
RESEARCH ANNOUNCEMENT:

FASTER FACTORIZATION INTO COPRIMES

DANIEL J. BERNSTEIN

Abstract. This paper presents an algorithm that, given positive integers a, b,
computes the natural coprime base for {a, b} in time n(lg n)2+o(1), where n is
the number of input bits. This paper also presents an algorithm that, given
a set S of positive integers, computes the natural coprime base for S in time

n(lg n)4+o(1).

1. Introduction

My previous paper [1] introduced an algorithm that, given a set S of positive
integers, computes the natural coprime base cbS in time n(lg n)O(1), where n is the
number of input bits. I made no attempt in [1] to optimize the exponent of lg n.

Section 2 of this paper presents an algorithm that computes cb{a, b} in time
n(lg n)2+o(1). It is reasonable to conjecture that the limiting exponent 2 is optimal
(for, e.g., a multitape Turing machine): one has cb{a, b} = {a, b} − {1} if and only
if a, b are coprime; the well-known problem of checking coprimality has been stuck
at n(lg n)2+o(1) for thirty years.

Section 4 of this paper presents an algorithm that computes cb({a}∪Q), where Q
is any coprime set, in time n(lg n)2+o(1). Substitute this algorithm into Algorithms
17.3 and 18.1 of [1] to obtain cb(P ∪ Q) in time n(lg n)3+o(1) and cbS in time
n(lg n)4+o(1). I’m not willing to conjecture that the 3 and 4 are optimal.

This is a very early draft. I’m confident in the basic structure of the algorithms,
but there could be some silly omissions, and of course the proofs need vastly more
detail.

2. Computing a coprime base for two positive integers

The following algorithm computes cb{a, b}, given positive integers a and b, in
time n(lg n)2+o(1).

Step 1. Swap a, b if necessary so that a ≥ b. The algorithm will later reduce the
input length by at least one third of the length of a. If a = 1, stop.

Date: 2004.11.03. Permanent ID of this document: 53a2e278e21bcbb7287b81c563995925. This
is a preliminary version meant to announce ideas; it will be replaced by a final version meant to
record the ideas for posterity. There may be big changes before the final version. Future readers
should not be forced to look at preliminary versions, unless they want to check historical credits;

if you cite a preliminary version, please repeat all ideas that you are using from it, so that the
reader can skip it.

2000 Mathematics Subject Classification. Primary 11Y16.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the Alfred P. Sloan Foundation.

1

2 DANIEL J. BERNSTEIN

Step 2. Compute a0 = a, g0 = gcd{a0, b}, a1 = a0/g0, g1 = gcd
{

a1, g
2
0

}

, a2 =

a1/g1, g2 = gcd
{

a2, g
2
1

}

, and so on, until gk = 1.

For example, if a = 21003100 and b = 2137313, compute a0 = 21003100, g0 =
2100313, a1 = 387, g1 = 326, a2 = 361, g2 = 352, a3 = 39, g3 = 39, a4 = 1, g4 = 1.

Lower level: The gcd inputs ai, g
2
i−1 are often highly unbalanced. To compute

gcd
{

ai, g
2
i−1

}

, first divide ai by g2
i−1, and then use any standard fast gcd algorithm

to compute gcd
{

g2
i−1, ai mod g2

i−1

}

. The division takes time n(lg n)1+o(1); the gcd

takes time m(lg m)2+o(1) where m is the length of g2
i−1.

All the g’s together have length O(n), and k is at most about lg n, so the total
time here is n(lg n)2+o(1).

Step 3. Compute x0 = g0/gcd{g0, g
∞

1 }, x1 = g1/gcd{g1, g
∞

2 }, and so on.
For example, if a = 21003100 and b = 2137313, compute x0 = 2100, x1 = 1, x2 = 1,

x3 = 39.
Lower level: Compute each gcd{gi−1, g

∞

i } as gcd
{

gi−1, g
2ei

i mod gi−1

}

where ei

is the smallest nonnegative integer satisfying 22ei

≥ gi−1. The repeated squarings
and gcd take time m(lg m)2+o(1) where m is the total length of gi−1, gi. The total
time here is n(lg n)2+o(1).

Step 4. Compute y0 = gcd{b, x∞

0 }, y1 = gcd{g0, x
∞

1 }, y2 = gcd{b, g1, x
∞

2 }, y3 =
gcd{b, g2, x

∞

3 }, and so on.
For example, if a = 21003100 and b = 2137313, the algorithm computes y0 = 2137,

y1 = 1, y2 = 1, y3 = 313.
Lower level: Use a scaled remainder tree to compute b mod g1, b mod g2, . . . ;

this takes time n(lg n)2+o(1) since b, g1, g2, . . . together have length O(n). Then
compute gcd{b, g1} as gcd{b mod g1, g1}; compute gcd{b, g2} as gcd{b mod g2, g2};
and so on.

Step 5. Recursively print cb{x0, y0/x0}; cb{x1, y1}; cb{x2, y2}; and so on. Also
print cb{a′} = {a′} − {1} and cb{b′} = {b′} − {1} where a′ = a/gcd{a, b∞} and
b′ = b/gcd{b, a∞}. Note that a′ has already been computed; it equals ak.

For example, if a = 21003100 and b = 2137313, recursively print cb
{

2100, 237
}

=

{2} and cb
{

39, 313
}

= {3}. Also print cb{1} = {} and cb{1} = {}. The complete
output is {2, 3}.

I claim that x0y0, x1y1, . . . , a
′, b′ are coprime; that a = a′x0x1y1x2y

3
2x3y

7
3 · · · ;

that b = b′y0y1y2y3 · · · ; and that y0x1y1x2y2 · · · , the product of inputs to the
recursive calls, is at most ab/a1/3 ≤ (ab)5/6. Each of these facts can be checked from
the following table of ordp values, expressed in terms of e = ordp a and f = ordp b:

g0 g1 g2 g3 . . . x0 y0 x1 y1 x2 y2 . . . a′ b′

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 f if e = 0
e 0 0 0 . . . e f 0 0 0 0 . . . 0 0 if 0 < e ≤ f
f e−f 0 0 . . . 0 0 e−f f 0 0 . . . 0 0 if f < e ≤ 3f
f 2f e−3f 0 . . . 0 0 0 0 e−3f f . . . 0 0 if 3f < e ≤ 7f

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . e 0 if f = 0 < e

Consequently the outputs of the algorithm are coprime; a and b are products of
powers of the outputs; and the recursion multiplies the total time by a bounded
factor.

RESEARCH ANNOUNCEMENT: FASTER FACTORIZATION INTO COPRIMES 3

Note that one can easily factor a, b over cb{a, b} by tracing the factorizations
a = a′x0x1y1x2y

3
2x3y

7
3 · · · and b = b′y0y1y2y3 · · · through the recursion.

3. An algorithm without a catchy name

The following algorithm computes gcd{s, p∞} for each s in a multiset S and for
each p in a nonempty coprime set P . It takes time (k +1)n(lg n)2+o(1) if #P ≤ 2k.

See [2] and [3] for similar algorithms.

Step 1. If #P = 1: Find p ∈ P . Use a scaled remainder tree to compute p mod s
for each s ∈ S. Compute gcd{s, p∞} as gcd{s, (p mod s)∞}. This takes time
n(lg n)2+o(1).

Assume from now on that #P ≥ 2.

Step 2. Select Q ⊆ P with #Q = b#P/2c. Use a product tree to compute
y =

∏

p∈Q p. This takes time n(lg n)2+o(1).

Step 3. Use a scaled remainder tree to compute y mod s for each s ∈ S. This
takes time n(lg n)2+o(1).

Step 4. Compute gcd{s, (y mod s)∞} = gcd{s, y∞} for each s ∈ S. This takes
time n(lg n)2+o(1).

Step 5. Apply the algorithm recursively to {gcd{s, y∞} : s ∈ S} and Q; separately
handle each s for which gcd{s, y∞} = 1. This produces gcd{gcd{s, y∞}, p∞} =
gcd{s, p∞} for each p ∈ Q.

Apply the algorithm recursively to {s/gcd{s, y∞} : s ∈ S} and P −Q; separately
handle each s for which s/gcd{s, y∞} = 1. This produces gcd{s/gcd{s, y∞}, p∞} =
gcd{s, p∞} for each p ∈ P − Q.

The product of inputs at each level of recursion is exactly the original product
of inputs, so the total input size at each level of recursion is O(n).

4. Extending a coprime base

The following algorithm computes cb({a} ∪ Q), where Q is coprime, in time
n(lg n)2+o(1).

Step 1. Use a product tree to compute b =
∏

q∈Q q. This takes time n(lg n)2+o(1).

Step 2. Define, and compute, a0, g0, a1, g1, . . . , x0, x1, . . . , y0, y1, . . . , a
′ exactly as

in Section 2. This takes time n(lg n)2+o(1).

Step 3. Write yi(q) for gcd{q, y∞

i }. Compute y0(q), y1(q), y2(q), . . . for each q ∈ Q
as explained in Section 3. This takes time n(lg n)2+o(1) lg lg n = n(lg n)2+o(1).
Check for and discard 1’s so that they do not slow down subsequent computations.

Step 4. Use product trees to compute z0 =
∏

q y0(q), z1 =
∏

q y1(q), etc. This

takes time n(lg n)2+o(1).
Notice that z1z

3
2z7

3 · · · divides a. Indeed, take any prime p dividing z1z
3
2z7

3 · · · .
Recall that y1, y2, . . . are coprime, so p divides zi for a unique i. Write e = ordp a
and f = ordp b; then (2i − 1)f < e ≤ (2i+1 − 1)f . Furthermore, p divides a unique
q ∈ Q, and f = ordp q = ordp zi by definition of b and zi, so (2i−1) ordp zi < ordp a.

4 DANIEL J. BERNSTEIN

Step 5. Use a scaled remainder tree to compute a mod z0, a mod z3
1 , a mod z7

2 ,
This takes time n(lg n)2+o(1), since the product z3

1z7
2 · · · divides a3.

Step 6. Use scaled remainder trees to compute (a mod z0) mod y0(q) = a mod
y0(q) for each q; (a mod z3

1) mod y1(q)
3 = a mod y1(q)

3 for each q; (a mod z7
2) mod

y2(q)
7 = a mod y2(q)

7 for each q; etc. This takes time n(lg n)2+o(1).

Step 7. Compute gcd{a, y0(q)}, gcd
{

a, y1(q)
3
}

, gcd
{

a, y2(q)
7
}

, etc. This takes

time n(lg n)2+o(1).
Observe that gcd{a, y0(q)}, gcd

{

a, y1(q)
3
}

, gcd
{

a, y2(q)
7
}

, etc. are the same
as gcd{a, y0(q)

∞}, gcd{a, y1(q)
∞}, gcd{a, y2(q)

∞}, etc. Consider, for example, a
prime p dividing gcd{a, y2(q)

∞}. Recall that 3f < e ≤ 7f where e = ordp a and
f = ordp b = ordp y2(q); thus ordp gcd{a, y2(q)

∞} = e = ordp gcd
{

a, y2(q)
7
}

.

Step 8. Print cb{yi(q), gcd{a, yi(q)
∞}} for each i and q. Also print q/y0(q)y1(q) · · ·

for each q, and print a′. This takes time n(lg n)2+o(1).

References

[1] Daniel J. Bernstein, Factoring into coprimes in essentially linear time, to appear, Journal of

Algorithms. ISSN 0196–6774. URL: http://cr.yp.to/papers.html. ID f32943f0bb67a9317d4

021513f9eee5a.
[2] Daniel J. Bernstein, How to find small factors of integers, accepted to Mathematics of Com-

putation; now being revamped. URL: http://cr.yp.to/papers.html.

[3] Daniel J. Bernstein, How to find smooth parts of integers, draft. URL: http://cr.yp.to/

papers.html#smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to

