NEON crypto

Daniel J. Bernstein! and Peter Schwabe?

! Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607-7045, USA
djb@cr.yp.to
2 Institute of Information Science
Academia Sinica, 128 Section 2 Academia Road, Taipei 115-29, Taiwan
peter@cryptojedi.org

Abstract. NEON is a vector instruction set included in a large fraction of new ARM-based tablets
and smartphones. This paper shows that NEON supports high-security cryptography at surprisingly
high speeds; normally data arrives at lower speeds, giving the CPU time to handle tasks other than
cryptography. In particular, this paper explains how to use a single 800MHz Cortex A8 core to com-
pute the existing NaCl suite of high-security cryptographic primitives at the following speeds: 5.60
cycles per byte (1.14 Gbps) to encrypt using a shared secret key, 2.30 cycles per byte (2.78 Gbps) to
authenticate using a shared secret key, 527102 cycles (1517 /second) to compute a shared secret key for
a new public key, 650102 cycles (1230/second) to verify a signature, and 368212 cycles (2172/second)
to sign a message. These speeds make no use of secret branches and no use of secret memory addresses.

Keywords: vectorization-friendly cryptographic primitives, efficient software implementations, smart-
phones, tablets, there be dragons

1 Introduction

The Apple A4 CPU used in the iPad 1 (2010, 1GHz) and iPhone 4 (2010, 1GHz) contains a single
Cortex A8 CPU core. The same CPU core also appears in many other tablets and smartphones. The
point of this paper is that the Cortex A8 achieves impressive speeds for high-security cryptography:

5.60 cycles per byte to encrypt a message using a shared secret key;
2.30 cycles per byte to authenticate a message using a shared secret key;
527102 cycles to compute a shared secret key for a new public key;
650102 cycles to verify a signature on a short message; and

368212 cycles to sign a short message.

We do not claim that all high-security cryptographic primitives run well on the Cortex A8. Quite
the opposite: we rely critically on a synergy between

e the capabilities of the “NEON” vector unit in the Cortex A8 and
e the parallelizability of some carefully selected cryptographic primitives.

The primitives we use are Salsa20 [9], a member of the final portfolio from the ECRYPT Stream
Cipher Project; Poly1305 [5], a polynomial-evaluation message-authentication code similar to the
message-authentication code in GCM; Curve25519 [6], an elliptic-curve Diffie-Hellman system;
and Ed25519 [10], an elliptic-curve signature system that was introduced at CHES 2011. The rest
of this paper explains how we use NEON to obtain such high speeds for these primitives.

It is not a coincidence that our selection matches the default primitives in NaCl, the existing
“Networking and Cryptography library” [13] used in applications such as DNSCrypt [45]; vector-
izability was one of the design criteria for NaCl. It is nevertheless surprising that a rather small
vector unit, carrying out just one arithmetic instruction per cycle, can run these primitives at the
speeds listed above. A high-power Intel Core 2 CPU core (at 45nm, like the Apple A4), with a
64-bit instruction set and three full 128-bit vector units, has cycle counts of 3.98/byte, 3.32/byte,
307053, 365742, and 106542 for the same five tasks with the best reported assembly-language

This work was supported by the National Science Foundation under grant 1018836; by the US Air Force grant
AOARD-11-4092; and by the Career Development Award of the second author’s employer. Permanent ID of this
document: 9b53e3cd38944dcc8baf4753eeblc5e7. Date: 2012.03.20.

2 Daniel J. Bernstein and Peter Schwabe

implementations of the same primitives in the SUPERCOP benchmarking suite [12]; the Cortex
A8 ends up much more competitive than one might expect. We also do better than the 697080
Cell cycles for Curve25519 achieved in [17], even though the Cell has more powerful permutation
instructions and many more registers.

Side channels. All memory addresses and branch conditions in our software are public, depending
only on message lengths. There is no data flow from secret data (keys, plaintext, etc.) to cache
timing, branch timing, etc. We do not claim that our software is immune to hardware side-channel
attacks such as power analysis, but we do claim that it is immune to software side-channel attacks
such as [44], [2], and [47].

Benchmarking platform. The speeds reported above were measured on a low-cost Hercules
eCAFE netbook (released and purchased in 2011) containing a Freescale . MX515 CPU. This
CPU has a single 800MHz Cortex A8 core. Occasionally we make comparisons to benchmarks
that use OpenSSL or a C compiler; the netbook is shipped with Ubuntu 10.04, and in particular
OpenSSL 0.9.8k and gcc 4.4.3, neither of which we claim is optimal.

All of our software has been checked against standard test suites. We are placing our software
online to maximize verifiability of our results, and are placing it into the public domain to maximize
reusability. Some of our preliminary results are already online and included in various public
benchmark reports, but this paper is our first formal announcement and achieves even better
speeds.

More CPUs with NEON. The Cortex A8 is not the only hardware design supporting the
NEON instruction set. The Apple A5 CPU used in the iPad 2 (2011, 1GHz) and iPhone 4S (2011,
800MHz) contains two Cortex A9 CPU cores with NEON units. The NVIDIA Tegra 3 CPU used
in the 2011 Asus Eee Pad Transformer Prime tablet (2011, 1.3GHz) and HTC One X smartphone
(2012, 1.5GHz) contains four Cortex A9 CPU cores with NEON units. Qualcomm’s “Snapdragon”
series of CPUs reportedly includes a different NEON microarchitecture for the older “Scorpion”
cores and a faster NEON microarchitecture for the newer “Krait” cores.

We have very recently benchmarked our software on a Scorpion, obtaining cycle counts of
5.40/byte, 1.89/byte, 606824, 756795, and 511123 for the five tasks listed above. We expect that
further optimization for Cortex A9 and Snapdragon will produce even better results. The rest of
this paper focuses on the original Cortex A8 NEON microarchitecture.

One should not think that all tablets and smartphones support NEON instructions. For example,
NVIDIA omitted NEON from the Cortex A9 cores in the Tegra 2; lower-cost ARM11 processors do
not support NEON and continue to appear in new devices; and some devices use Intel processors
with a quite different instruction set. However, Apple alone has sold more than 50 million tablets
with NEON and many more smartphones with NEON, and our sampling suggests that NEON also
appears in the majority of new tablets and smartphones from other manufacturers. This paper
turns all of these devices into powerful cryptographic engines, capable of protecting large volumes
of data while leaving the CPU with enough time to actually do something useful with that data.

2 NEON instructions and speeds

This section reviews NEON’s capabilities. This is not a comprehensive review: it focuses on the
most important instructions for our software, and the main bottlenecks in those instructions. All
comments about speed refer to the NEON unit in a single Cortex A8 core.

Registers. The NEON architecture has 16 128-bit vector registers (2048 bits overall), g0 through
q15. It also has 32 64-bit vector registers, d0 through d31, but these registers share physical space
with the 128-bit vector registers: qO is the concatenation of d0 and d1, q1 is the concatenation of
d2 and d3, etc.

For comparison, the basic ARM architecture has only 16 32-bit registers, rO through r15. Regis-
ter r13 is the stack pointer and register r15 is the program counter, leaving only 14 32-bit registers
(448 bits overall) for general use. One of the most obvious benefits of NEON for cryptography is

NEON crypto 3

that it provides much more space in registers, reducing the number of loads and stores that we
need.

Syntax. We rarely look at NEON register names, even though we write code in assembly: we use
a higher-level assembly syntax that allows any number of names for 128-bit vector registers. For
example, we write

diag3 "= b0
and then an automatic translator produces traditional assembly language
veor 96,q96,ql14

for assembly by the standard GNU assembler gas; here the translator has selected g6 for diag3
and q14 for b0. We nevertheless pay close attention to the number of “live” 128-bit registers at
each moment, reorganizing our computations to fit reasonably large amounts of work into registers.

The syntax is our own design. To build the translator we reused the existing ghasm toolkit [7]
and wrote a short ARM+NEON machine-description file for ghasm. This file contains, for example,
the line

4x r=s+t:>r=regl28:<s=regl28:<t=regl28:asm/vadd.i32 >r,<s,<t:

stating our syntax and the gas assembly-language syntax for a 4-way vectorized 32-bit addition,
and also identifying the inputs and outputs of the instruction for the ghasm register allocator. The
code examples in the rest of this paper use our syntax for the sake of readability; we do not assume
that readers are already familiar with NEON.

We have also experimented extensively with writing NEON code in C, using compiler extensions
for NEON instructions. However, we have found that assembly language gives us far better tradeoffs
between software speed and programming effort. Assembly language has a reputation for being
hard to read and write, but typical code such as

4x a0
4x b0

diagl + diag0
a0 << 7

in our assembly-language syntax is as straightforward as

a0 = diagl + diag0;
b0 = vshlg_n_u32(a0,7);

in C. The critical advantage of assembly language is that it provides more control. We frequently
find that every available C compiler produces poorly scheduled code, leaving the NEON unit
mostly idle; changing the C code to produce better assembly-language scheduling is a hit-and-
miss affair, and it is also not clear how the compiler could be modified to do better, since the C
language provides no way to express instruction priorities. Writing directly in assembly language
eliminates this difficulty, allowing us to focus on higher-level questions of how to decompose larger
computations (such as multiplications modulo 22°® — 19) into pieces suitable for vectorization.

Arithmetic instructions. The Cortex A8 NEON microarchitecture has one 128-bit arithmetic
unit. A typical arithmetic instruction such as

4x a = b + ¢

occupies the NEON arithmetic unit for one cycle. This instruction partitions the 128-bit output
register a into four 32-bit quantities a[0], a[1], a[2], a[3], similarly partitions b and c, and then
has the same effect as

al0] = b[0] + c[0]
al1]l = pb[1] + c[1]
al2] = b[2] + c[2]
al3] = p[3] + c[3]

4 Daniel J. Bernstein and Peter Schwabe

where as usual + means addition modulo 232. Readers accustomed to two-operand architectures
should note that there is no requirement to split this instruction into a copy a = b followed by 4x
a += c.

This instruction passes through several single-cycle NEON pipeline stages N1, N2, etc. It reads
its input when it is in stage N2; if the input will not be ready then it already predicts the problem
at the beginning of the pipeline and stalls there, also stalling subsequent NEON instructions. It
makes its output available in stage N4, two cycles after reading the input, so another addition
instruction that begins two cycles later (reaching N2 when the first instruction reaches N4) can
read the output without stalling.

We comment that “addition has 2-cycle latency” would be an oversimplification, for reasons
that will be clear in the next paragraph. We also warn readers that ARM’s Cortex A8 manual [3]
reports stage N3 for the output, even though an addition that begins the next cycle will in fact
stall. This is not an isolated error in the manual, but rather an unusual convention for reporting
output availability: ARM consistently lists the stage just before the output is ready. An online
Cortex A8 cycle counter by Sobole [40] correctly displays this latency, although we encountered
some other cases where it was too pessimistic.

A logical instruction such as

a=b " c
has the same performance as an addition. A subtraction instruction
4x a =b - c

occupies the arithmetic unit for one cycle, just like addition, but needs the c input one cycle earlier,
in stage N1. Addition and subtraction thus each have latency 2 as input to an addition or to the
positive part of a subtraction, but latency 3 as input to the negative part of a subtraction.
Shifting by a fixed distance is like subtraction in that it needs input in stage N1 and generates
output in stage N4. NEON can combine three instructions for rotation into two instructions—

4x a = b <K 7
4x a insert= b >> 25

—but the second instruction occupies the arithmetic unit for two cycles and generally causes larger
latency problems than a separate shift and xor.
A pair of 32-bit multiplications, each producing a 64-bit result, uses one instruction:

c[0,1] = a[0] signed* b[0]; c[2,3] = all] signed* b[1]

This instruction occupies the arithmetic unit for two cycles, for a total throughput of one 32x32 —
64-bit multiplication per cycle. This instruction reads b in stage N1, reads a in stage N2, and makes
c available in stage N8. This instruction has a multiply-accumulate variant, carrying out additions
for free:

c[0,1] += al[0] signed* b[0]; c[2,3] += a[l] signed* b[1]

The accumulator is normally read in stage N3, but is read much later if it is the result of a similar
multiplication instruction. A typical sequence such as

c[0,1] = a[0] unsigned* b[0]; c[2,3] = al[l] unsigned* b[1]
c[0,1] += e[2] unsigned* f[2]; c[2,3] += e[3] unsignedx* f[3]
c[0,1] += g[0] unsigned* h[2]; c[2,3] += g[1] unsignedx* h[3]

takes six cycles without any stalls.

Loads, stores, and permutations. There is a 128-bit NEON load/store unit that runs in parallel
with the NEON arithmetic unit. An aligned 128-bit or aligned 64-bit load or store consumes the
load/store unit for one cycle and makes its result available in N2. Alignment is static (encoded
explicitly in the instruction), not dynamic:

NEON crypto 5

x01 aligned= mem128[input_1]; input_1 += 16

The load/store instruction does not allow an offset from the index register but does allow subse-
quent increment of the index register by the load amount or by another register. There are separate
instructions for an unaligned 128-bit or unaligned 64-bit load or store, for an unaligned 64-bit load
or store with an offset, and various other possibilities, each consuming the load/store unit for at
least two cycles.

NEON includes a few permutation instructions that consume the load/store unit for one cycle:
for example,

r = s[1] t[2] r[2,3]

takes a single cycle to replace r[0] and r[1] with s[1] and t[2] respectively, leaving r[2] and
r [3] unchanged. This instruction reads s and t in stage N1 and writes r in stage N3. There are
more permutation instructions that consume the load/store unit for two cycles.

Each NEON cycle dispatches at best one instruction to the arithmetic unit and one instruction
to the load/store unit. These two dispatches can occur in either order. For example, a sequence of
6 single-cycle instructions of the form A LS A LS A LS will take 3 NEON cycles (A LS, A LS, A
LS); a sequence LS A A LS LS A will take 3 NEON cycles (LS A, A LS, LS A); but a sequence
LS LS LS A A A will take 5 NEON cycles (LS, LS, LS A, A, A).

A c-cycle instruction is dispatched in the same way as ¢ adjacent single-cycle instructions. For
example, the permutation instruction in

4x a2 = diag3 + diag2
diag3 = diag3[3] diag3[0,1,2]
4x next_a2 = next_diag3 + next_diag2

takes two LS cycles, so overall this sequence takes two cycles (A LS, LS A). Occasional permutations
thus do not cost any cycles. As another example, one can interleave two-cycle permutations with
two-cycle multiplications.

3 Encrypt using a shared secret key:
5.60 cycles/byte for Salsa20

This section explains how to encrypt data with the Salsa20 stream cipher [9] at 5.60 Cortex A8
cycles/byte: e.g., 1.14 Gbps on an 800MHz core. The inner loop uses 4.58 cycles/byte and scales
linearly with the number of cipher rounds; for example, Salsa20/12 uses 2.75 cycles/byte for the
inner loop and 3.77 cycles/byte for the entire cipher. (These are long-message figures, but the
per-message overhead is reasonably small: for example, a 1536-byte message with full Salsa20 uses
5.75 cycles/byte.)

For comparison, [29] reports that a new AES-128-CTR assembly-language implementation, con-
tributed to OpenSSL by Polyakov, runs at 25.4 Cortex A8 cycles per byte (0.25 Gbps at 800MHz).
There is no indication that this speed includes protection against software side-channel attacks;
in fact, the recent paper [47] by Weif}, Heinz, and Stumpf demonstrated Cortex A8 cache-timing
leakage of at least half the AES key bits from OpenSSL and several other AES implementations.
An AES implementation along the lines of [23] would be protected, but the NEON cycles per byte
would be far above the 7.59 Core 2 cycles per byte reported in [23].

The eBASC stream-cipher benchmarks [12] report, for Cortex A8, two other ciphers providing
comparable long-message speeds: 5.77 cycles/byte for NLS v2 and 7.18 cycles/byte for TPy. NLS v2
is certainly fast, but it is limited to a 128-bit key and 2% bits of output, it relies on S-box lookups
that would incur extra cost to protect against cache-timing attacks, and in general it does not
appear to have as large a security margin as Salsa20. We see our results as showing that the same
speeds can be achieved with higher security. TPy is less competitive: it relies on random access to
a large secret array, requiring an expensive setup for each nonce (not visible in the long-message
timings) and incurring vastly higher costs for protection against cache-timing attacks.

6 Daniel J. Bernstein and Peter Schwabe

Review of Salsa20; non-NEON bottlenecks. Salsa20 expands a 256-bit key and a 64-bit
nonce into a long output stream, and xors this stream with the plaintext to produce ciphertext.
The stream is generated in 64-byte blocks. The main bottleneck in generating each block is a series
of 20 rounds, each consisting of 16 32-bit add-rotate-xor sequences such as the following:

s4 = x0 + x12
x4 "= (84 >>> 25)

This might already seem to be a perfect fit for the basic 32-bit ARM instruction set, without help
from NEON. The Cortex A8 has two 32-bit execution units; addition occupies one unit for one
cycle, and rotate-xor occupies one unit for one cycle. One would thus expect 320 add-rotate-xor
sequences to occupy both integer execution units for 320 cycles, i.e., 5 cycles per byte.

However, there is a latency of 2 cycles between the two instructions shown above, and an overall
latency of 3 cycles between the availability of x0 and the availability of x4. Furthermore, the ARM
architecture provides only 14 registers, but Salsa20 needs at least 17 active values: x0 through
x15 together with a sum such as s4. (One can overwrite x0 with s4, but only at the expense of
extra arithmetic to restore x0 afterwards.) Loads and stores occupy the execution units, taking
time away from arithmetic operations. (ARM can merge two loads of adjacent registers into a
single instruction, but this instruction consumes both execution units for one cycle and the first
execution unit for another cycle.) There are also various overheads outside the 20-round inner loop.
Compiling several different C implementations of Salsa20 with many different compiler options did
not beat 15 cycles per byte.

Internal parallelization; vectorization; NEON bottlenecks. Each Salsa20 round has 4-way
parallelism, with 4 independent add-rotate-xor sequences to carry out at each moment. Two parallel
computations hide some latencies but require 8 loads and stores per round with our best instruction
schedule; three or four parallel computations would hide all latencies but would require even more
loads and stores per round.

NEON has far more space in registers, and its 128-bit arithmetic unit can perform 4 32-bit
operations in each cycle. The 4 operations to carry out at each moment in Salsa20 naturally form
a 4-way vector operation, at the cost of three 128-bit permutations per round. Salsa20 thus seems
to be a natural fit for NEON.

However, NEON rotation consumes 3 operations as discussed in Section 2, so add-rotate-xor
consumes 5 operations, at least 1.25 cycles; 5 add-rotate-xor operations per output byte consume
at least 6.25 cycles per byte. Furthermore, NEON latencies are even higher than basic ARM
latencies. The lowest-latency sequence of instructions for add-rotate-xor is

4x a0 = diagl + diagO
4x b0 = a0 << 7
4x a0 unsigned>>= 25
diag3 "= b0
diag3 "= a0

with total latency 9 to the next addition: the individual latencies are 3 (N4 addition output a0 to
N1 shift input), 0 (but carried out the next cycle since the arithmetic unit is busy), 2 (N4 shift
output b0 to N2 xor input), 2 (N4 xor output diag3 to N2 xor input), and 2 (N4 xor output
diag3 to N2 addition input). A straightforward NEON implementation cannot do better than
11.25 cycles per byte.

External parallelization. We do better by taking advantage of another level of parallelizability
in Salsa20: Salsa20, like AES-CTR, generates output blocks independently as functions of a simple
counter. Computing two output blocks in parallel with the following pattern of add-rotate-xor
operations—

61 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21
+ << >> - - + << >> - -
+ << >> - - + << >> - -

NEON crypto 7

—hides almost all NEON latencies, reducing our inner loop to 44 cycles per round for both blocks,
i.e., 880 cycles for 20 rounds producing 128 bytes, i.e., 6.875 cycles per byte. Computing three out-
put blocks in parallel still fits into NEON registers (with a slightly trickier pattern of operations—
the most obvious patterns would need 18 registers), further reducing our inner loop to 6.25 cycles
per byte, and alleviates latency issues enough to allow two-instruction rotations, but as far as we
can tell this is outweighed by somewhat lower effectiveness of the speedup discussed in the next
subsection.

Previous work on Salsa20 for other 128-bit vector architectures had vectorized across four output
blocks. However, this needs at least 17 active vectors (and more to hide latencies), requiring extra
instructions for loads and stores, more than the number of permutation instructions saved. This
would also add overhead outside the inner loop and would interfere with the speedup described in
the next subsection.

Interleaving ARM with NEON. We do better than 6.25 cycles per byte by using the basic
ARM execution units to generate one block while NEON generates two blocks. Each round involves
23 NEON instructions for one block (20 instructions for four add-rotate-xor sequences, plus 3
permutation instructions), 23 NEON instructions for a second block, and 40 ARM instructions for
a third block. The extra ARM instructions reduce the inner loop to (2/3)6.875 ~ 4.58 cycles per
byte: the cycles for the loop are exactly the same but the loop produces 1.5x as much output.

We are pushing this technique extremely close to an important Cortex A8 limit. The limit is
that the entire core decodes at most two instructions per cycle, whether the instructions are ARM
instructions or NEON instructions. The 880 cycles that we spend for 128 NEON output bytes have
1760 instruction slots, while we use only 920 NEON instructions, leaving 840 free slots; we use 800
of these slots for ARM instructions that generate 64 additional output bytes, and an additional
35 slots for loop control to avoid excessive code size. (Register pressure forced us to spill the loop
counter, and each branch instruction has a hidden cost of 3 slots; we ended up unrolling 4 rounds.)
Putting even marginally more work on the ARM unit would slow down the NEON processing, and
an easy quantitative analysis shows that this would slow down the cipher as a whole.

The same limit makes ARM instructions far less effective for, e.g., the computations modulo
2255 _19 discussed later in this paper. These computations are large enough that they require many
NEON loads and stores alongside arithmetic, often consuming both of the instruction slots available
in a cycle. There are still some slots for ARM instructions, but these computations require an even
larger number of ARM loads and stores, leaving very few slots for ARM arithmetic instructions.
Furthermore, these computations are dominated by multiplications rather than rotations, and even
full-speed ARM multiplications have only a fraction of the power of NEON multiplications.

Minimizing overhead. The above discussion concentrates on the performance of the Salsa20
inner loop, but there are also overheads for initializing and finalizing each block, reading plaintext,
and generating ciphertext.

The 64-byte Salsa20 output block consists of four vectors x0 x1 x2 x3, x4 x5 x6 x7, x8 x9
x10 x11, and x12 x13 x14 x15 that must be xor’ed with plaintext to produce ciphertext. NEON
uses 0.125 cycles/byte to read potentially unaligned plaintext, and 0.125 cycles/byte to write
potentially unaligned ciphertext, for an overhead of 0.25 cycles/byte; ARM is slower. It should be
possible to reduce this overhead, at some cost in code size, by overlapping memory access with
computation, but we have not yet done this.

The Salsa20 inner loop naturally uses and produces “diagonal” vectors x0 x5 x10 x15, x4 x9
x13 x3, etc. Converting these diagonal vectors to the output vectors x0 x1 x2 x3 etc. poses an
interesting challenge for NEON’s permutation instructions. We use the following short sequence of
instructions (and gratefully acknowledge optimization assistance from Tanja Lange):

r0 = ... # x0 x5 x10 x15
rd = ... # x4 x9 x14 x3
ri2 = ... # x12 x1 x6 x11
r8 = ... # x8 x13 x2 x7
t4 = r0[1] r4[0] t4[2,3] # x5 x4 - -

8 Daniel J. Bernstein and Peter Schwabe

t12 = t12[0,1] r0[3] r4[2] # - - x15 x14

r0 = (abab & r0) | (Tabab & r12) # x0 x1 x10 x11
t4 = t4[0,1] r8[3] ri2[2] # x5 x4 X7 x6

t12 = r8[1] ri12[0] t12[2,3] # x13 x12 x15 x14
r8 = (abab & r8) | (Tabab & r4) # x8 x9 x2 x3

rd = t4[1]1t4[0]1t4[3]1t4[2] # x4 x5 x6 x7

ri2 = t12[11t12[0]1t12[3]1t12[2] # x12 x13 x14 x15
#

r0 r8 = rO0[0] r8[1] r8[0] rO[1] x0 x1 x2 x3 x8 x9 x10 x11

There are 7 single-cycle permutations here, consuming 0.11 cycles/byte, and 2 two-cycle arithmetic
instructions (using abab) interleaved with the permutations. Similar comments apply to block
initialization. These and other overheads increase the overall encryption costs to 5.60 cycles/byte.

4 Authenticate using a shared secret key:
2.30 cycles/byte for Poly1305

This section explains how to compute the Poly1305 message-authentication code [5] at 2.30 Cortex
A8 cycles/byte: e.g., 2.78 Gbps on an 800MHz core. Authenticated encryption with Salsa20 and
Poly1305 takes just 7.90 cycles/byte.

For comparison, [29] reports 50 Cortex A8 cycles/byte for AES-GCM and 28.9 cycles/byte for its
proposed AES-OCB3; compared to the 25.4 cycles/byte of AES-CTR encryption, authentication
adds 25 or 3.5 cycles/byte respectively. GCM, OCB3, and Poly1305 guarantee that attacks are as
difficult as breaking the underlying cipher, with similar quantitative security bounds. Another ap-
proach, without this guarantee, is HMAC using a hash function; the Cortex A8 speed leaders in the
eBASH hash-function benchmarks [12] are MD5 at 6.04 cycles/byte, Edon-R at 9.76 cycles/byte,
Shabal at 12.94 cycles/byte, BMW at 13.55 cycles/byte, and Skein at 15.26 cycles/byte.

One of these authentication speeds, the “free” 3.5-cycle/byte authentication in OCB3, is within
a factor of 2 of our Poly1305 speed. However, OCB3 also has two important disadvantages. First,
OCB3 cannot be combined with a fast stream cipher such as Salsa20—it requires a block cipher,
as discussed in [29]. Second, rejecting an OCB3 forgery requires taking the time to decrypt the
forgery, a full 28.9 cycles/byte; Poly1305 rejects forgeries an order of magnitude more quickly.

Review of Poly1305. Poly1305 reads a one-time 32-byte secret key and a message of any length.
It chops the message into 128-bit little-endian integers (and a final b-bit integer with b < 128),
adds 2'%® to each integer (and 2° to the final integer) to obtain components m[0], m[1],...,m[{—1],
and produces the 16-byte authenticator

(((m[0]r* + m[1)r*t + - + m[¢ — 1]r) mod 230 — 5) + 5) mod 2!%

where r and s are components of the secret key. “One time” has the same meaning as for a one-
time pad: each message has a new key. If these one-time keys are truly random then the attacker
is reduced to blind guessing; see [5] for quantitative bounds on the attacker’s forgery chance. If
these keys are instead produced as cipher outputs from a long-term key then security relies on the
presumed difficulty of distinguishing the cipher outputs from random.

Readers familiar with the GCM authenticated-encryption mode [32] will recognize that Poly1305
shares the polynomial-evaluation structure of the GMAC authenticator inside GCM. The general
structure was introduced by den Boer [18], Johansson, Kabatianskii, and Smeets [24], and inde-
pendently Taylor [43]; concrete examples include [39], [34], [4], [28], and [27]. But these proposals
differ in many details, notably the choice of finite field: a field of size 2'?% for GCM, for example,
and integers modulo 213 — 5 for Poly1305.

Efficient authentication in software relies primarily on fast multiplication in this field, and sec-
ondarily on fast conversion of message bytes into elements of the field. Efficient authentication
under a one-time key (addressing the security issues discussed in [4, Section 8, Notes], [8, Sections
2.4-2.5], [21], [14], etc.) means that one cannot afford to precompute large tables of multiples of 7;

NEON crypto 9

we count the costs of all precomputation. Avoiding the possibility of cache-timing attacks means
that one cannot use variable-index table lookups; see, e.g., the discussion of GCM security in [23,
Section 2.3].

Multiplication mod 2'3% —5 on NEON. We represent an integer f modulo 2!3° —5 in radix 226
as fo+ 220 f1 +252f, + 278 f3 + 2194 £, At the end of the computation we reduce each f; below 226,
and reduce f to the interval {0, 1,...,2180 _ 6}, but earlier in the computation we use standard
lazy-reduction techniques, allowing wider ranges of f and of f;.

The most attractive NEON multipliers are the paired 32-bit multipliers, which as discussed in
Section 2 produce two 64-bit products every two cycles, including free additions. The product of
fo+2%f +--- and go +2%g; +--- is hg + 2?5h; + --- modulo 2!3 — 5 where

ho = fogo + 5f194 + 5f293 + 5f392 + 5fag1,
hi = fog1 + fi190 +5f294 + 5f393 + 5fa92,
ha = fog2+ fig1+ fa2go +5f394 + 5fags,
hs = fogs + fi92+ fag1+ f390 + 5194,
ha = foga + fig3+ fage+ fsgr + fago,

all of which are smaller than 264 /195 if each f; and g; is bounded by 2%6. Evidently somewhat larger
inputs f; and g;, products of sums of inputs, sums of several outputs, etc. do not pose any risk of
64-bit overflow. This computation (performed from right to left to absorb all sums into products)
involves 25 generic multiplications and 4 multiplications by 5, but it is better to eliminate the
multiplications by 5 in favor of precomputing 5g1, 5g2, 593, 5g4, in part because those are 32-bit
multiplications and in part because a multiplication input is often reused.

Rather than vectorizing within a message block, and having to search for 12 convenient pairs of
32-bit multiplications in the pattern of 25 multiplications shown above, we simply vectorize across
two message blocks, using a well-known parallelization of Horner’s rule. For example, for £ = 10,

we compute
((((m[0]r? 4+ m[2])r? + m[4])r? + m[6])r2 + m[8])r?

+ (((m[1]r? + m[3])r2 + m[5))r? + m[7])r? + m[9])r

by starting with the vector (m[0],m[1]), multiplying by the vector (r?,72), adding (m[2],m[3]),
multiplying by (2,72), etc. The integer m[0] is actually represented as five 32-bit words, so the
vector (m[0], m[1]) is actually represented as five vectors of 32-bit words. The 25 multiplications
shown above, times two blocks, then trivially use 25 NEON multiplication instructions costing 50
cycles, i.e., 1.5625 cycles per byte. There are, however, also overheads for reading the message and
reducing the product, as discussed below.

Reduction. The product obtained above can be safely added to a new message block but must be
reduced before it can be used as input to another multiplication. To reduce a large coefficient hg, we
carry hg — hy; this means replacing (ho, k1) with (kg mod 2%, hy + |ho/2%6]). Similar comments
apply to the other coefficients. Carrying hy — hg means replacing (hg, hg) with (hy mod 226, hg +
5Lh4 / 226J), again taking advantage of the sparsity of 2139 — 5.

NEON uses 1 cycle for a pair of 64-bit shifts, 1 cycle for a pair of 64-bit masks, and 1 cycle for a
pair of 64-bit additions, for a total of 3 cycles for a pair of carries (plus 2 cycles for hy — hg). A chain
of six carries hg — hy — ho — hg — hy — hg — hp is adequate for subsequent multiplications: it
leaves hy below 226 +2'3 and each other h; below 226, However, each step in this chain has latency
at least 5, and even aggressive interleaving of carries into the computations of h; would eliminate
only a few of the resulting idle cycles. We instead carry hg — hy and hs — hy, then hy — ho
and hy — hg, then hy — h3 and hg — hi, then hsy — hy, spending 3 cycles to eliminate latency
problems. The selection of initial indices (0,3) here allows the longer carry hy — ho to overlap
two independent carries hy — ho — hs; we actually interleave hg — h1 — hy — hs — hg with
hs — hqa — hg — hq, being careful to keep the separate uses of h; away from each other.

10 Daniel J. Bernstein and Peter Schwabe

This approach consumes 23 cycles for two blocks, i.e., 0.71875 cycles per byte. As message
lengths grow it becomes better to retreat from Horner’s method, for example computing

((m[0]r* + m[2]r2 + m[4])r? + m[6]r? + m[8])r?
+ ((m[1]r* + m[3]r? + m[5])rt + m[7]r? + m[9])r

by starting with (m[0],m[1]) and (m[2],m[3]), multiplying by (r*,7*) and (r2,r?) respectively,
adding, adding (m4], m[5]), then reducing, etc. This eliminates half of the reductions at the expense
of extending the precomputation from (r2,72) to (r*,r%). One can easily eliminate more reductions
with more precomputation, but one pays for precomputation linearly in both time and space, while
the benefit becomes smaller and smaller.

For comparison, [4, Section 6] precomputed 97 powers of 7 for a polynomial evaluation in another
field. The number 97 was chosen to just barely avoid overflow of sums of 97 intermediate values;
[4] did not count the cost of precomputation. Of course, when we report long-message performance
figures we blind ourselves to any constant amount of precomputation, but beyond those figures we
are also careful to avoid excessive precomputation (and, for similar reasons, excessive code size).
We thus settled on eliminating half of the reductions.

Reading the message. The inner loop in our computation, with half reductions as described
above, computes fr* 4+ m[i]r? +m[i + 2]. One input is an accumulator f; the output is written on
top of f for the next pass through the loop. Two more inputs are 72 and r*, both precomputed.
The last two inputs are message blocks m[i] and m[i + 2]; the inner loop loads these blocks and
converts them to radix 226. The following paragraphs discuss the costs of this conversion.

The same computations are carried out in parallel on m[i + 1] and m[i + 3], using another
accumulator. We suppress further mention of this straightforward vectorization: for example, when
we say below that NEON takes 0.5 cycles for a 64-bit shift involved in m[i], what we actually mean
is that NEON takes 1 cycle for a pair of 64-bit shifts, where the first shift is used for m[i] and the
second is used for m[i + 1].

Loading m[i] produces a vector (mg, m1, mg, m3) representing the integer mg + 2°my + 2°*mq +
2%m3. Our goal here is to represent the same integer (plus 2!28) in radix 22° as co+ 2%26¢1 +2%2¢o +
278¢c3 + 210¢y. A shift of the 64 bits (mag, m3) down by 40 bits produces exactly c4. A shift of
(mg, m3) down by 14 bits does not produce exactly cs, and a shift of (mi,ms2) down by 20 bits
does not produce exactly c2, but a single 64-bit mask then produces (c2,c3). Similar comments
apply to (co,c1), except that ¢y does not require a shift.

Overall there are seven 64-bit arithmetic instructions here (four shifts, two masks, and one
addition to ¢4 to handle the 2!28), consuming 3.5 cycles for each 16-byte block. There is also a
two-cycle (potentially unaligned) load, along with just six single-cycle permutation instructions;
NEON has an arithmetic instruction that combines a 64-bit right shift (by up to 32 bits) with an
extraction of the bottom 32 bits of the result, eliminating some 64-bit-to-32-bit shuffling.

The second message block mli + 2] has a different role in fr* + m[i]r? + ml[i + 2]: it is added
to the output rather than the input. We take advantage of this by loading m[i + 2] into a vector
(mo, m1, ma, m3) and adding mq +232my + 254mg +2%mg into a multiplication result hg +22h; +
252hy 4+ 278hg + 2104h, before carrying the result. This means simply adding mg into hg, adding
26my into hy, etc. We absorb the additions into multiplications by scheduling m[i + 2] before the
computation of h. The only remaining costs for m[i+2] are a few shifts such as 26m1, one operation
to add 2'?%, and various permutations.

The conversion of m[i] and m[i+2] costs, on average, 0.171875 cycles/byte for arithmetic instruc-
tions. Our total cost for NEON arithmetic in Poly1305 is 2.09375 cycles/byte: 1.5625 cycles/byte
for one multiplication per block, 0.359375 cycles/byte for half a reduction per block, and 0.171875
cycles/byte for input conversion. We have not yet managed to perfectly schedule the inner loop:
right now it takes 147 cycles for 64 bytes, slightly above the 134 cycles of arithmetic, so our software
computes Poly1305 at 2.30 cycles/byte.

232 264

NEON crypto 11

5 Compute a shared secret key for a new public key:
527102 cycles for Curve25519;
sign and verify:
368212 and 650102 cycles for Ed25519

This section explains how to compute the Curve25519 Diffie-Hellman function [6], obtaining a
32-byte shared secret from Alice’s 32-byte secret key and Bob’s 32-byte public key, in 527102
Cortex A8 cycles: e.g., 1517/second on an 800MHz core. This section also explains how to sign
and verify messages in the Ed25519 public-key signature system [10] in, respectively, 368212 and
650102 Cortex A8 cycles: e.g., 2172/second and 1230/second on an 800MHz core. Ed25519 public
keys are 32 bytes, and signatures are 64 bytes.

For comparison, openssl speed on the same machine reports

424.2 RSA-2048 verifications per second (1.9 million cycles),

11.1 RSA-2048 signatures per second (72 million cycles),

88.6 NIST P-256 Diffie-Hellman operations per second (9.0 million cycles),
388.8 NIST P-256 signatures per second (2.1 million cycles), and

74.5 NIST P-256 verifications per second (10.7 million cycles).

Morozov, Tergino, and Schaumont [33] report two speeds for “secp224r1” Diffie-Hellman: 15609
microseconds on a 500MHz Cortex A8 (7.8 million cycles), and 6043 microseconds on a 360MHz
DSP (2 million DSP cycles) included in the same CPU, a TT OMAP 3530. Curve25519 and Ed25519
have a higher security level than secp224rl and 2048-bit RSA; it is also not clear which of the
previous speeds include protection against side-channel attacks.

Review of Curve25519 and Ed25519. Curve25519 and Ed25519 are elliptic-curve systems. Key
generation is fixed-base-point single-scalar multiplication: Bob’s public key is a multiple B = bP
of a standard base point P on a standard curve. Bob’s secret key is the integer b.

Curve25519’s Diffie-Hellman function is variable-base-point single-scalar multiplication: Alice,
given Bob’s public key B, computes aB where a is Alice’s secret key. The secret shared by Alice
and Bob is simply a hash of aB; this secret is used, for example, as a long-term key for Salsa20,
which in turn is used to generate encryption pads and Poly1305 authentication keys.

Signing in Ed25519 consists primarily of fixed-base-point single-scalar multiplication. (We make
the standard assumption that messages are short; hashing time is the bottleneck for very long
messages. Our measurements use 59-byte messages, as in [12].) Signing is much faster than Diffie—
Hellman: it exploits precomputed multiples of P in various standard ways. Verification in Ed25519
is slower than Diffie-Hellman: it consists primarily of double-scalar multiplication.

The Curve25519 elliptic curve is the Montgomery curve y? = 23 +48666222 + 2 modulo 22°° —19,
with a unique point of order 2. The Ed25519 elliptic curve is the twisted Edwards curve —22 +1? =
1 — (121665/121666)x?y? modulo 225 — 19, also with a unique point of order 2. These two curves
have an “efficient birational equivalence” and therefore have the same security.

Montgomery curves are well known to allow efficient variable-base-point single-scalar multiplica-
tion. Edwards curves are well known to allow a wider variety of efficient elliptic-curve operations,
including double-scalar multiplication. These fast scalar-multiplication methods are “complete”:
they are sequences of additions, multiplications, etc. that always produce the right answer, with
no need for comparisons, branches, etc. Completeness was proven by Bernstein [6] for single-scalar
multiplication on any Montgomery curve having a unique point of order 2, and by Bernstein and
Lange [11] for arbitrary group operations on any Edwards curve having a unique point of order 2.

The main loop in Curve25519, executed 255 times, has four additions of integers modulo 22%°—19,
four subtractions, two conditional swaps (which must be computed with arithmetic rather than
branches or variable array lookups), four squarings, one multiplication by the constant 121666,
and five generic multiplications. There is also a smaller final loop (a field inversion), consisting of
254 squarings and 11 multiplications. Similar comments apply to Ed25519 signing and Ed25519
verification.

12 Daniel J. Bernstein and Peter Schwabe

Multiplication mod 2235 — 19 on NEON. We use radix 22°°, imitating the floating-point rep-
resentation in [6, Section 4] but with unscaled integers rather than scaled floating-point numbers:
we represent an integer f modulo 22%° — 19 as

fO + 226f1 + 251f2 + 277f3 + 2102f4 + 2128f5 + 2153f6 + 2179f7 + 2204f8 + 2230f9

where, as in Section 4, the allowable ranges of f; vary through the computation.

We use signed integers f; rather than unsigned integers: for example, when we carry fo — f1 we
reduce fy to the range [—22°,225] rather than [0,226]. This complicates carries, replacing a mask
with a shift and subtraction, but saves one bit in products of reduced coefficients, allowing us to
safely compute various products of sums without carrying the sums. This was unnecessary in the
previous section, in part because the 5 in 239 — 5 is smaller than the 19 in 22°® — 19, in part
because 130 is smaller than 255, and in part because the sums of inputs and outputs naturally
appearing in the previous section have fewer terms than the sums that appear in these elliptic-curve
computations.

The product of fy + 226f1 + 251f2 +--- and go + 22691 + 25192 + .- 18 ho + 226h1 + 251h2 + -
modulo 2255 — 19 where

ho = fogo+ 38f1g9+ 19fags+ 38f397+ 19fage+ 38f595+ 19 fe6ga+ 38frg3+ 19 fsg2+ 38f9g1

hi = fogit+ figot 19f2g9+ 19f39s+ 19fag7+ 19f596+ 19f695+ 19f794+ 19fsg3+ 19 fogo
ho = foge+ 2figi+ fogo+ 38f3g9+ 19fsgs+ 38f597+ 19fegs+ 38 frgs+ 19 fsga+ 38 fogs
hs = fogs+ fige+ fegit+ fago+ 19fago+ 19f598+ 19fegr+ 19f7g6+ 19f395+ 19 foga
hy = fogat+ 2fig3+ faget+ 2fs1+ fago+ 38f599+ 19fgs+ 38f7g7+ 19fsge+ 38fogs
hs = fogs+ figa+ fags+ fs3get fagit fsgot 19feget+ 19f79s+ 19fsg7+ 19f9g6
he = foge+ 2f195+ fag9at+ 2f393+ faget+ 2fs01+ fegot+ 38frg9+ 19fsgs+ 38fogr
h7 = fogrt+ figet+ fags+ fagat fagst+ fsget+ fegrt frgot 19fsget+ 19fogs
hs = fogs+ 2fig7+ fag6+ 2f395+ fagat 2fs593+ fegat+ 2frg1+ fsgo+ 38fago
ho = fogo+ figst+ fegrt+ fsget+ fagst+ [sgat+ fegst frget+ fsgit fogo.

The extra factors of 2 appear because 225 is not an integer. We precompute 2f1, 23, 2f5,2f7, 2 fo

and 19¢1,19¢gs, ..., 19g9; each h; is then a sum of ten products of precomputed quantities.

Most multiplications appear as independent pairs, computing fg and f’¢’ in parallel, in the
elliptic-curve formulas we use. We vectorize across these multiplications: we start from 20 64-bit
vectors such as (fo, f}) and (go, g)), precompute 14 64-bit vectors such as (2f1,2f1) and (19¢1, 19¢]),
and then accumulate 10 128-bit vectors such as (ho, k(). By scheduling operations carefully we fit
these 54 64-bit quantities into the 32 available 64-bit registers with a moderate number of loads
and stores.

Some multiplications do not appear as pairs. For those cases we vectorize within one multipli-
cation by the following strategy. Accumulate the vectors (fogo,2f191) and (19fa2gs,38f399) and
(19f4g6,38f5g7) and (19fﬁg4,38f7g5) and (19f8g2,38f993) into (ho,hQ); accumulate (f092,2f1g3)
etc. into (he, hs); and so on through (hs, ho). Also accumulate (f192,19f393), (f390, fog1), etc. into
(hs3, h1); accumulate (f194,19fsgs) etc. into (hs, h3); and so on through (hy, hg). Each vector added
here is a product of two of the following 27 precomputed vectors:

(fo,2/f1), (f2,2f3), (f1.2[5), (f6,2f7), (f3,2f9);

(f1, 18), (f3, fo), (f5, f2), (f7, f1), (fo, f6);

(90,91); (92, 93), (94, 95) (96, 97);

(907 1991)a (927 1993)a (947 1995)a (967 1997)a (987 1999)7
(1992,1993), (1994, 1995), (1996, 1997), (19gs, 1999);
(1992, 93), (1994, 95), (1996, g7), (19gs, go)-

We tried several other strategies, pairing inputs and outputs in various ways, before settling on
this strategy. All of the other strategies used more precomputed vectors, requiring more loads and
stores.

NEON crypto 13

Reduction, squaring, etc. Reduction follows an analogous strategy to Section 4. One compli-
cation is that each carry has an extra operation, as mentioned above. Another complication for
vectorizing a single multiplication is that the shift distances are sometimes 26 bits and sometimes
25 bits; we vectorize carrying (hg, hy) — (h1, hs), for example, but would not have been able to
vectorize carrying (hg, hs) — (h1, he).

For squaring, like multiplication, we vectorize across two independent operations when possible,
and otherwise vectorize within one operation. Squarings are serialized in square-root computations
(for decompressing short signatures) and in inversions (for converting scalar-multiplication results
to affine coordinates), but the critical bottlenecks are elliptic-curve operations, and squarings come
in convenient pairs in all of the elliptic-curve formulas that we use.

In the end arithmetic consumes 150 cycles in generic multiplication (called 1286 times in
Curve25519), 105 cycles in squaring (called 1274 times), 67 cycles in multiplication by 121666
(called 255 times), 3 cycles in addition (called 1020 times), 3 cycles in subtraction (called 1020
times), and 12 cycles in conditional swaps (called 512 times), explaining fewer than 400000 cycles.
The most important source of overhead in our current Curve25519 performance, 527102 cycles, is
non-arithmetic instructions at the beginning and end of each function. We are working on address-
ing this by inlining all functions into the main loop and scheduling the main loop as a whole, and
we anticipate then coming much closer to the lower bound, as in Salsa20 and Poly1305.

Similar comments apply to Ed25519. Many Ed25519 cycles (about 50000 cycles in signing and
25000 in verification) are consumed by the SHA-512 implementation selected by SUPERCOP [12].
We see ample room for improving the SHA-512 implementation on the Cortex A8 but have not
bothered doing so: the Ed25519 paper [10] recommends switching to Ed25519-SHA-3.

References

[1] — (no editor), 9th IEEE symposium on application specific processors, Institute of Electrical and Electronics
Engineers, 2011. See [33].

[2] Onur Aciigmez, Billy Bob Brumley, Philipp Grabher, New results on instruction cache attacks, in CHES 2010
[31] (2010), 110-124. Citations in this document: §1.

[3] ARM Limited, Cortez-A8 technical reference manual, revision r8p2, 2010. URL: http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.ddi0344k/index.html. Citations in this document: §2.

[4] Daniel J. Bernstein, Floating-point arithmetic and message authentication (1999). URL: http://cr.yp.to/
papers.html#hash127. Citations in this document: §4, §4, §4, §4.

[5] Daniel J. Bernstein, The Poly1305-AES message-authentication code, in FSE 2005 [20] (2005), 32-49. URL:
http://cr.yp.to/papers.html#poly1305. Citations in this document: §1, §4, §4.

[6] Daniel J. Bernstein, Curve25519: new Diffie-Hellman speed records, in PKC 2006 [48] (2006), 207-228. URL:
http://cr.yp.to/papers.html#curve25519. Citations in this document: §1, §5, §5, §5.

[7] Daniel J. Bernstein, ghasm software package (2007). URL: http://cr.yp.to/qhasm.html. Citations in this
document: §2.

[8] Daniel J. Bernstein, Polynomial evaluation and message authentication (2007). URL: http://cr.yp.to/
papers.html#pema. Citations in this document: §4.

[9] Daniel J. Bernstein, The Salsa20 family of stream ciphers, in [37] (2008), 84-97. URL: http://cr.yp.to/
papers.html#salsafamily. Citations in this document: §1, §3.

[10] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin Yang, High-speed high-security signatures,
in CHES 2011 [36] (2011). URL: http://eprint.iacr.org/2011/368. Citations in this document: §1, §5, §5.

[11] Daniel J. Bernstein, Tanja Lange, Faster addition and doubling on elliptic curves, in Asiacrypt 2007 [30] (2007),
29-50. URL: http://eprint.iacr.org/2007/286. Citations in this document: §5.

[12] Daniel J. Bernstein, Tanja Lange (editors), eBACS: ECRYPT Benchmarking of Cryptographic Systems, ac-
cessed 5 March 2012 (2012). URL: http://bench.cr.yp.to. Citations in this document: §1, §3, §4, §5, §5.

[13] Daniel J. Bernstein, Tanja Lange, Peter Schwabe, The security impact of a new cryptographic library (2011).
URL: http://eprint.iacr.org/2011/646. Citations in this document: §1.

[14] John Black, Martin Cochran, MAC reforgeability, in FSE 2009 [19] (2009), 345-362. URL: http://eprint.
iacr.org/2006/095. Citations in this document: §4.

[15] Anne Canteaut, Kapalee Viswanathan (editors), Progress in cryptology—INDOCRYPT 2004, 5th international
conference on cryptology in India, Chennai, India, December 20-22, 2004, proceedings, Lecture Notes in Com-
puter Science, 3348, Springer, 2004. ISBN 3-540-24130-2. See [32].

[16] Christophe Clavier, Kris Gaj (editors), Cryptographic hardware and embedded systems—CHES 2009, 11th
international workshop, Lausanne, Switzerland, September 6-9, 2009, proceedings, Lecture Notes in Computer
Science, 5747, Springer, 2009. ISBN 978-3-642-04137-2. See [23].

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/index.html
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#hash127
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/qhasm.html
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#pema
http://cr.yp.to/papers.html#salsafamily
http://cr.yp.to/papers.html#salsafamily
http://eprint.iacr.org/2011/368
http://eprint.iacr.org/2007/286
http://bench.cr.yp.to
http://eprint.iacr.org/2011/646
http://eprint.iacr.org/2006/095
http://eprint.iacr.org/2006/095

14

[17]

[18]

[19]

[20]

[30]

[31]

Daniel J. Bernstein and Peter Schwabe

Neil Costigan, Peter Schwabe, Fast elliptic-curve cryptography on the Cell Broadband Engine, in Africacrypt
2009 [35] (2009), 368-385. URL: http://cryptojedi.org/users/peter/#celldh. Citations in this document:
81.

Bert den Boer, A simple and key-economical unconditional authentication scheme, Journal of Computer Security
2 (1993), 65-71. ISSN 0926-227X. Citations in this document: §4.

Orr Dunkelman (editor), Fast software encryption, 16th international workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, revised selected papers, Lecture Notes in Computer Science, 5665, Springer, 2009. ISBN
978-3-642-03316-2. See [14].

Henri Gilbert, Helena Handschuh (editors), Fast software encryption: 12th international workshop, FSE 2005,
Paris, France, February 21-23, 2005, revised selected papers, Lecture Notes in Computer Science, 3557,
Springer, 2005. ISBN 3-540-26541-4. See [5].

Helena Handschuh, Bart Preneel, Key-recovery attacks on universal hash function based MAC algorithms, in
CRYPTO 2008 [46] (2008), 144-161. Citations in this document: §4.

Tor Helleseth (editor), Advances in cryptology—EUROCRYPT 93, workshop on the theory and application of
cryptographic techniques, Lofthus, Norway, May 23-27, 1993, proceedings, Lecture Notes in Computer Science,
765, Springer, 1994. ISBN 3-540-57600-2. See [24].

Emilia Kasper, Peter Schwabe, Faster and timing-attack resistant AES-GCM, in CHES 2009 [16] (2009), 1-17.
URL: http://eprint.iacr.org/2009/129. Citations in this document: §3, §3, §4.

Thomas Johansson, Gregory Kabatianskii, Ben J. M. Smeets, On the relation between A-codes and codes
correcting independent errors, in EUROCRYPT ’93 [22] (1994), 1-11. Citations in this document: §4.
Antoine Joux (editor), Fast software encryption—18th international workshop, FSE 2011, Lyngby, Denmark,
February 13-16, 2011, revised selected papers, Lecture Notes in Computer Science, 6733, Springer, 2011. ISBN
978-3-642-21701-2. See [29].

Neal Koblitz (editor), Advances in cryptology—CRYPTO ’96, Lecture Notes in Computer Science, 1109,
Springer, 1996. See [39].

Tadayoshi Kohno, John Viega, Doug Whiting, CWC': a high-performance conventional authenticated encryption
mode, in FSE 2004 [38] (2004), 408-426. Citations in this document: §4.

Ted Krovetz, Phillip Rogaway, Fast universal hashing with small keys and mo preprocessing: the PolyR con-
struction (2000). URL: http://www.cs.ucdavis.edu/ rogaway/papers/poly.htm. Citations in this document:
84.

Ted Krovetz, Philip Rogaway, The software performance of authenticated-encryption modes, in FSE 2011 [25]
(2011), 306-327. URL: http://www.cs.ucdavis.edu/ rogaway/papers/ae.pdf. Citations in this document:
§3, §4, §4.

Kaoru Kurosawa (editor), Advances in cryptology—ASIACRYPT 2007, 13th international conference on the
theory and application of cryptology and information security, Kuching, Malaysia, December 2—6, 2007, pro-
ceedings, Lecture Notes in Computer Science, 4833, Springer, 2007. ISBN 978-3-540-76899-9. See [11].

Stefan Mangard, Frangois-Xavier Standaert (editors), Cryptographic hardware and embedded systems, CHES
2010, 12th international workshop, Santa Barbara, CA, USA, August 17-20, 2010, proceedings, Lecture Notes
in Computer Science, 6225, Springer, 2010. ISBN 978-3-642-15030-2. See [2].

David A. McGrew, John Viega, The security and performance of the Galois/Counter mode (GCM) of opera-
tion, in INDOCRYPT 2004 [15] (2004), 343-355. URL: http://eprint.iacr.org/2004/193. Citations in this
document: §4.

Sergey Morozov, Christian Tergino, Patrick Schaumont, System integration of elliptic curve cryptography on
an OMAP Platform, in [1] (2011), 52-57. URL: http://rijndael.ece.vt.edu/schaum/papers/2011sasp.pdf.
Citations in this document: §5.

Wim Nevelsteen, Bart Preneel, Software performance of universal hash functions, in EUROCRYPT ’99 [41]
(1999), 24-41. Citations in this document: §4.

Bart Preneel (editor), Progress in cryptology—AFRICACRYPT 2009, second international conference on cryp-
tology in Africa, Gammarth, Tunisia, June 21-25, 2009, proceedings, Lecture Notes in Computer Science, 5580,
Springer, 2009. See [17].

Bart Preneel, Tsuyoshi Takagi (editors), Cryptographic hardware and embedded systems—CHES 2011, 13th
international workshop, Nara, Japan, September 28—October 1, 2011, proceedings, Lecture Notes in Computer
Science, Springer, 2011. ISBN 978-3-642-23950-2. See [10].

Matthew Robshaw, Olivier Billet (editors), New stream cipher designs, Lecture Notes in Computer Science,
4986, Springer, 2008. ISBN 978-3-540-68350-6. See [9].

Bimal K. Roy, Willi Meier (editors), Fast software encryption, 11th international workshop, FSE 2004, Delhi,
India, February 5-7, 2004, revised papers, Lecture Notes in Computer Science, 3017, Springer, 2004. ISBN
3-540-22171-9. See [27].

Victor Shoup, On fast and provably secure message authentication based on universal hashing, in CRYPTO ’96
[26] (1996), 313-328. URL: http://www.shoup.net/papers. Citations in this document: §4.

Etienne Sobole, Calculateur de cycle pour le Cortex A8 (2012). URL: http://pulsar.webshaker.net/ccc/
index.php. Citations in this document: §2.

Jacques Stern (editor), Advances in cryptology—EUROCRYPT 99, Lecture Notes in Computer Science, 1592,
Springer, 1999. ISBN 3-540-65889-0. MR 2000i:94001. See [34].

Douglas R. Stinson (editor), Advances in cryptology—CRYPTO ’93: 13th annual international cryptology con-
ference, Santa Barbara, California, USA, August 22-26, 1993, proceedings, Lecture Notes in Computer Science,
773, Springer, 1994. ISBN 3-540-57766-1, 0-387-57766-1. See [43].

http://cryptojedi.org/users/peter/#celldh
http://eprint.iacr.org/2009/129
http://www.cs.ucdavis.edu/~rogaway/papers/poly.htm
http://www.cs.ucdavis.edu/~rogaway/papers/ae.pdf
http://eprint.iacr.org/2004/193
http://rijndael.ece.vt.edu/schaum/papers/2011sasp.pdf
http://www.shoup.net/papers
http://pulsar.webshaker.net/ccc/index.php
http://pulsar.webshaker.net/ccc/index.php

[43]

[44]

[45]

[46]

NEON crypto 15

Richard Taylor, An integrity check value algorithm for stream ciphers, in CRYPTO ’93 [42] (1994), 40-48.
Citations in this document: §4.

Eran Tromer, Dag Arne Osvik, Adi Shamir, Efficient cache attacks on AES, and countermeasures, Journal
of Cryptology 23 (2010), 37—71. URL: http://people.csail.mit.edu/tromer/papers/cache-joc-official.
pdf. Citations in this document: §1.

David Ulevitch, DNSCrypt—critical, fundamental, and about time (2011). URL: http://blog.opendns.com/
2011/12/06/dnscrypt-%E2/80%93-critical-fundamental-and-about-time/. Citations in this document: §1.
David Wagner (editor), Advances in cryptology—CRYPTO 2008, 28th annual international cryptology confer-
ence, Santa Barbara, CA, USA, August 17-21, 2008, proceedings, Lecture Notes in Computer Science, 5157,
Springer, 2008. ISBN 978-3-540-85173-8. See [21].

Michael Weif3, Benedikt Heinz, Frederic Stumpf, A cache timing attack on AES in virtualization environments,
Proceedings of Financial Cryptography 2012, to appear (2012). Citations in this document: §1, §3.

Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, Tal Malkin (editors), Public key cryptography—9th international
conference on theory and practice in public-key cryptography, New York, NY, USA, April 24-26, 2006, pro-
ceedings, Lecture Notes in Computer Science, 3958, Springer, 2006. ISBN 978-3-540-33851-2. See [6].

http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://people.csail.mit.edu/tromer/papers/cache-joc-official.pdf
http://blog.opendns.com/2011/12/06/dnscrypt-%E2%80%93-critical-fundamental-and-about-time/
http://blog.opendns.com/2011/12/06/dnscrypt-%E2%80%93-critical-fundamental-and-about-time/

