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Abstract. This paper presents an algorithm that, given positive integers a, b,
computes the natural coprime base for {a, b} in time n(lg n)2+o(1), where n is
the number of input bits. This paper also presents an algorithm that, given
a set S of positive integers, computes the natural coprime base for S in time

n(lg n)4+o(1).

1. Introduction

My previous paper [1] introduced an algorithm that, given a set S of positive
integers, computes the natural coprime base cbS in time n(lg n)O(1), where n is the
number of input bits. I made no attempt in [1] to optimize the exponent of lg n.

Section 2 of this paper presents an algorithm that computes cb{a, b} in time
n(lg n)2+o(1). It is reasonable to conjecture that the limiting exponent 2 is optimal
(for, e.g., a multitape Turing machine): one has cb{a, b} = {a, b} − {1} if and only
if a, b are coprime; the well-known problem of checking coprimality has been stuck
at n(lg n)2+o(1) for thirty years.

Section 4 of this paper presents an algorithm that computes cb({a}∪Q), where Q
is any coprime set, in time n(lg n)2+o(1). Substitute this algorithm into Algorithms
17.3 and 18.1 of [1] to obtain cb(P ∪ Q) in time n(lg n)3+o(1) and cbS in time
n(lg n)4+o(1). I’m not willing to conjecture that the 3 and 4 are optimal.

This is a very early draft. I’m confident in the basic structure of the algorithms,
but there could be some silly omissions, and of course the proofs need vastly more
detail.

2. Computing a coprime base for two positive integers

The following algorithm computes cb{a, b}, given positive integers a and b, in
time n(lg n)2+o(1).

Step 1. Swap a, b if necessary so that a ≥ b. The algorithm will later reduce the
input length by at least one third of the length of a. If a = 1, stop.
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Step 2. Compute a0 = a, g0 = gcd{a0, b}, a1 = a0/g0, g1 = gcd
{

a1, g
2
0

}

, a2 =

a1/g1, g2 = gcd
{

a2, g
2
1

}

, and so on, until gk = 1.

For example, if a = 21003100 and b = 2137313, compute a0 = 21003100, g0 =
2100313, a1 = 387, g1 = 326, a2 = 361, g2 = 352, a3 = 39, g3 = 39, a4 = 1, g4 = 1.

Lower level: The gcd inputs ai, g
2
i−1 are often highly unbalanced. To compute

gcd
{

ai, g
2
i−1

}

, first divide ai by g2
i−1, and then use any standard fast gcd algorithm

to compute gcd
{

g2
i−1, ai mod g2

i−1

}

. The division takes time n(lg n)1+o(1); the gcd

takes time m(lg m)2+o(1) where m is the length of g2
i−1.

All the g’s together have length O(n), and k is at most about lg n, so the total
time here is n(lg n)2+o(1).

Step 3. Compute x0 = g0/gcd{g0, g
∞

1 }, x1 = g1/gcd{g1, g
∞

2 }, and so on.
For example, if a = 21003100 and b = 2137313, compute x0 = 2100, x1 = 1, x2 = 1,

x3 = 39.
Lower level: Compute each gcd{gi−1, g

∞

i } as gcd
{

gi−1, g
2ei

i mod gi−1

}

where ei

is the smallest nonnegative integer satisfying 22ei

≥ gi−1. The repeated squarings
and gcd take time m(lg m)2+o(1) where m is the total length of gi−1, gi. The total
time here is n(lg n)2+o(1).

Step 4. Compute y0 = gcd{b, x∞

0 }, y1 = gcd{g0, x
∞

1 }, y2 = gcd{b, g1, x
∞

2 }, y3 =
gcd{b, g2, x

∞

3 }, and so on.
For example, if a = 21003100 and b = 2137313, the algorithm computes y0 = 2137,

y1 = 1, y2 = 1, y3 = 313.
Lower level: Use a scaled remainder tree to compute b mod g1, b mod g2, . . . ;

this takes time n(lg n)2+o(1) since b, g1, g2, . . . together have length O(n). Then
compute gcd{b, g1} as gcd{b mod g1, g1}; compute gcd{b, g2} as gcd{b mod g2, g2};
and so on.

Step 5. Recursively print cb{x0, y0/x0}; cb{x1, y1}; cb{x2, y2}; and so on. Also
print cb{a′} = {a′} − {1} and cb{b′} = {b′} − {1} where a′ = a/gcd{a, b∞} and
b′ = b/gcd{b, a∞}. Note that a′ has already been computed; it equals ak.

For example, if a = 21003100 and b = 2137313, recursively print cb
{

2100, 237
}

=

{2} and cb
{

39, 313
}

= {3}. Also print cb{1} = {} and cb{1} = {}. The complete
output is {2, 3}.

I claim that x0y0, x1y1, . . . , a
′, b′ are coprime; that a = a′x0x1y1x2y

3
2x3y

7
3 · · · ;

that b = b′y0y1y2y3 · · · ; and that y0x1y1x2y2 · · · , the product of inputs to the
recursive calls, is at most ab/a1/3 ≤ (ab)5/6. Each of these facts can be checked from
the following table of ordp values, expressed in terms of e = ordp a and f = ordp b:

g0 g1 g2 g3 . . . x0 y0 x1 y1 x2 y2 . . . a′ b′

0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 f if e = 0
e 0 0 0 . . . e f 0 0 0 0 . . . 0 0 if 0 < e ≤ f
f e−f 0 0 . . . 0 0 e−f f 0 0 . . . 0 0 if f < e ≤ 3f
f 2f e−3f 0 . . . 0 0 0 0 e−3f f . . . 0 0 if 3f < e ≤ 7f

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . e 0 if f = 0 < e

Consequently the outputs of the algorithm are coprime; a and b are products of
powers of the outputs; and the recursion multiplies the total time by a bounded
factor.



RESEARCH ANNOUNCEMENT: FASTER FACTORIZATION INTO COPRIMES 3

Note that one can easily factor a, b over cb{a, b} by tracing the factorizations
a = a′x0x1y1x2y

3
2x3y

7
3 · · · and b = b′y0y1y2y3 · · · through the recursion.

3. An algorithm without a catchy name

The following algorithm computes gcd{s, p∞} for each s in a multiset S and for
each p in a nonempty coprime set P . It takes time (k +1)n(lg n)2+o(1) if #P ≤ 2k.

See [2] and [3] for similar algorithms.

Step 1. If #P = 1: Find p ∈ P . Use a scaled remainder tree to compute p mod s
for each s ∈ S. Compute gcd{s, p∞} as gcd{s, (p mod s)∞}. This takes time
n(lg n)2+o(1).

Assume from now on that #P ≥ 2.

Step 2. Select Q ⊆ P with #Q = b#P/2c. Use a product tree to compute
y =

∏

p∈Q p. This takes time n(lg n)2+o(1).

Step 3. Use a scaled remainder tree to compute y mod s for each s ∈ S. This
takes time n(lg n)2+o(1).

Step 4. Compute gcd{s, (y mod s)∞} = gcd{s, y∞} for each s ∈ S. This takes
time n(lg n)2+o(1).

Step 5. Apply the algorithm recursively to {gcd{s, y∞} : s ∈ S} and Q; separately
handle each s for which gcd{s, y∞} = 1. This produces gcd{gcd{s, y∞}, p∞} =
gcd{s, p∞} for each p ∈ Q.

Apply the algorithm recursively to {s/gcd{s, y∞} : s ∈ S} and P −Q; separately
handle each s for which s/gcd{s, y∞} = 1. This produces gcd{s/gcd{s, y∞}, p∞} =
gcd{s, p∞} for each p ∈ P − Q.

The product of inputs at each level of recursion is exactly the original product
of inputs, so the total input size at each level of recursion is O(n).

4. Extending a coprime base

The following algorithm computes cb({a} ∪ Q), where Q is coprime, in time
n(lg n)2+o(1).

Step 1. Use a product tree to compute b =
∏

q∈Q q. This takes time n(lg n)2+o(1).

Step 2. Define, and compute, a0, g0, a1, g1, . . . , x0, x1, . . . , y0, y1, . . . , a
′ exactly as

in Section 2. This takes time n(lg n)2+o(1).

Step 3. Write yi(q) for gcd{q, y∞

i }. Compute y0(q), y1(q), y2(q), . . . for each q ∈ Q
as explained in Section 3. This takes time n(lg n)2+o(1) lg lg n = n(lg n)2+o(1).
Check for and discard 1’s so that they do not slow down subsequent computations.

Step 4. Use product trees to compute z0 =
∏

q y0(q), z1 =
∏

q y1(q), etc. This

takes time n(lg n)2+o(1).
Notice that z1z

3
2z7

3 · · · divides a. Indeed, take any prime p dividing z1z
3
2z7

3 · · · .
Recall that y1, y2, . . . are coprime, so p divides zi for a unique i. Write e = ordp a
and f = ordp b; then (2i − 1)f < e ≤ (2i+1 − 1)f . Furthermore, p divides a unique
q ∈ Q, and f = ordp q = ordp zi by definition of b and zi, so (2i−1) ordp zi < ordp a.
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Step 5. Use a scaled remainder tree to compute a mod z0, a mod z3
1 , a mod z7

2 , . . . .
This takes time n(lg n)2+o(1), since the product z3

1z7
2 · · · divides a3.

Step 6. Use scaled remainder trees to compute (a mod z0) mod y0(q) = a mod
y0(q) for each q; (a mod z3

1) mod y1(q)
3 = a mod y1(q)

3 for each q; (a mod z7
2) mod

y2(q)
7 = a mod y2(q)

7 for each q; etc. This takes time n(lg n)2+o(1).

Step 7. Compute gcd{a, y0(q)}, gcd
{

a, y1(q)
3
}

, gcd
{

a, y2(q)
7
}

, etc. This takes

time n(lg n)2+o(1).
Observe that gcd{a, y0(q)}, gcd

{

a, y1(q)
3
}

, gcd
{

a, y2(q)
7
}

, etc. are the same
as gcd{a, y0(q)

∞}, gcd{a, y1(q)
∞}, gcd{a, y2(q)

∞}, etc. Consider, for example, a
prime p dividing gcd{a, y2(q)

∞}. Recall that 3f < e ≤ 7f where e = ordp a and
f = ordp b = ordp y2(q); thus ordp gcd{a, y2(q)

∞} = e = ordp gcd
{

a, y2(q)
7
}

.

Step 8. Print cb{yi(q), gcd{a, yi(q)
∞}} for each i and q. Also print q/y0(q)y1(q) · · ·

for each q, and print a′. This takes time n(lg n)2+o(1).
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