bernstein, T. Lange, C. Peters

in [16], by Canteaut and Chabaud in [17], and by Canteaut and Sendrier in [18]. Bernstein,
Lange, and Peters in [9] improved the balance between Gaussian-elimination cost and error-
searching cost by changing c information-set elements in each iteration for an optimized value
of c. The ideas of reusing sums and aborting weight calculations also appeared in [9], in the
context of an improved collision-decoding algorithm.

5 Complexity analysis

This section analyzes the complexity of ball-collision decoding. In particular, this section
analyzes the success probability of each iteration and the number of bit operations needed for
each iteration.

Success probability. Assume that e is a uniform random vector of weight w. One iteration
of ball-collision decoding finds e exactly if it has the right weight distribution, namely weight
p1 in the first k1 positions specified by the information set, weight p2 in the remaining k2

positions specified by the information set, weight q1 on the first `1 positions outside the
information set, and weight q2 on the next `2 positions outside the information set.

The probability that e has this weight distribution is, by a simple counting argument,
exactly

b(p1, p2, q1, q2, `1, `2) =
(

n

w

)−1( n− k − `1 − `2

w − p1 − p2 − q1 − q2

)(
k1

p1

)(
k2

p2

)(
`1

q1

)(
`2

q2

)
.

The expected number of iterations of the outer loop is, for almost all H, very close to
the reciprocal of the success probability of a single iteration. We explicitly disregard, without
further comment, the extremely unusual codes for which the average number of iterations is
significantly different from the reciprocal of the success probability of a single iteration. For
further discussion of this issue and how unusual it is see, e.g., [25] and [10].

Gaussian elimination. There are several ways to speed up Gaussian elimination, as dis-
cussed in Section 4, and implementors are encouraged to use those optimizations. However,
in this paper we will be satisfied with a quite naive form of Gaussian elimination, taking
(1/2)(n − k)2(n + k) bit operations; our interest is in large input sizes, and Gaussian elimi-
nation takes negligible time for those sizes.

Building the set S. The total cost of computing A1x0 for all x0 of Hamming weight p1,
using intermediate sums as explained in Section 3, is

(`1 + `2)
((

k1

2

)
+
(

k1

3

)
+ · · ·

(
k1

p1

))
.

Using L(k, p) =
∑p

i=1

(
k
i

)
as a shorthand, the costs can be written as (`1+`2) (L(k1, p1)− k1).

The `1+`2 factor is the number of bit operations to compute A1x0 from A1x
′
0 where x0 extends

x′0 by a single bit.
Then for each x0 all

(
`1
q1

)
possible words x1 in F`1

2 of weight q1 are added to A1x0, producing
A1x0 +x1. For x1, as for x0, we loop over the possible sets of indices, and reuse sums obtained
from subsets. This slightly increases the number of sums up to L(`1, q1), but decreases the
cost of each sum down to a single bit operation, computing A1x0 +x1 from A1x0 +x′1. Overall
this step takes min{1, q1}

(
k1

p1

)
L(`1, q1) bit operations; note that for q1 = 0 the cost of this step

is indeed 0.



Smaller decoding exponents: ball-collision decoding 9

Each choice of (x0, x1) adds one element to S. Hence, the number of elements in S equals
exactly the number of choices for x0 and x1, i.e. #S =

(
k1

p1

)(
`1
q1

)
.

Building the set T . The set T is built similarly to the set S. The only difference is that
the expression A1y0 + y1 + s1 involves adding s1 and thus the single columns (corresponding
to weight-1 words y0) already cost (`1 + `2)

(
k2

1

)
bit operations. In total this step takes (`1 +

`2)L(k2, p2) + min{1, q2}
(
k2

p2

)
L(`2, q2).

The set T contains exactly #T =
(
k2

p2

)(
`2
q2

)
elements.

Checking collisions. The last step does one check for every (x0, x1, y0, y1) satisfying the
equation A1x0 + x1 = A1y0 + y1 + s1. There are

(
k1

p1

)(
k2

p2

)(
`1
q1

)(
`2
q2

)
choices of (x0, x1, y0, y1).

If the vectors v appearing in S and T were uniformly distributed among the 2`1+`2 possible
values then on average #S ·#T ·2−`1−`2 checks would be done. The expected number of checks
is extremely close to this for almost all H; as above we disregard the extremely unusual codes
with different behavior.

Each check consists of computing wt(A2(x0 + y0) + s2) and testing whether it equals
w − p1 − p2 − q1 − q2. When using the early-abort weight calculation, on average only 2(w −
p1−p2− q1− q2 +1) bits of the result are computed before the weight is found too high. Each
bit of the result costs p1 + p2 bit operations because x0 + y0 has weight p1 + p2.

Cost of one iteration. To summarize, the total cost per iteration of the inner loop with
parameters p1, p2, q1, q2, `1, `2 amounts to

c(p1, p2, q1, q2, `1, `2) =
1
2
(n− k)2(n + k) + (`1 + `2)

(
L(k1, p1) + L(k2, p2)− k1

)
+ min{1, q1}

(
k1

p1

)
L(`1, q1) + min{1, q2}

(
k2

p2

)
L(`2, q2)

+ 2(w − p1 − p2 − q1 − q2 + 1)(p1 + p2)
(

k1

p1

)(
k2

p2

)(
`1

q1

)(
`2

q2

)
2−`1−`2 .

6 Concrete parameter examples

This section considers concrete examples in order to show the speedup gained by ball-collision
decoding in comparison to collision decoding. The first parameters were previously proposed to
achieve 256-bit security against current attacks. We designed the second parameters according
to similar rules to achieve a 1000-bit security level against current attacks. We do not mean
to suggest that 1000-bit security is of any real-world relevance; we consider it to illustrate the
asymptotic superiority of ball-collision decoding.

Finiasz and Sendrier in [32] presented “lower bounds on the effective work factor of existing
real algorithms, but also on the future improvements that could be implemented”; and said
that beating these bounds would require the introduction of “new techniques, never applied
to code-based cryptosystems”. For each set of parameters we evaluate the Finiasz–Sendrier
lower bound and the costs of three algorithms:

(1) collision decoding (q1 = q2 = 0),
(2) collision decoding using the birthday trick from [32] as analyzed in [59], and
(3) ball-collision decoding.



10 D. J. Bernstein, T. Lange, C. Peters

Ball-collision decoding beats the Finiasz–Sendrier lower bound in both of these examples.
The main reason for this is that ball-collision decoding dodges the secondary disadvantage
described in Section 4; the lower bound assumes that each new vector requires `1 + `2 bit
operations to update A1x0, but in ball-collision decoding each new vector requires just 1 bit
operation to update x1.

We emphasize that all of these costs and bounds use the same model of computation,
counting the number of bit operations for arithmetic and disregarding costs of memory access,
copies, etc. A table-indexing join operation can easily be carried out for free in this model. We
would prefer a more carefully defined model of computation that includes realistic memory-
access costs, such as the Brent–Kung circuit model [13], but the bit-operation model is simpler
and is standard in papers on this topic. Note that any reasonable accounting for memory-
access costs would need at least one memory access for each new x1 in ball-collision decoding
(for the join) but would need at least two memory accesses for each new A1x0 in the Finiasz–
Sendrier lower bound (one for A1 and one for the join).

256-security revisited. According to [9, Section 7] a binary code with length n = 6624,
k = 5129, w = 117 achieves 256-bit security. The best collision-decoding parameters are
actually slightly below 2256 bit operations: they use 2181.4928 iterations (on average), each
taking 274.3741 bit operations, for a total of 2255.8669 bit operations.

Collision decoding with the birthday trick takes, with optimal parameters, 2255.54880 bit
operations. The birthday trick increases the cost per iteration by a factor of 2.2420 compared
to the classical collision-decoding algorithm, to 275.5390 bit operations. However, the trick
increases the chances of finding the desired error vector noticeably, reducing the number of
iterations by a factor of 2.7951, to 2180.0099. Thus the birthday trick yields an overall 1.2467×
speedup.

The Finiasz–Sendrier lower bound is 2255.1787 bit operations, 1.6112× smaller than the
cost of collision decoding.

Ball-collision decoding with parameters k1 = 2565, k2 = 2564, `1 = `2 = 47, p1 = p2 = 8,
and q1 = q2 = 1 needs only 2254.1519 bit operations to attack the same system. On average
the algorithm needs 2170.6473 iterations each taking 283.5046 bit operations.

Ball-collision decoding thus costs 3.2830× less than collision decoding, 2.6334× less than
collision decoding with the birthday trick, and 2.0375× less than the Finiasz–Sendrier lower
bound.

1000-bit security. Attacking a system based on a code of length n = 30332, k = 22968,
w = 494 requires 21000.9577 bit operations using collision decoding with the optimal parameters
k1 = k2 = 11484, `1 = `2 = 140, p1 = p2 = 27 and q1 = q2 = 0.

The birthday trick reduces the cost by a factor of 1.7243, to 21000.1717 bit operations. This
means that this system offers 1000-bit security against all previously known attacks.

The Finiasz–Sendrier lower bound is 2999.45027 bit operations, 2.8430× smaller than the
cost of collision decoding and 1.6488× smaller than the cost of collision decoding with the
birthday trick.

Ball-collision decoding with parameters k1 = k2 = 11484, `1 = `2 = 156, p1 = p2 = 29,
and q1 = q2 = 1 needs only 2996.21534 bit operations. This is 26.767× smaller than the cost
of collision decoding, 15.523× smaller than the cost of collision decoding with the birthday
trick, and 9.415× smaller than the Finiasz–Sendrier lower bound.



Smaller decoding exponents: ball-collision decoding 11

7 Asymptotic complexity of ball-collision decoding

This section analyzes the asymptotic behavior of the cost of ball-collision decoding, and shows
that it always has a smaller asymptotic exponent than the cost of collision decoding.

Input sizes. Fix a real number W with 0 < W < 1/2, and fix a real number R with
−W log2 W − (1−W ) log2(1−W ) ≤ 1−R < 1.

Consider codes and error vectors of very large length n, where the codes have dimension
k ≈ Rn, and the error vectors have weight w ≈ Wn. More precisely, fix functions k, w :
{1, 2, . . .} → {1, 2, . . .} that satisfy limn→∞ k(n)/n = R and limn→∞w(n)/n = W ; more
concisely, k/n → R and w/n → W .

Attack parameters. Fix real numbers P,Q,L with 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, and 0 ≤
W − 2P − 2Q ≤ 1 − R − 2L. Fix ball-collision parameters p1, p2, q1, q2, k1, k2, `1, `2 with
pi/n → P , qi/n → Q, ki/n → R/2, and `i/n → L.

We have also analyzed more general asymptotic parameter spaces, for example splitting
P into P1, P2 where pi/n → Pi. Balanced parameters always turned out to be asymptotically
optimal (as one would expect), so this section focuses on the parameter space (P,Q,L) stated
above. Note that the asymptotic optimality of P1 = P2 does not imply the concrete optimality
of p1 = p2; for example, (p1, p2) = (2, 1) appears to be optimal for some small input sizes.

In the formulas below, expressions of the form x log2 x are extended (continuously but not
differentiably) to 0 at x = 0. For example, the expression P log2 P means 0 if P = 0.

Success probability. We repeatedly invoke the standard asymptotic formula for binomial
coefficients, namely

1
n

log2

(
(α + o(1))n
(β + o(1))n

)
→ α log2 α− β log2 β − (α− β) log2(α− β),

to compute the asymptotic exponent of the success probability of a single iteration of ball-
collision decoding:

B(P,Q,L) = lim
n→∞

1
n

log2

((
n

w

)−1( n− k − `1 − `2

w − p1 − p2 − q1 − q2

)(
k1

p1

)(
k2

p2

)(
`1

q1

)(
`2

q2

))
= W log2 W + (1−W ) log2(1−W )

+ (1−R− 2L) log2(1−R− 2L)− (W − 2P − 2Q) log2(W − 2P − 2Q)
− (1−R− 2L− (W − 2P − 2Q)) log2(1−R− 2L− (W − 2P − 2Q))
+ R log2(R/2)− 2P log2 P − (R− 2P ) log2(R/2− P )
+ 2L log2 L− 2Q log2 Q− 2(L−Q) log2(L−Q).

The success probability of a single iteration is asymptotically 2n(B(P,Q,L)+o(1)).

Iteration cost. We similarly compute the asymptotic exponent of the cost of an iteration:

C(P,Q,L) = lim
n→∞

1
n

log2

((
k1

p1

)(
`1

q1

)
+
(

k2

p2

)(
`2

q2

)
+
(

k1

p1

)(
`1

q1

)(
k2

p2

)(
`2

q2

)
2−`1−`2

)
= max{(R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )

+ L log2 L−Q log2 Q− (L−Q) log2(L−Q),
R log2(R/2)− 2P log2 P − (R− 2P ) log2(R/2− P )
+ 2L log2 L− 2Q log2 Q− 2(L−Q) log2(L−Q)− 2L}.



12 D. J. Bernstein, T. Lange, C. Peters

The cost of a single iteration is asymptotically 2n(C(P,Q,L)+o(1)). Note that we have simplified
the iteration cost to

(
k1

p1

)(
`1
q1

)
+
(
k2

p2

)(
`2
q2

)
+
(
k1

p1

)(
`1
q1

)(
k2

p2

)(
`2
q2

)
2−`1−`2 . The cost is actually larger than

this, but only by a factor ≤ poly(n), which we are free to disregard since 1
n log2 poly(n) → 0.

We also comment that the bounds are valid whether or not qi = 0.

Overall attack cost. The overall asymptotic ball-collision-decoding-cost exponent is the
difference D(P,Q,L) of the iteration-cost exponent C(P,Q,L) and the success-probability
exponent B(P,Q,L), thus

D(P,Q,L) = max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P )
− L log2 L + Q log2 Q + (L−Q) log2(L−Q),−2L}
−W log2 W − (1−W ) log2(1−W )
− (1−R− 2L) log2(1−R− 2L) + (W − 2P − 2Q) log2(W − 2P − 2Q)
+ (1−R− 2L− (W − 2P − 2Q)) log2(1−R− 2L− (W − 2P − 2Q)).

Example: Take W = 0.04 and R = 1+W log2 W +(1−W ) log2(1−W ) = 0.7577078109 . . ..
Choose P = 0.004203556640625, Q = 0.000192998046875, and L = 0.017429431640625;
we use very high precision here to simplify verification. The success-probability exponent
is −0.0458435310 . . ., and the iteration-cost exponent is 0.0348588632 . . ., so the ball-collision
decoding exponent is 0.0807023942 . . .. Ball-collision decoding with these parameters therefore
costs 2(0.0807023942...+o(1))n to correct (0.04+ o(1))n errors in a code of rate 0.7577078109 . . .+
o(1).

Collision-decoding cost and the lower bound. Traditional collision decoding is the
special case p1 = p2, k1 = k2, `1 = `2, q1 = q2 = 0 of ball-collision decoding. Its asymptotic
cost exponent is the case Q = 0 of the ball-collision decoding exponent stated above.

Consider again W = 0.04 and R = 1 + W log2 W + (1 − W ) log2(1 − W ). Choosing
P = 0.00415087890625, Q = 0, and L = 0.0164931640625 achieves decoding exponent
0.0809085120 . . .. We partitioned the (P,L) space into small intervals and performed interval-
arithmetic calculations to show that Q = 0 cannot do better than 0.0809; ball-collision de-
coding therefore has a slightly smaller exponent than collision decoding in this case.

We performed similar calculations for other pairs (W,R) and in each case found that the
infimum of all collision-decoding-cost exponents was beaten by a ball-collision-decoding-cost
exponent. Ball-collision decoding therefore has a smaller exponent than collision decoding, as
stated in the introduction of this paper.

The case Q = 0 is always suboptimal. The interval-arithmetic calculations described
above are proofs of the suboptimality of Q = 0 for some specific pairs (W,R). These proofs
have the advantage of computing explicit bounds on the collision-decoding-cost exponents for
those pairs (W,R), but the proofs have two obvious disadvantages.

The first disadvantage is that these proofs do not cover all pairs (W,R); they leave open the
possibility that ball-collision decoding has the same exponent as collision decoding for other
pairs (W,R). The second disadvantage is that the proofs are much too long to verify by hand.
The first disadvantage could perhaps be addressed by much more extensive interval-arithmetic
calculations, partitioning the space of pairs (W,R) into boxes so small that, within each box,
the ball-collision-decoding exponent is uniformly better than the minimum collision-decoding
exponent; but this would exacerbate the second disadvantage.

To address both of these disadvantages we give, in Appendix C, a hand-verifiable proof that
Q = 0 is always suboptimal: for every (W,R), ball-collision decoding has a smaller asymptotic



Smaller decoding exponents: ball-collision decoding 13

cost exponent than collision decoding. Specifically, we prove the following theorem about the
overall asymptotic cost exponent:

Theorem 7.1 For each R,W it holds that

min{D(P, 0, L) : 0 ≤ P ≤ R/2, 0 ≤ W − 2P ≤ 1−R− 2L}
> min{D(P,Q,L) : 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, 0 ≤ W − 2P − 2Q ≤ 1−R− 2L}.

Note that {(P, 0, L)} and {(P,Q,L)} are compact sets, and D is continuous, so we are
justified in writing “min” rather than “inf”. The proof strategy analyzes generic perturbations
of D and combines all necessary calculations into a small number of elementary inequalities
in the proofs of Lemmas C.2 and C.3.

References

[1] Carlisle M. Adams, Henk Meijer, Security-related comments regarding McEliece’s public-key cryptosystem,
in Crypto ’87 [60] (1987), 224–228; see also newer version [2]. MR 0956653. Citations in this document:
§4.

[2] Carlisle M. Adams, Henk Meijer, Security-related comments regarding McEliece’s public-key cryptosystem,
IEEE Transactions on Information Theory 35 (1988), 454–455; see also older version [1]. MR 0999658.
Citations in this document: §1, §4.

[3] Abdulrahman Al Jabri, A statistical decoding algorithm for general linear block codes, in IMA 2001 [39]
(2001), 1–8. MR 2074098. Citations in this document: §4.

[4] Alexei E. Ashikhmin, Alexander Barg, Minimal vectors in linear codes, IEEE Transactions on Information
Theory 44 (1998), 2010–2017. Citations in this document: §4.

[5] Alexander Barg, Evgueni A. Krouk, Henk C. A. van Tilborg, On the complexity of minimum distance
decoding of long linear codes, IEEE Transactions on Information Theory 45 (1999), 1392–1405. Citations
in this document: §4, §4, §4, §4, §4, §4.

[6] Lynn Batten, Reihaneh Safavi-Naini (editors), Information security and privacy: 11th Australasian confer-
ence, ACISP 2006, Melbourne, Australia, July 35, 2006, proceedings, Lecture Notes in Computer Science,
4058, Springer, 2006. See [57].

[7] Daniel J. Bernstein, Grover vs. McEliece, in Post-Quantum Cryptography [64] (2010), 72–80. Citations in
this document: §A, §A.

[8] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors), Post-quantum cryptography, Springer,
2009. ISBN 978-3-540-88701-0. See [58].

[9] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the McEliece cryptosystem, in
PQCrypto 2008 [14] (2008), 31–46. URL: http://eprint.iacr.org/2008/318. Citations in this document:
§1, §1, §3, §3, §4, §4, §6, §A.

[10] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Henk van Tilborg, Explicit bounds for generic decoding
algorithms for code-based cryptography, in WCC 2009 (2009). Citations in this document: §1, §5.

[11] Thomas A. Berson, Failure of the McEliece public-key cryptosystem under message-resend and related-
message attack, in Crypto ’97 [45] (1997), 213–220. Citations in this document: §1.

[12] Mario Blaum, Patrick G. Farrell, Henk C. A. van Tilborg (editors), Information, coding and mathematics,
Kluwer International Series in Engineering and Computer Science, 687, Kluwer, 2002. MR 2005a:94003.
See [71].

[13] Richard P. Brent, H. T. Kung, The area-time complexity of binary multiplication, Journal of the ACM 28
(1981), 521–534. URL: http://wwwmaths.anu.edu.au/~brent/pub/pub055.html. Citations in this docu-
ment: §6.

[14] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second international workshop,
PQCrypto 2008, Cincinnati, OH, USA, October 17-19, 2008, proceedings, Lecture Notes in Computer
Science, 5299, Springer, 2008. See [9].

[15] Paul Camion, Pascale Charpin, Sami Harari (editors), Eurocode ’92: proceedings of the international sym-
posium on coding theory and applications held in Udine, October 23–30, 1992, Springer, 1993. ISBN 3-211-
82519-3. MR 94k:94001. See [20].

http://eprint.iacr.org/2008/318
http://wwwmaths.anu.edu.au/~brent/pub/pub055.html


14 D. J. Bernstein, T. Lange, C. Peters

[16] Anne Canteaut, Herve Chabanne, A further improvement of the work factor in an attempt at breaking
McEliece’s cryptosystem, in EUROCODE 94 [21] (1994). URL: http://www.inria.fr/rrrt/rr-2227.

html. Citations in this document: §4.

[17] Anne Canteaut, Florent Chabaud, A new algorithm for finding minimum-weight words in a linear code:
application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511, IEEE Transac-
tions on Information Theory 44 (1998), 367–378. MR 98m:94043. URL: ftp://ftp.inria.fr/INRIA/

tech-reports/RR/RR-2685.ps.gz. Citations in this document: §3, §4.

[18] Anne Canteaut, Nicolas Sendrier, Cryptanalysis of the original McEliece cryptosystem, in Asiacrypt ’98
[56] (1998), 187–199. MR 2000i:94042. Citations in this document: §3, §4.

[19] Herve Chabanne, B. Courteau, Application de la méthode de décodage itérative d’Omura à la cryptanalyse
du système de McEliece, Université de Sherbrooke, Rapport de Recherche, number 122 (1993). Citations
in this document: §4.

[20] Florent Chabaud, Asymptotic analysis of probabilistic algorithms for finding short codewords, in [15] (1993),
175–183. MR 95e:94026. Citations in this document: §4.

[21] Pascale Charpin (editor), Livre des résumé—EUROCODE 94, Abbaye de la Bussière sur Ouche, France,
October 1994, 1994. See [16].

[22] George C. Clark, Jr., J. Bibb Cain, Error-correcting coding for digital communication, Plenum, 1981. ISBN
0-306-40615-2. Citations in this document: §4.

[23] Christophe Clavier, Kris Gaj (editors), Cryptographic hardware and embedded systems—CHES 2009,
11th international workshop, Lausanne, Switzerland, September 6–9, 2009, proceedings, Lecture Notes
in Computer Science, 5747, Springer, 2009. ISBN 978-3-642-04137-2. See [30].

[24] John T. Coffey, Rodney M. Goodman, The complexity of information set decoding, IEEE Transactions on
Information Theory 35 (1990), 1031–1037. Citations in this document: §4.

[25] John T. Coffey, Rodney M. Goodman, P. Farrell, New approaches to reduced complexity decoding, Discrete
and Applied Mathematics 33 (1991), 43–60. Citations in this document: §4, §5.

[26] Gérard D. Cohen, Jacques Wolfmann (editors), Coding theory and applications, Lecture Notes in Computer
Science, 388, Springer, 1989. See [67].

[27] Ilya I. Dumer, Two decoding algorithms for linear codes, Problemy Peredachi Informatsii 25 (1989), 24–32.
Citations in this document: §4.

[28] Ilya I. Dumer, On minimum distance decoding of linear codes, in [44] (1991), 50–52. Citations in this
document: §4.

[29] Cynthia Dwork (editor), Advances in cryptology—CRYPTO 2006, 26th annual international cryptology
conference, Santa Barbara, California, USA, August 20–24, 2006, proceedings, Lecture Notes in Computer
Science, 4117, Springer, 2006. ISBN 3-540-37432-9. See [43].

[30] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, Christof Paar, MicroEliece: McEliece for embedded de-
vices, in CHES 2009 [23] (2009), 49–64. Citations in this document: §A.

[31] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich, Algebraic cryptanalysis of
McEliece variants with compact keys, in Eurocrypt 2010 [35] (2010), 279–298. Citations in this document:
§A.

[32] Matthieu Finiasz, Nicolas Sendrier, Security bounds for the design of code-based cryptosystems, in Asiacrypt
2009 [53] (2009). URL: http://eprint.iacr.org/2009/414. Citations in this document: §1, §4, §4, §4, §4,
§6, §2, §B, §B, §B, §B, §B.

[33] Marc P. C. Fossorier, Kazukuni Kobara, Hideki Imai, Modeling bit flipping decoding based on nonorthogonal
check sums with application to iterative decoding attack of McEliece cryptosystem, IEEE Transactions on
Information Theory 53 (2007), 402–411. MR 2007m:94158. Citations in this document: §B.

[34] Valerie Gauthier Umana, Gregor Leander, Practical key recovery attacks on two McEliece variants (2009).
URL: http://eprint.iacr.org/2009/509.pdf. Citations in this document: §A.

[35] Henri Gilbert (editor), Advances in cryptology—EUROCRYPT 2010, 29th annual international confer-
ence on the theory and applications of cryptographic techniques, French Riviera, May 30–June 3, 2010,
proceedings, Lecture Notes in Computer Science, 6110, Springer. ISBN 978-3-642-13189-9. See [31].

[36] Shafi Goldwasser (editor), 35th annual IEEE symposium on the foundations of computer science. Proceed-
ings of the IEEE symposium held in Santa Fe, NM, November 20–22, 1994, IEEE, 1994. ISBN 0-8186-
6580-7. MR 98h:68008. See [65].

[37] Shafi Goldwasser (editor), Advances in cryptology—CRYPTO ’88, proceedings of the conference on the
theory and application of cryptography held at the University of California, Santa Barbara, California,
August 21–25, 1988, Lecture Notes in Computer Science, 403, Springer, 1990. ISBN 3-540-97196-3. MR
90j:94003. See [68].

http://www.inria.fr/rrrt/rr-2227.html
http://www.inria.fr/rrrt/rr-2227.html
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz
http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/509.pdf


Smaller decoding exponents: ball-collision decoding 15

[38] Christoph G. Günther, Advances in cryptology—EUROCRYPT ’88, proceedings of the workshop on the
theory and application of cryptographic techniques held in Davos, May 25–27, 1988, Lecture Notes in
Computer Science, 330, Springer-Verlag, Berlin, 1988. ISBN 3-540-50251-3. MR 90a:94002. See [50].

[39] Bahram Honary (editor), Cryptography and coding: proceedings of the 8th IMA international conference
held in Cirencester, December 17–19, 2001, Lecture Notes in Computer Science, 2260, Springer, 2001. See
[3].

[40] Michael J. Jacobson Jr., Vincent Rijmen, Reihaneh Safavi-Naini (editors), Selected Areas in Cryptography,
Lecture Notes in Computer Science, 5867, Springer, 2009. See [55].

[41] Thomas Johansson, Fredrik Jonsson, On the complexity of some cryptographic problems based on the
general decoding problem, IEEE Transactions on Information Theory 48 (2002), 2669–2678. URL: http://
www.it.lth.se/cryptology/e-papers/paper054.pdf. Citations in this document: §B.

[42] Antoine Joux, Reynald Lercier, The function field sieve in the medium prime case, in Eurocrypt 2006 [70]
(2006), 254–270. Citations in this document: §A.

[43] Antoine Joux, Reynald Lercier, Nigel P. Smart, Frederik Vercauteren, The number field sieve in the medium
prime case, in Crypto 2006 [29] (2006), 326–344. Citations in this document: §A.

[44] Grigori A. Kabatianskii (editor), Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, 1991. See [28].

[45] Burton S. Kaliski Jr. (editor), Advances in cryptology—CRYPTO ’97: 17th annual international cryptology
conference, Santa Barbara, California, USA, August 17–21, 1997, proceedings, Lecture Notes in Computer
Science, 1294, Springer, 1997. ISBN 3-540-63384-7. MR 99a:94041. See [11].

[46] Kwangjo Kim (editor), Public key cryptography: proceedings of the 4th international workshop on practice
and theory in public key cryptosystems (PKC 2001) held on Cheju Island, February 13–15, 2001, Lecture
Notes in Computer Science, 1992, Springer, 2001. See [48].

[47] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé, Joppe W. Bos,
Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik, Herman te Riele, Andrey
Timofeev, Paul Zimmermann, Factorization of a 768-bit RSA modulus, in Crypto 2010 [62] (2010), 333–
350. URL: http://eprint.iacr.org/2010/006. Citations in this document: §A, §B.

[48] Kazukuni Kobara, Hideki Imai, Semantically secure McEliece public-key cryptosystems—conversions for
McEliece PKC, in PKC 2001 [46] (2001), 19–35. MR 2003c:94027. Citations in this document: §1.

[49] Evgueni A. Krouk, Decoding complexity bound for linear block codes, Problemy Peredachi Informatsii 25
(1989), 103–107. Citations in this document: §4, §4.

[50] Pil Joong Lee, Ernest F. Brickell, An observation on the security of McEliece’s public-key cryptosystem,
in Eurocrypt ’88 [38] (1988), 275–280. MR 0994669. URL: http://dsns.csie.nctu.edu.tw/research/
crypto/HTML/PDF/E88/275.PDF. Citations in this document: §4.

[51] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture
Notes in Mathematics, 1554, Springer-Verlag, Berlin, 1993. ISBN 3-540-57013-6. MR 96m:11116. Citations
in this document: §A.

[52] Jeffrey S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes,
IEEE Transactions on Information Theory 34 (1988), 1354–1359. MR 89k:94072. Citations in this docu-
ment: §4.

[53] Mitsuru Matsui (editor), Advances in cryptology—ASIACRYPT 2009, 15th international conference on
the theory and application of cryptology and information security, Tokyo, Japan, December 6–10, 2009,
proceedings, Lecture Notes in Computer Science, 5912, Springer, 2009. ISBN 978-3-642-10365-0. See [32].

[54] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL DSN Progress Report
(1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF. Citations in this
document: §1, §4.

[55] Rafael Misoczki, Paulo S. L. M. Barreto, Compact McEliece keys from Goppa codes, in SAC 2009 [40]
(2009), 376–392. Citations in this document: §A.

[56] Kazuo Ohta, Dingyi Pei (editors), Advances in cryptology—ASIACRYPT’98: proceedings of the inter-
national conference on the theory and application of cryptology and information security held in Beijing,
Lecture Notes in Computer Science, 1514, Springer, 1998. ISBN 3-540-65109-8. MR 2000h:94002. See [18].

[57] Raphael Overbeck, Statistical decoding revisited, in ACISP 2006 [6] (2006), 283–294. Citations in this
document: §4.

[58] Raphael Overbeck, Nicolas Sendrier, Code-based cryptography, in [8] (2009), 95–145. Citations in this
document: §2, §4.

[59] Christiane Peters, Information-set decoding for linear codes over Fq, in Post-Quantum Cryptography [64]
(2010), 81–94. Citations in this document: §1, §4, §2.

http://www.it.lth.se/cryptology/e-papers/paper054.pdf
http://www.it.lth.se/cryptology/e-papers/paper054.pdf
http://eprint.iacr.org/2010/006
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF


16 D. J. Bernstein, T. Lange, C. Peters

[60] Carl Pomerance (editor), Advances in cryptology—CRYPTO ’87, proceedings of the conference on the the-
ory and applications of cryptographic techniques held at the University of California, Santa Barbara, Cal-
ifornia, August 16–20, 1987, Lecture Notes in Computer Science, 293, Springer, 1987. ISBN 3-540-18796-
0. MR 89b:68005. URL: http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF. See
[1].

[61] Eugene Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information
Theory IT-8 (1962), S5–S9. Citations in this document: §4.

[62] Tal Rabin (editor), Advances in cryptology—CRYPTO 2010, 30th annual cryptology conference, Santa
Barbara, CA, USA, August 15–19, 2010, proceedings, Lecture Notes in Computer Science, 6223, Springer,
2010. See [47].

[63] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining digital signatures and public-
key cryptosystems, Communications of the ACM 21 (1978), 120–126. ISSN 0001–0782. Citations in this
document: §A.

[64] Nicolas Sendrier (editor), Post-quantum cryptography, third international workshop, PQCrypto, Darmstadt,
Germany, May 25-28, 2010, proceedings, Lecture Notes in Computer Science, 6061, Springer, 2010. See
[7], [59].

[65] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factoring., in FOCS 1994
[36] (1994), 124–134; see also newer version [66]. MR 1489242. Citations in this document: §A.

[66] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer, SIAM Journal on Computing 26 (1997), 1484–1509; see also older version [65]. MR MR
98i:11108.

[67] Jacques Stern, A method for finding codewords of small weight, in [26] (1989), 106–113. Citations in this
document: §1, §3, §3, §4, §4.

[68] Johan van Tilburg, On the McEliece public-key cryptosystem, in Crypto ’88 [37] (1990), 119–131. MR
1046386. Citations in this document: §4.

[69] Johan van Tilburg, Security-analysis of a class of cryptosystems based on linear error-correcting codes,
Ph.D. thesis, Technische Universiteit Eindhoven, 1994. ISBN 90-72125-45-2. MR 95k:94025. Citations in
this document: §4.

[70] Serge Vaudenay (editor), Advances in cryptology—EUROCRYPT 2006, 25th annual international con-
ference on the theory and applications of cryptographic techniques, St. Petersburg, Russia, May 28–June
1, 2006, proceedings, Lecture Notes in Computer Science, 4004, Springer, 2006. ISBN 3-540-34546-9. See
[42].

[71] Eric R. Verheul, Jeroen M. Doumen, Henk C. A. van Tilborg, Sloppy Alice attacks! Adaptive chosen cipher-
text attacks on the McEliece public-key cryptosystem, in [12] (2002), 99–119. MR 2005b:94041. Citations
in this document: §1.

A Long-term cryptography

McEliece’s cryptosystem is not as well known as RSA or ECC, because of a specific problem
discussed below; but it also has several attractive features. The attractive features appear to
be of increasing importance, while the problem appears to be of decreasing importance. To
provide context for this paper we briefly review both the features and the problem.

Main features. McEliece’s cryptosystem provides an excellent asymptotic speed/security
tradeoff. Specifically, straightforward encryption algorithms take time just b2+o(1) when pa-
rameters are chosen to provide b-bit security against the best attacks known. This asymptotic
formula b2+o(1) arises as follows:

– The best attacks known have always been generic decoding algorithms, and those algo-
rithms have (for any constant R) always taken time 2Θ(n/log2 n). Security therefore requires
code length n ∈ Θ(b log2 b).

– The bottleneck in encryption is a simple matrix-vector product where the matrix has
Θ(n2) = Θ(b2(log2 b)2) bits.

http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF


Smaller decoding exponents: ball-collision decoding 17

Encryption also takes time b2+o(1) when parameters are chosen to provide b-bit security against
the best quantum attack known today. Decryption is more complicated than encryption but
asymptotically even faster.

For comparison, low-exponent RSA encryption takes time b3+o(1) when RSA moduli are
chosen to provide b-bit security against the best attack known today. This asymptotic formula
arises as follows:

– The best attacks known have always been factorization algorithms. Modern algorithms to
factor n-bit integers take time 2n1/3+o(1)

. Security therefore requires key size b3+o(1). Key
size b2+o(1) would have sufficed against Schroeppel’s linear sieve, the best factorization
algorithm mentioned in the original 1978 RSA paper [63], but the introduction of the
number-field sieve in the early 1990s [51] forced asymptotically much larger key sizes.

– Low-exponent encryption using an asymptotically fast FFT-based multiplication algo-
rithm takes time essentially linear in the key size, and therefore time b3+o(1).

Even more time is required for RSA decryption, Diffie–Hellman key exchange (in its original
form using multiplicative groups), etc. Furthermore, the introduction of Shor’s algorithm in
1994 [65] showed that RSA would need encryption time at least 2(1/2+o(1))b to provide b-bit
security against quantum attacks.

Elliptic-curve cryptography is a much closer competitor: it provides b2+o(1) encryption
time and decryption time and has not suffered any serious attacks since its introduction in
1985. However, a closer look suggests that— asymptotically and in practice — the o(1) for
ECC is not competitive with the o(1) for McEliece. Furthermore, like RSA, ECC will not
survive quantum computers.

Code-based cryptography is not the only candidate for post-quantum public-key encryp-
tion. Lattice-based cryptography, specifically NTRU and the closely related Ring-LWE, ap-
pears to provide a reasonable speed/security tradeoff, even against quantum computers. How-
ever, NTRU will be patented until 2017, and Ring-LWE is less attractive than the McEliece
cryptosystem for users concerned with the length and depth of cryptanalytic scrutiny.

RSA plays a dominant role today in applications such as HTTPS. However, it is clear
that continued increases in the computer power available to attackers are drawing attention
to alternative cryptosystems that provide better scalability than RSA; at the same time,
continued progress towards quantum computing is drawing attention to post-quantum cryp-
tography. The McEliece cryptosystem is ideally placed in light of these two trends. We can
imagine the cryptosystem taking a much more prominent role in future cryptography than
it does in current cryptography. The complexity of generic decoding will be important for
implementors selecting parameters for the McEliece cryptosystem, the same way that the
complexity of factorization (see, e.g., [47]) is important for implementors selecting RSA key
sizes today, that the complexity of discrete logarithms (see, e.g., [42] and [43]) is important
for implementors selecting DSA/DH key sizes today, etc.

The exponent of ball-collision decoding is not as low as the exponent reported by Bern-
stein in [7] for quantum information-set decoding. Construction of quantum computers might
show that the cost of a quantum computer is close to linear in the number of qubits; if so,
then all sufficiently large generic decoding problems will be more efficiently solved by quan-
tum information-set decoding than by ball-collision decoding, and it might turn out that
“sufficiently large” includes the parameter sizes of interest in cryptography, superseding ball-
collision decoding as a cryptanalytic tool. However, it might also turn out that quantum



18 D. J. Bernstein, T. Lange, C. Peters

computers and quantum decoding algorithms scale somewhat less smoothly, leaving non-
quantum algorithms as the top decoding threat even if quantum computers are powerful
enough to break RSA. It seems prudent to continue investigating both the complexity of
quantum algorithms, as in [7], and the complexity of non-quantum algorithms, as in this
paper.

The problem. As mentioned above, there is one problem with the McEliece cryptosystem:
namely, key size. The McEliece key size b2+o(1) is asymptotically smaller than the RSA key
size b3+o(1), but the RSA key size is smaller for all practical values of b. The ECC key size is
even smaller, just 2b bits. For example, the smallest McEliece key size proposed in [9, Section
7] for b = 128 was 192192 bytes, while RSA keys at the same security level are just 3072 bits,
and ECC keys are just 256 bits.

The relatively large key size has made the McEliece cryptosystem unsuitable for many
applications over the past thirty years. On the other hand, it seems obvious that network
bandwidth, storage space, and the number of messages exchanged between users are all in-
creasing more quickly than the number of users. A modern 1.5-terabyte hard drive costing $80
can store several million 192192-byte keys, and a server storing millions of keys can use those
keys to protect much larger volumes of network traffic. At the low end, Eisenbarth, Güneysu,
Heyse, and Paar at CHES 2009 [30] reported successfully implementing the McEliece cryp-
tosystem (at a somewhat lower security level) on an AVR microcontroller and a Spartan
FPGA.

There have been many proposals that reduce the McEliece key size by deviating in vari-
ous ways from McEliece’s original selection of random binary Goppa codes as error-correcting
codes. Several of these proposals have been broken by “structural attacks” that exploit non-
randomness in the public key. For example, [34] and [31] broke many, but not all, cases of
[55]. Perhaps some proposals will survive, but the maximum security that any designer can
hope to achieve is limited by the generic decoding attacks analyzed in this paper.

B Choosing McEliece parameters

The traditional approach to selecting cryptosystem parameters is as follows:

– Consider the fastest known attacks against the system. For example, in the case of RSA,
consider the latest refinements [47] of the number-field sieve.

– Restrict attention to parameters for which these attacks take time at least 2b+δ. Here b
is the desired security level, and δ is a “security margin” meant to protect against the
possibility of further improvements in the attacks.

– Within the remaining parameter space, choose the most efficient parameters. The defini-
tion of efficiency depends on the target application: it could mean minimal key size, for
example, or minimum decryption time.

This approach does not make clear how to choose the security margin δ. Some applications
have ample time and space for cryptography, and can simply increase δ to the maximum
value for which the costs of cryptography are still insignificant; but in some applications
cryptography is an important bottleneck, and users insist on minimizing δ for the sake of
performance.

Finiasz and Sendrier in [32] identified a bound on “future improvements” in attacks against
the McEliece cryptosystem, and suggested that designers use this bound to “choose durable



Smaller decoding exponents: ball-collision decoding 19

parameters”. The general idea of identifying bottlenecks in any possible attack, and of using
those bottlenecks to systematically choose δ, is quite natural and attractive, and has been
used successfully in many contexts. However, as discussed in Section 6, ball-collision decoding
disproves the specific bound in [32], violating one of the assumptions in [32] and raising the
question of how many more assumptions can be violated.

We propose replacing the bound in [32] with the simpler bound

min

{
1
2

(
n

w

)(
n− k

w − p

)−1(k

p

)−1/2

: p ≥ 0

}
;

i.e., choosing the code length n, code rate k/n, and error fraction w/n so that this bound
is at least 2b. As usual, implementors can exploit the remaining flexibility in parameters to
optimize decryption time, compressed key size k(n − k), or efficiency in any other metric of
interest.

This bound has several attractive features. It is easy to estimate via standard binomial-
coefficient approximations. It is easy to compute exactly. It covers a very wide class of attacks,
as we explain in a moment. It is nevertheless in the same ballpark as the cost of known attacks:
for example, it is 249.69 for the original parameters (n, k, w) = (1024, 524, 50), and 2236.49 for
(n, k, w) = (6624, 5129, 117). Note that these numbers give lower bounds on the cost of the
attack. Parameters protecting against this bound pay only about a 20% performance penalty
at high security levels, compared to parameters that merely protect against known attacks.

The reader can easily verify that parameters (n, k, w) = (3178, 2384, 68) achieve 128-bit se-
curity against this bound. For 256-bit security (n, k, w) = (6944, 5208, 136) are recommended.

Here is the class of attacks mentioned above. Assume that each iteration of the attack
chooses an information set, hoping for exactly p errors in the set; that the choices of infor-
mation sets are independent of the target syndrome; that each iteration considers at least(
k
p

)1/2
error patterns within the information set; and that testing each pattern costs at least

1. The
(
k
p

)1/2
iterations model the cost of a birthday-type attack on all vectors of length k

with Hamming weight p.
For each ε ≥ 0, a cost bound of ε

(
n
w

)(
n−k
w−p

)−1(k
p

)−1/2
allows at most ε

(
n
w

)(
n−k
w−p

)−1(k
p

)−1

iterations, and each iteration covers at most
(

n−k
w−p

)(
k
p

)
patterns of w errors, so overall the

iterations cover at most ε
(

n
w

)
possible patterns; i.e., the attack succeeds with probability at

most ε. The average attack time is therefore at least 1
2

(
n
w

)(
n−k
w−p

)−1(k
p

)−1/2
. Note that batching

attacks, i.e., attacking multiple targets at once, does not provide any benefits in this approach.
Thus the Johansson–Jonsson speedups for attacking batches of McEliece ciphertexts [41] are
subject to the same bound, as are the Fossorier–Kobara–Imai speedups [33].

One can object that this class does not include, e.g., attacks that hope for at most p
errors in the information set, or attacks that consider fewer error patterns per iteration at the
expense of success probability. One can object, in the opposite direction, that the conditional
success probability per error pattern inspected is actually a constant factor smaller than the(
k
p

)−1/2
hypothesized above; see generally [32, Appendix A]. A more complicated bound that

accounts for these variations and limitations would be slightly larger than the bound stated
above but would also be more difficult to compute; our view is that a simpler, slightly smaller
bound is more useful. In any event, it is clear that beating this bound would be an astonishing
breakthrough.



20 D. J. Bernstein, T. Lange, C. Peters

C Proof of suboptimality of Q = 0 (Theorem 7.1)

This appendix shows that, for each pair (W,R) within the range considered in Section 7,
there are asymptotic parameters (P,Q,L) for ball-collision decoding whose cost exponent is
smaller than the minimum collision-decoding-cost exponent, i.e., smaller than the minimum
cost exponent for parameters (P, 0, L).

Input space and parameter space. Throughout this appendix W and R are real numbers
with 0 < W < 1/2 and −W log2 W − (1−W ) log2(1−W ) ≤ 1−R < 1.

The parameter space is the set of vectors (P,Q,L) of real numbers satisfying 0 ≤ P ≤ R/2,
0 ≤ Q ≤ L, and 0 ≤ W − 2P − 2Q ≤ 1 − R − 2L. This parameter space depends implicitly
on W and R.

Section 7 considers codes of length n and dimension k, and errors of weight w, where
n → ∞, k/n → R, and w/n → W . The ball-collision parameters p1, p2, q1, q2, k1, k2, `1, `2

satisfy pi/n → P , qi/n → Q, ki/n → R/2, and `i/n → L. The proof does not rely on this
coding-theoretic interpretation of W,R, P, Q, L, but readers already familiar with collision
decoding may find the interpretation helpful in understanding Lemma C.1 below.

Cost exponent for collision decoding. Most of the proof consists of analyzing the asymp-
totic cost exponent D(P, 0, L) for collision decoding, namely

max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}
−W log2 W − (1−W ) log2(1−W )− (1−R− 2L) log2(1−R− 2L)
+ (W − 2P ) log2(W − 2P ) + (1−R− 2L− (W − 2P )) log2(1−R− 2L− (W − 2P )).

As mentioned earlier, D(P, 0, L) is a continuous function of the parameters (P, 0, L), and the
parameter space is compact, so there exist optimal collision-decoding parameters (P, 0, L),
i.e., parameters that achieve the infimum of collision-decoding costs. This does not imply,
and the proof of Theorem 7.1 does not use, uniqueness of the optimal parameters.

Optimal collision-decoding parameters. The proof that ball-collision decoding beats col-
lision decoding relies on the following three facts about optimal collision-decoding parameters
(P, 0, L):

Lemma C.1 If (P,L) are optimal collision-decoding parameters then

0 < L; 0 < W − 2P ; and W − 2P < (1−R− 2L)/2.

In other words, the collision space F`1+`2
2 is asymptotically quite large, and the uncon-

trolled n− k1 − k2 − `1 − `2 positions include asymptotically many error positions, although
asymptotically more non-error positions than error positions.

We do not claim that the three facts in Lemma C.1 are news to the many authors who
have written previous papers on collision decoding. However, we have not found proofs of
these facts in the literature, so for completeness we include proofs here.

The proofs do not require any background in coding theory. The main tool is nothing
more than basic calculus. In order to study the growth of the collision-cost exponent induced
by an increase or decrease in the values of P and L, we use the Taylor-series expansion of
the logarithm function: for example, a term such as (L + ε) log2(L + ε) has series expansion
L log2 L + ε log2(eL) + O(ε2) around ε = 0. Here e = exp(1) is the base of natural logarithms.



Smaller decoding exponents: ball-collision decoding 21

Beware that extra work is required in moving away from corners of the parameter space: for
example, L log2 L is not differentiable at L = 0.

How to improve upon optimal collision-decoding parameters. Before proving the
three parts of Lemma C.1 we show how to deduce Theorem 7.1 from Lemma C.1. The proof
is constructive, showing how to slightly adjust optimal parameters for collision decoding to
obtain better parameters for ball-collision decoding.

Proof (of Theorem 7.1). Start with optimal collision-decoding parameters (P, 0, L). Now con-
sider the impact of increasing Q from 0 to δ and increasing L by −(1/2)δ log2 δ, for very small
δ. Of course, the increase in Q requires generalizing from collision decoding to ball-collision
decoding. Lemma C.1 says that optimal collision-decoding parameters (P, 0, L) must have
0 < L and 0 < W − 2P < (1−R− 2L)/2; consequently the parameter space has room for Q
and L to increase.

The quantity L log2 L − Q log2 Q − (L − Q) log2(L − Q) increases by −δ log2 δ + O(δ),
and 2L log2 L − 2Q log2 Q − 2(L − Q) log2(L − Q) − 2L also increases by −δ log2 δ + O(δ).
The iteration-cost exponent therefore increases by −δ log2 δ + O(δ). The success-probability
exponent increases by δ log2 δ log2(e(1−R− 2L))− δ log2 δ log2(e(1−R− 2L− (W − 2P )))−
2δ log2 δ + O(δ). The total cost exponent therefore increases by (δ log2 δ)(1 + log2(1 − R −
2L− (W − 2P ))− log2(1−R− 2L)) + O(δ).

Rewrite W−2P < (1−R−2L)/2 as 1+log2(1−R−2L−(W−2P ))−log2(1−R−2L) > 0,
and deduce that the increase in the cost exponent is negative for all sufficiently small δ > 0;
note here that log2 δ is negative, and that O(δ)/(δ log2 δ) → 0 as δ → 0. Consequently the
optimal collision-decoding parameters (P, 0, L) are beaten by (P, δ, L − (1/2)δ log2 δ) for all
sufficiently small δ > 0. ut

How to optimize collision decoding. We build up to Lemma C.1 using several lemmas.
The first two lemmas require the most difficult calculations, establishing a useful inequality.
The next three lemmas show that optimal collision-decoding parameters (P,L) can never have
L = 0: Lemma C.4 covers the case P = 0; Lemma C.5 covers the case P = R/2; Lemma C.6
covers the intermediate cases 0 < P < R/2. Each of the proofs is constructive, showing how
to move from (P, 0) to better collision-decoding parameters.

The next two lemmas show similarly that optimal collision-decoding parameters (P,L)
cannot have 0 = W−2P = 1−R−2L, and cannot have 0 = W−2P < 1−R−2L, so they must
have 0 < W −2P . Proving Lemma C.1 then boils down to proving W −2P < (1−R−2L)/2;
that proof concludes the appendix.

If (P ′, 0, L′) and (P, 0, L) are in the parameter space and D(P ′, 0, L′) < D(P, 0, L) then
we say that (P ′, L′) improves upon (P,L). We also say that (P ′, L′) improves upon (P,L) in
the vacuous case that (P, 0, L) is not in the parameter space.

Lemma C.2 Write G = (1 + W log2 W + (1−W ) log2(1−W ))/2 and

X =
1− 2G−G log2 G + (W/2) log2(W/2) + (G− (W/2)) log2(G− (W/2))

W
.

If 0 < W ≤ 0.099 then X > 2.

Proof. We begin by commenting that simply graphing the function W 7→ X for 0 < W < 0.2
suggests that X drops to a minimum close to 2.8 for W ≈ 0.13. However, most graphing



22 D. J. Bernstein, T. Lange, C. Peters

programs are easily fooled; a graph is not the same as a proof! It is easy to imagine a better
graphing program that uses interval arithmetic to automatically prove a lower bound on X
for a closed interval of W , but handling W → 0 would still take more work, such as the work
shown in Case 4 below.

The proof begins by rewriting

X =
− log2 W

2
+
−2(1−W ) log2(1−W ) + 2G log2(1−W/(2G))−W log2(2G−W )

2W
.

Note that G is a monotonic function of W for 0 < W < 0.5, decreasing from 0.5 down to 0.

Case 1: 0.079 ≤ W ≤ 0.099. Evaluating G for W = 0.079 and W = 0.099 shows that G is in
the interval [0.267090, 0.300678]. Continuing in the same way through interval evaluations of
W/(2G), log2(1−W/(2G)), 2G log2(1−W/(2G)), etc. eventually shows that X ∈ [2.21, 3.66].

Case 2: 0.057 ≤ W ≤ 0.079. The same sequence of calculations shows first that G ∈
[0.300676, 0.342291] and then that X ∈ [2.17, 4.03].

Case 3: 0.036 ≤ W ≤ 0.057. Here G ∈ [0.342289, 0.388180] and X ∈ [2.21, 4.56].

Case 4: 0 < W ≤ 0.036. This is the heart of the proof.

Write E = 1−2G = −W log2 W − (1−W ) log2(1−W ). Then E and E +W are increasing
functions of W ; evaluating them for W = 0.036 shows that 0 < E < E + W < 1 for
0 < W ≤ 0.036.

The Taylor-series expansion log(1−t) = −t−t2/2−t3/3−t4/4−t5/5−· · · , where log denotes
the natural logarithm, implies log(1−t) ≤ −t and log(1−t) ≥ −t−t2−t3−t4−· · · = −t/(1−t)
for 0 < t < 1. In other words, for each t with 0 < t < 1 there exists u ∈ [0, 1] such that
(1 − t) log(1 − t) = −t + ut2. In particular, (1 − W ) log2(1 − W ) = (−W + αW 2)/ log 2 for
some α ∈ [0, 1]; (1 − E) log2(1 − E) = (−E + βE2)/ log 2 for some β ∈ [0, 1]; and (1 − E −
W ) log2(1− E −W ) = (−(E + W ) + γ(E + W )2)/ log 2 for some γ ∈ [0, 1].

Now E = −W (log W )/ log 2− (−W + αW 2)/ log 2 so

X

− log2 W
=

1
2
− (1−W ) log(1−W )

−W log W
− (1− E) log(1− E)

−2W log W
+

(1− E −W ) log(1− E −W )
−2W log W

=
1
2

+
−W + αW 2

W log W
+
−E + βE2

2W log W
− −E −W + γ(E + W )2

2W log W

=
1
2

+
−1 + 2αW

2 log W
+

βE2 − γ(E + W )2

2W log W

=
1
2

+
−1 + 2αW

2 log W
− γW (log 2− 2 log W + 2(1− αW ))

2 log 2 log W

+
(β − γ)W (1 + log2 W − 2αW + α2W 2 − 2(1− αW ) log W )

2 log2 2 log W



Smaller decoding exponents: ball-collision decoding 23

so

X =
1

2 log 2
− log W

2 log 2
− αW

log 2
+

γW (log 2− 2 log W + 2(1− αW ))
2 log2 2

− (β − γ)W (1 + log2 W − 2αW + α2W 2 − 2(1− αW ) log W )
2 log3 2

=
1

2 log 2
− log W

2 log 2
− (β − γ)W log2 W

2 log3 2

+
(β − γ(1 + log 2))W log W

log3 2
+

(γ(log2 2 + 2 log 2 + 1)− α2 log2 2− β)W
2 log3 2

− (β − γ)αW 2 log W

log3 2
+

(β − γ(1 + log 2))αW 2

log3 2
− (β − γ)α2W 3

2 log3 2

∈ 1
2 log 2

− log W

2 log 2
− [−1, 1]W log2 W

2 log3 2

+
[−1− log 2, 1]W log W

log3 2
+

[−1− 2 log2 2, log2 2 + 2 log 2 + 1]W
2 log3 2

− [−1, 1]W 2 log W

log3 2
+

[−1− log 2, 1]W 2

log3 2
− [−1, 1]W 3

2 log3 2
.

We now put a separate lower bound on each term, using the positivity of W , −W log W , etc.:

X ≥ 1
2 log 2

− log W

2 log 2
− W log2 W

2 log3 2
+

W log W

log3 2

+
(−1− 2 log2 2)W

2 log3 2
− −W 2 log W

log3 2
+

(−1− log 2)W 2

log3 2
− W 3

2 log3 2
.

Each term here is monotonically decreasing for 0 < W ≤ 0.036: for example, W log2 W has
derivative 2 log W +log2 W , which is zero only for W = 1/e2 > 0.1. Each quantity is therefore
bounded below by its value at 0.036: i.e.,

X ≥ 1
2 log 2

− log 0.036
2 log 2

− 0.036 log2 0.036
2 log3 2

+
0.036 log 0.036

log3 2

+
(−1− 2 log2 2)0.036

2 log3 2
− −0.0362 log 0.036

log3 2
+

(−1− log 2)0.0362

log3 2
− 0.0363

2 log3 2
≥ 2.02

for 0 < W ≤ 0.036. ut

Lemma C.3 Each (P, 0, L) in the parameter space satisfies

1−R− ((R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )) > 2W.

Proof. Case 1: 0.099 < W < 0.5.
Recall that 1 − R ≥ −W log2 W − (1 − W ) log2(1 − W ). Hence 1 − (3/2)R − 2W ≥

−(1/2)− 2W − (3/2)W log2 W − (3/2)(1−W ) log2(1−W ). The values of this lower bound
at 0.099, 0.3, 0.5 are ≈ 0.000726,≈ 0.2218, 0 respectively; the derivative of the lower bound
is −2 − (3/2) log2(eW ) + (3/2) log2(e(1 − W )), which has a unique zero at W = 1/(1 +



24 D. J. Bernstein, T. Lange, C. Peters

24/3) ≈ 0.2841; so the lower bound is positive for all W with 0.099 < W < 0.5. In particular
2W < 1− (3/2)R if 0.099 < W < 0.5.

The maximum possible value of (R/2) log2(R/2)−P log2 P − (R/2−P ) log2(R/2−P ) is
(R/2) log2(R/2)− 2(R/4) log2(R/4) = R/2, so 1−R− ((R/2) log2(R/2)−P log2 P − (R/2−
P ) log2(R/2− P )) ≥ 1− (3/2)R > 2W as claimed.

Case 2: 0 < W ≤ 0.099.
Define G and X as in Lemma C.2; then X > 2. Note that G − W has derivative

(1/2) log2(eW )− (1/2) log2(e(1−W ))− 1 < 0 for 0 < W ≤ 0.099, and value 0.168091 . . . > 0
at W = 0.099, so G > W for 0 ≤ W ≤ 0.099.

Furthermore R/2 ≤ G by definition of G and the parameter space. So (R/2) log2(R/2)−
P log2 P − (R/2− P ) log2(R/2− P ) ≤ G log2 G− P log2 P − (G− P ) log2(G− P ); note that
for any fixed c > 0 and x > c the function x log2 x − (x − c) log2(x − c) is increasing (check
its derivative).

Note also that the function x log2 x + (c − x) log2(c − x) is decreasing for x < c/2. The
parameter space forces P ≤ W/2 < G/2 so G log2 G − P log2 P − (G − P ) log2(G − P ) ≤
G log2 G− (W/2) log2(W/2)− (G− (W/2)) log2(G− (W/2)).

Combining all of these inequalities produces 1−R− ((R/2) log2(R/2)−P log2 P − (R/2−
P ) log2(R/2−P )) ≥ 1−R− (G log2 G− (W/2) log2(W/2)− (G− (W/2)) log2(G− (W/2))) ≥
XW > 2W as claimed. ut

Lemma C.4 There is a real number δ > 0 such that (δ,−(1/2)δ log2 δ) improves upon (0, 0).

Proof. For all sufficiently small real numbers δ ≥ 0 the parameters (P,L) = (δ,−(1/2)δ log2 δ)
satisfy the constraints 0 ≤ P ≤ R/2, 0 ≤ L, and 0 ≤ W − 2P ≤ 1−R− 2L since 0 < R and
0 < W . The collision-cost exponent is max{δ log2 δ + O(δ), δ log2 δ} − (1−W ) log2(1−W )−
(1−R) log2(1−R)+(1−R−W ) log2(1−R−W )−(δ log2 δ) log2(e(1−R))+(δ log2 δ) log2(e(1−
R−W )) + O(δ) = −(1−W ) log2(1−W )− (1−R) log2(1−R) + (1−R−W ) log2(1−R−
W )+(δ log2 δ)(1+ log2(1−R−W )− log2(1−R))+O(δ). The inequality 2W < 1−R implies
1+ log2(1−R−W )− log2(1−R) > 0, so (δ log2 δ)(1+ log2(1−R−W )− log2(1−R))+O(δ)
is negative for all sufficiently small δ > 0, improving upon (0, 0). ut

Lemma C.5 There is a real number δ > 0 such that (R/2− δ,−(1/2)δ log2 δ) improves upon
(R/2, 0).

Proof. If W < R then (R/2, 0, 0) is outside the parameter space so the conclusion is vacuously
satisfied. Assume from now on that W ≥ R.

For all sufficiently small δ ≥ 0 the parameters (P,L) = (R/2−δ,−(1/2)δ log2 δ) satisfy the
constraints 0 ≤ P ≤ R/2, 0 ≤ L, and 0 ≤ W − 2P ≤ 1−R− 2L. The iteration-cost exponent
is max{δ log2 δ + O(δ), δ log2 δ}−W log2 W −(1−R) log2(1−R)+(W −R+2δ) log2(W −R+
2δ)−(δ log2 δ) log2(e(1−R))+(δ log2 δ) log2(e(1−W ))+O(δ) = −W log2 W−(1−R) log2(1−
R) + (W −R + 2δ) log2(W −R + 2δ) + (δ log2 δ)(1 + log2(1−W )− log2(1−R)) + O(δ).

If W = R then (W − R + 2δ) log2(W − R + 2δ) + (δ log2 δ)(1 + log2(1 − W ) − log2(1 −
R)) + O(δ) = 3δ log2 δ + O(δ). This is negative for all sufficiently small δ > 0.

Otherwise W > R so the difference between (W −R+2δ) log2(W −R+2δ)+(δ log2 δ)(1+
log2(1−W )− log2(1−R)) + O(δ) and (W −R) log2(W −R) is (δ log2 δ)(1 + log2(1−W )−
log2(1−R)) + O(δ). This difference is also negative for all sufficiently small δ > 0: recall that
2(1−W ) > 1 > 1−R, so the coefficient 1 + log2(1−W )− log2(1−R) is positive.

Either way (P,L) = (R/2− δ,−(1/2)δ log2 δ) improves upon (R/2, 0). ut



Smaller decoding exponents: ball-collision decoding 25

Lemma C.6 If 0 < P < R/2 then there is a real number δ > 0 such that (P, δ) improves
upon (P, 0).

Proof. Consider the impact of changing L from 0 to δ. The quantity −(R/2) log2(R/2) +
P log2 P + (R/2 − P ) log2(R/2 − P ) is negative and unchanged, and −2L changes from 0
to −2δ, so max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L} increases by
−2δ if δ is sufficiently small. The quantity −(1 − R − 2L) log2(1 − R − 2L) increases by
2δ log2(e(1−R))+O(δ2). The quantity (1−R−2L− (W −2P )) log2(1−R−2L− (W −2P ))
increases by −2δ log2(e(1−R− (W − 2P ))) + O(δ2).

The total collision-cost exponent increases by 2δ(−1 + log2(1 − R) − log2(1 − R − (W −
2P ))) + O(δ2). The coefficient −1 + log2(1− R)− log2(1− R − (W − 2P )) is negative since
W − 2P < (1−R)/2. Hence (P, δ) improves upon (P, 0) for all sufficiently small δ > 0. ut

Lemma C.7 There is a real number c ≥ 2 satisfying the following condition: if W < R then
c log2 c − (c − 1) log2(c − 1) > (1/2)(log2(R − W ) − log2 W ). For any such c there is a real
number δ > 0 such that ((W − δ)/2, (1−R− cδ)/2) improves upon (W/2, (1−R)/2).

Proof. If W > R then (W/2, (1 − R)/2) is outside the parameter space and the conclusions
are vacuously satisfied for, e.g., c = 2 and δ = 1. Assume from now on that W ≤ R.

Choose a real number c large enough to meet both of the following constraints: first, c ≥ 2;
second, if W < R then c log2 c− (c− 1) log2(c− 1) > (1/2)(log2(R−W )− log2 W ). This can
always be done: c log2 c− (c− 1) log2(c− 1) →∞ as c →∞.

Consider the impact of changing L from (1−R)/2 to (1−R−cδ)/2, and at the same time
changing P from W/2 to (W −δ)/2. This change fits the parameter constraints for sufficiently
small δ > 0.

The quantity −(1−R− 2L) log2(1−R− 2L) changes from 0 to −cδ log2(cδ). The quan-
tity (W − 2P ) log2(W − 2P ) changes from 0 to δ log2 δ. The quantity (1 − R − 2L − (W −
2P )) log2(1 − R − 2L − (W − 2P )) changes from 0 to (c − 1)δ log2((c − 1)δ). The quantity
max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L} is dominated by its first
term since 2L = 1− R > 2W + ((R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P )) by
Lemma C.3. It thus increases by ((W −δ)/2) log2((W −δ)/2)− (W/2) log2(W/2)+((R−W +
δ)/2) log2((R−W + δ)/2)− ((R−W )/2) log2((R−W )/2) if δ is sufficiently small.

The total cost exponent increases by δ((c−1) log2(c−1)−c log2 c)+((W−δ)/2) log2((W−
δ)/2)−(W/2) log2(W/2)+((R−W +δ)/2) log2((R−W +δ)/2)−((R−W )/2) log2((R−W )/2).

If W = R then this increase is (δ/2) log2(δ/2) + O(δ) and is therefore negative for all
sufficiently small δ > 0.

If W < R then this increase is δ((c− 1) log2(c− 1)− c log2 c + (1/2)(log2(e(R−W )/2)−
log2(eW/2)))+O(δ2), The coefficient of δ is negative by choice of c, so the increase is negative
for all sufficiently small δ > 0.

In all cases ((W − δ)/2, (1−R− cδ)/2) improves upon (W/2, (1−R)/2). ut

Lemma C.8 Assume that 0 < 1 − R − 2L. Then there is a real number δ > 0 such that
((W − δ)/2, L) improves upon (W/2, L).

Proof. Consider collision-decoding parameters (P,L) with 0 = W − 2P < 1 − R − 2L. If
W > R then (W/2, 0, L) is outside the parameter space so the conclusion is vacuously satisfied.
Assume from now on that W ≤ R.



26 D. J. Bernstein, T. Lange, C. Peters

Consider the impact of changing P from W/2 to (W−δ)/2. This change fits the parameter
constraints for sufficiently small δ > 0.

The quantity (W − 2P ) log2(W − 2P ) increases by δ log2 δ. The quantity (1 − R − 2L −
(W − 2P )) log2(1−R− 2L− (W − 2P )) increases by O(δ). The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}

increases by a value between 0 and ((W − δ)/2) log2((W − δ)/2)− (W/2) log2(W/2) + ((R−
W +δ)/2) log2((R−W +δ)/2− ((R−W )/2) log2((R−W )/2), which is (δ/2) log2(δ/2)+O(δ)
if W = R and O(δ) if W < R. The total increase in the cost is between δ log2 δ + O(δ) and
(3/2)δ log2 δ + O(δ), and is therefore negative for all sufficiently small δ > 0. ut

Proof (of Lemma C.1). The hypothesis is that (P,L) minimizes D(P, 0, L), i.e., that nothing
improves upon (P,L).

The definition of the parameter space implies L ≥ 0. Suppose that L = 0. Then P < 0
would contradict the definition of the parameter space; P = 0 would contradict Lemma C.4;
0 < P < R/2 would contradict Lemma C.6; P = R/2 would contradict Lemma C.5; and
P > R/2 would contradict the definition of the parameter space. Hence L > 0.

The definition of the parameter space also implies 0 ≤ W −2P . Suppose that 0 = W −2P .
Then 0 = 1 − R − 2L would force (P,L) = (W/2, (1 − R)/2), contradicting Lemma C.7;
0 < 1 − R − 2L would contradict Lemma C.8; and 0 > 1 − R − 2L would contradict the
definition of the parameter space. Hence 0 < W − 2P .

Suppose that 2L > (R/2) log2(R/2)− P log2 P − (R/2− P ) log2(R/2− P ). Consider the
impact of decreasing L by δ. The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P ) log2(R/2− P ),−2L}

is dominated by the first term, so it is unchanged for sufficiently small δ. The total cost
decreases by (2 log2(1−R−2L)−2 log2(1−R−2L− (W −2P )))δ +O(δ2), contradicting the
optimality of (P,L); note that the coefficient 2 log2(1−R−2L)−2 log2(1−R−2L−(W−2P ))
is positive since W − 2P > 0.

Therefore 2L ≤ (R/2) log2(R/2)−P log2 P − (R/2−P ) log2(R/2−P ), and 1−R− 2L >
2W ≥ 2(W − 2P ) as claimed. ut


