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Abstract. The 3x+1 map T and the shift map S are defined by T (x) = (3x+1)/2

for x odd, T (x) = x/2 for x even, while S(x) = (x− 1)/2 for x odd, S(x) = x/2 for

x even. The 3x + 1 conjugacy map Φ on the 2-adic integers Z2 conjugates S to T ,
i.e., Φ ◦ S ◦Φ−1 = T . The map Φ mod 2n induces a permutation Φn on Z/2nZ. We

study the cycle structure of Φn. In particular we show that it has order 2n−4 for
n ≥ 6. We also count 1-cycles of Φn for n up to 1000; the results suggest that Φ has

exactly two odd fixed points. The results generalize to the ax + b map, where ab is

odd.

1. Introduction

Canadian Journal of Mathematics 48 (1996), 1154–1169.

The 3x+ 1 problem concerns iteration of the 3x+ 1 function

(1.1) T (x) =

{
(3x+ 1)/2 if x ≡ 1 (mod 2)

x/2 if x ≡ 0 (mod 2)

on the integers Z. The well-known 3x + 1 Conjecture asserts that, for each posi-
tive integer n, some iterate T k(n) equals 1, i.e., all orbits on the positive integers
eventually reach the cycle {1, 2}.

The 3x+ 1 function (1.1) is defined on the larger domain Z2 of 2-adic integers.
It is a measure-preserving map on Z2 with respect to the 2-adic measure, and it
is strongly mixing, so it is ergodic; see [8]. More is true. Let S : Z2 → Z2 be the
2-adic shift map defined by

(1.2) S(x) =

{
(x− 1)/2 if x ≡ 1 (mod 2)

x/2 if x ≡ 0 (mod 2);

i.e., S(
∑∞

i=0 bi2
i) =

∑∞
i=0 bi+12i, if each bi is 0 or 1. Then T is topologically

conjugate to S: there is a homeomorphism Φ : Z2 → Z2 with

(1.3) Φ ◦ S ◦ Φ−1 = T.

In fact T is metrically conjugate to S: one map Φ satisfying (1.3) preserves the
2-adic measure. Thus T is Bernoulli.

The map Φ is determined by (1.3) up to multiplication on the right by an au-
tomorphism of the shift S. It is known that the automorphism group of S is
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isomorphic to Z/2Z, with nontrivial element V (x) = −1−x. (See [6, Theorem 6.9]
and the introduction to [3].) We obtain a unique function Φ by adding to (1.3) the
side condition Φ(0) = 0. We call Φ the 3x+ 1 conjugacy map. This function has
been constructed several times, apparently first in [8], where Φ−1 is denoted Q∞,
and also in [1], [2].

An important property of Φ is that it is solenoidal. Here we say that a function
f on Z2 is solenoidal if, for every n, it induces a function mod 2n, i.e.,

x ≡ y (mod 2n) =⇒ f(x) ≡ f(y) (mod 2n).

This solenoidal property, together with Φ(0) = 0, implies that

(1.4) Φ(x) ≡ x (mod 2).

For completeness, we give a self-contained proof that Φ is unique. Let Φ and Φ′

be two invertible functions satisfying (1.3) and (1.4). Write Q and Q′ for their
inverses. Then S ◦Q = Q ◦T and S ◦Q′ = Q′ ◦T , and (1.4) gives Q ≡ Q′ (mod 2).
If Q ≡ Q′ (mod 2k) then Q◦T = Q′ ◦T (mod 2k), so S ◦Q ≡ S ◦Q′ (mod 2k). Now
S ◦ Q and S ◦ Q′ agree in the bottom k bits, and Q and Q′ agree in the bottom
bit, so Q and Q′ agree in the bottom k + 1 bits. Hence Q ≡ Q′ (mod 2k+1). By
induction Q ≡ Q′ (mod 2k) for every k, so Q = Q′, so Φ = Φ′.

There is an explicit formula for Φ−1 ([8]). Let Tm denote the mth iterate of T .
Then

(1.5) Φ−1(x) =

∞∑
i=0

(T i(x) mod 2)2i.

This implies (1.3) and (1.4), and also shows that Φ−1 is solenoidal.

There is also an explicit formula for Φ ([2]). For x ∈ Z2, expand x as

x =
∑
l

2dl ,

in which {dl} is a finite or infinite sequence with 0 ≤ d1 < d2 < · · · . Then

(1.6) Φ(x) = −
∑
l

3−l2dl .

This also implies (1.3) and (1.4), and shows that Φ is solenoidal.

Various properties of the 3x+ 1 map under iteration can be formulated in terms
of properties of Φ. The 3x+ 1 Conjecture is reformulated as follows ([2], [8]). Here
Z+ denotes the positive integers.

3x+ 1 Conjecture. Z+ ⊆ Φ( 1
3Z).

Furthermore, it is known that Φ(Q ∩Z2) ⊆ Q ∩Z2. (This is easily proven from
(1.6); see [2].) The following conjecture is proposed in [8].
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Periodicity Conjecture. Φ(Q ∩ Z2) = Q ∩ Z2.

This would imply that the 3x + 1 function T has no divergent trajectories on
Z. Recall that a trajectory

{
T k(n) : k ≥ 1

}
is divergent if it contains an infinite

number of distinct elements, so that
∣∣T k(n)

∣∣→∞ as k →∞. In fact, if

T3,k(x) =

{
(3x+ k)/2 if x ≡ 1 (mod 2),

x/2 if x ≡ 0 (mod 2),

then the Periodicity Conjecture is equivalent to the assertion that, for all k ≡
±1 (mod 6), the 3x + k function has no divergent trajectories on Z. (This follows
from [9, Corollary 2.1b].)

This paper studies the 3x + 1 conjugacy map Φ for its own sake. The function
Φ is a solenoidal bijection; it induces permutations Φn of Z/2nZ. Our object is to
determine properties of the cycle structure of the permutations Φn. In effect, our
results give information about the iterates Φk of Φ. We prove in particular that Φn

contains three “long” cycles of length 2n−4, for all n ≥ 6.

We remark that the results we prove are not related to the 3x + 1 Conjecture
in any immediate way; indeed for the iterates T k the conjugacy (1.3) gives Φ ◦
Sk ◦ Φ−1 = T k, a relation which does not involve Φk for any k ≥ 2. We do note
that the Periodicity Conjecture is equivalent, for any k ≥ 1, to the assertion that
Φk(Q∩Z2) = Q∩Z2. Consequently information about Φk may conceivably prove
useful in resolving the Periodicity Conjecture.

The contents of the paper are as follows. In §2 we give a table of the cycle lengths
of Φn for n ≤ 20. This table motivated our results. We also give data on 1-cycles
of Φn for n ≤ 1000. We conjecture that Φ has exactly two odd fixed points. In §3
we formulate results on the progressive stabilization of the “long” cycles of Φn. In
§4 we generalize these results to the conjugacy map for the ax+ b function

Ta,b(x) =

{
(ax+ b)/2 if x ≡ 1 (mod 2)

x/2 if x ≡ 0 (mod 2),

where ab is odd. We prove all these results in §5. The proofs are based on Theorem
5.1, which keeps track of the highest-order significant bit in the orbit of x mod 2n+2.
In §6 we reconsider “short” cycles of Φn, and present a heuristic argument that
relates their asymptotics to the number of global periodic points. This heuristic is
consistent with the data on 1-cycles presented in §2.

There are two appendices on solenoidal maps. Appendix A shows the equivalence
of “solenoidal bijection,” “solenoidal homeomorphism,” and “2-adic isometry.” Ap-
pendix B shows that a wide class of functions U generalizing the 3x+ 1 map T are
conjugate to the 2-adic shift S by a solenoidal conjugacy map ΦU .

Finally, we note that, for odd k, the map Q(x) = kx conjugates the 3x + 1
function to the 3x+ k function; i.e., Q ◦ T ◦Q−1 = T3,k. Thus the cycle structure
of the permutations mod 2n of all the conjugacy maps Φ3,k are identical. Other
properties of the 3x + 1 conjugacy map appear in [2], [10], [11]. In particular, Φ
and Φ−1 are nowhere differentiable on Z2; see [10], [2].

We thank Mike Boyle and Doug Lind for supplying references concerning the
automorphism group of the one-sided shift, and the referee for helpful comments.
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2. Empirical Data and Two Conjectures

By (1.4), Φn takes odd numbers to odd numbers. Let Φ̂n : (Z/2nZ)∗ →
(Z/2nZ)∗ denote its restriction. The properties of Φn are completely determined

by Φ̂n. Indeed, Φ(2jx) = 2jΦ(x) by (1.6), so the action of Φ̂n−j describes the
action of Φn on odd numbers times 2j .

Each Φ̂n consists of cycles of various lengths, all of which are powers of 2. (See

§3 for a proof.) The exact form of Φ̂n for n ≤ 6 appears in Table 2.1.

n Φ̂n order(Φ̂n)

2 identity 1
3 {1, 5} 2
4 {1, 5} {9, 13} 2
5 {1, 21} {5, 17} {7, 23} {9, 29, 25, 13} 4
6 {1, 21} {3, 35} {5, 17, 37, 49} {7, 23} {9, 29, 25, 13}

{19, 51} {27, 59} {33, 53} {39, 55} {41, 61, 57, 45} 4

Table 2.1. Cycle structure of Φ̂n, n ≤ 6. 1-cycles are omitted.

Table 2.2 below lists the number of cycles of various lengths in Φ̂n for n ≤ 20.
Let Xn,j denote the set of cycles of Φ̂n of period 2j , and let |Xn,j | be the number
of such cycles. From Table 2.2 we see, empirically, that

(2.1) order(Φ̂n) = 2n−4, n ≥ 6.

We also see a progressive stabilization of the number of “long” cycles in Φ̂n. In
§3–§5 we prove both these facts.

How does |Xn,j |, the number of cycles of Φ̂n of size 2j , behave as n → ∞, for
fixed j? We give data for the simplest case |Xn,0| of 1-cycles. Table 2.3 gives all
values of |Xn,0| for n ≤ 100, and Table 2.4 gives values of |Xn,0| at intervals of
10 for n ≤ 1000. We computed the values |Xn,0| recursively for increasing n by
tracking each 1-cycle individually.

(k, j) 0 1 2 3 4 5 6 7 8 9
1 12 32 52 80 116 106 152 124 110
2 2 16 38 54 82 122 112 144 124 108
3 2 26 36 56 96 124 110 120 130 108
4 4 22 38 54 106 124 112 108 128 92
5 6 18 36 54 116 114 106 114 128 96
6 6 20 36 54 90 128 92 132 136 96
7 8 18 50 68 82 118 106 140 124 102
8 14 12 60 68 92 94 116 144 118 108
9 14 16 62 84 102 92 122 144 104 88

10 10 26 50 92 108 100 132 144 98 90

Table 2.3. Number of 1-cycles in Φ̂10j+k.
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(n, j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 2
3 2 1
4 4 2
5 6 3 1
6 6 7 3
7 8 10 3 3
8 14 17 8 0 3
9 14 21 18 4 0 3

10 10 35 24 14 2 0 3
11 12 40 37 18 12 2 0 3
12 16 48 70 23 16 10 2 0 3
13 26 53 79 60 24 11 10 2 0 3
14 22 63 111 98 50 14 11 10 2 0 3
15 18 81 129 153 84 40 11 11 10 2 0 3
16 20 96 179 186 137 78 31 11 11 10 2 0 3
17 18 91 242 236 207 131 61 29 11 11 10 2 0 3
18 12 104 305 308 312 192 105 56 29 11 11 10 2 0 3
19 16 86 375 401 432 307 152 99 54 29 11 11 10 2 0 3
20 26 95 424 573 564 445 281 133 91 54 29 11 11 10 2 0 3

Table 2.2. Number of cycles |Xn,j | of Φ̂n of order 2j , 0 ≤ j ≤ n.

(k, j) 0 1 2 3 4 5 6 7 8 9
1 10 96 380 700 844 1278 1078 1330 1944 2030
2 26 90 458 788 840 1176 1130 1142 2180 2162
3 50 116 452 916 1134 1000 1212 1170 2194 2230
4 92 156 544 780 942 914 1270 1240 2226 2128
5 108 240 574 678 874 998 1462 1346 2130 2206
6 100 278 588 908 910 1110 1476 1538 2294 2362
7 132 282 628 818 866 1172 1360 1562 2204 2354
8 144 320 634 784 932 1172 1358 1778 2184 2362
9 98 378 784 870 1060 1072 1190 1974 2114 2242

10 90 404 714 892 1150 1086 1208 1808 2056 2308

Table 2.4. Number of 1-cycles in Φ̂100j+10k.

The tables show that |Xn,0| behaves irregularly, but has a general tendency to
increase. In §6 we present a heuristic model which suggests that

(2.2) |Xn,0| ∼ F0n as n→∞,

where F0 is the number of odd fixed points of Φ. Comparison with Table 2.4
suggests the following conjecture.

Fixed Point Conjecture. The 3x+ 1 conjugacy map Φ has exactly two odd fixed
points.

We searched for odd rational fixed points, and immediately found two: x = −1
and x = 1/3. The conjecture thus asserts that these are the only odd fixed points
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of Φ. We do not know of any approach to determine the existence or non-existence
of non-rational odd fixed points.

More generally we propose the following conjecture.

3x+1 Conjugacy Finiteness Conjecture. For each j ≥ 0, the 3x+1 conjugacy
map Φ has finitely many odd periodic points of period 2j.

We have no idea whether the 3x + 1 conjugacy map Φ has finitely many odd
periodic points in total. There are examples of ax + b conjugacy maps that have
no odd periodic points; see §4.

3. Cycle structure of Φn: Inert Cycles and Stable Cycles

There is a simple relation between the cycles of Φn and those of Φn+1: For
x ∈ Z2, the cycle σn+1(x) that x belongs to in Φn+1 has length |σn+1(x)| either
equal to or double the length of the cycle σn(x) that x belongs to in Φn.

This follows from a more general fact. Call a function fn+1 : Z/mn+1Z →
Z/mn+1Z consistent mod mn if it induces a function fn from Z/mnZ to Z/mnZ,
i.e., if

(3.1) x1 ≡ x2 (mod mn) =⇒ fn+1(x1) ≡ fn+1(x2) (mod mn).

Lemma 3.1. Let fn+1 : Z/mn+1Z→ Z/mn+1Z be a function which is consistent
mod mn. If x is a purely periodic point of fn+1 then x is a purely periodic point of
fn and

|σn+1(x)| = k |σn(x)|

for some integer k with 1 ≤ k ≤ m.

Proof. The image of σn+1(x) under projection mod mn consists of k copies of a
purely periodic orbit σn(x), for some k ≥ 1. The bound k ≤ m follows because any
element of Z/mnZ has only m distinct preimages in Z/mn+1Z. �

Lemma 3.1 applies to Φn+1, because Φ is solenoidal. Since m = 2 we have

|σn+1(x)| = k |σn(x)| with k = 1 or 2.

We call a cycle σn+1(x) split if |σn+1(x)| = |σn(x)|, because σn(x) lifts to two
cycles mod 2n+1, namely σn+1(x) and σn+1(x) + 2n. If |σn+1(x)| = 2 |σn(x)| we
call σn+1(x) inert, because σn(x) has lifted to a single cycle. If σn+1(x) is an inert
cycle, and |σn(x)| = p, then |σn+1(x)| = 2p and

(3.2) Φp
n+1(x) ≡ x+ 2n (mod 2n+1).

By induction on n, the length of any cycle |σn(x)| is a power of 2.
We call a cycle σn(x) stable if σm(x) is an inert cycle for all m ≥ n. If σn(x) is

a stable cycle, then

|σm(x)| = 2m−n+1 |σn−1(x)| , m ≥ n.

For a stable cycle σn(x), Lemma 3.1 guarantees that the map Φ restricted to

{y ∈ Z2 : y ≡ xi (mod 2n) for some xi ∈ σn(x)}

has no periodic points.
Our main result concerning Φ is as follows.
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Theorem 3.1. For the 3x + 1 conjugacy map Φ, suppose that |σn(x)| ≥ 4 and
that σn(x) and σn+1(x) are both inert cycles. Then σn+2(x) is also an inert cycle.
Consequently σn(x) is a stable cycle.

Theorem 3.1 follows from Corollary 5.1 at the end of §5.
The hypothesis |σn(x)| ≥ 4 is necessary in Theorem 3.1. For example, σ5(3) =

{3}, so both σ6(3) = {3, 35} and σ7(3) = {3, 99, 67, 35} are inert, but σ8(3) =
{3, 227, 195, 163} is split.

Corollary 3.1a. order(Φ̂n) = order(Φn) = 2n−4, for n ≥ 6.

Proof. σ6(5) = {5, 17, 37, 49} is stable. �

We next consider Table 2.2 in light of Theorem 3.1. Again let Xn,j denote the

set of cycles of Φ̂n of period 2j . Call Xn,j stabilized if it consists entirely of stable
cycles.

Corollary 3.1b. Assume that all Xn,n−j are stabilized for 0 ≤ j ≤ k−1, and that
|Xn,n−k| = |Xn+1,n+1−k| = |Xn+2,n+2−k|. Then Xm,m−k is stabilized for m ≥ n,
and |Xm,m−k| = |Xn,n−k|.

This criterion gives the stabilized region indicated in Table 2.2. For n = 20 over
90% of all elements in (Z/2nZ)∗ are in stable cycles.

4. The ax + b Conjugacy Map

Consider now the ax+ b function

(4.1) Ta,b(x) =

{
(ax+ b)/2 if x ≡ 1 (mod 2)

x/2 if x ≡ 0 (mod 2),

where ab is odd. See [4], [5], [7], and [12] for various properties of Ta,b under
iteration on Z.

The 2-adic shift map S is conjugate to the general ax + b function Ta,b by the

ax+ b conjugacy map Φa,b : Z2 → Z2; i.e., Φa,b ◦ S ◦ Φ−1a,b = Ta,b. If x =
∑

l 2dl ,

where {dl} is a finite or infinite sequence with 0 ≤ d1 < d2 < · · · , then

(4.2) Φa,b(x) = −b
∑
l

a−l2dl ;

see [2]. Associated to Φa,b are the permutations Φa,b,n on Z/2nZ obtained by
reducing Φa,b mod 2n. The following result generalizes Theorem 3.1.

Theorem 4.1. For the ax+ b conjugacy map Φa,b, suppose that a cycle σn(x) of
Φa,b,n has |σn(x)| ≥ 4. (i) If a ≡ 1 (mod 4), and σn(x) is an inert cycle, then
σn+1(x) is an inert cycle. (ii) If a ≡ 3 (mod 4), and σn(x) and σn+1(x) are both
inert cycles, then σn+2(x) is an inert cycle.

This theorem follows from Corollary 5.1 in §5. The proof actually shows that in
case (i) the weaker hypothesis |σn(x)| ≥ 2 suffices, when b ≡ 3 (mod 4).

There are examples of ax+b conjugacy maps Φa,b for which all cycles eventually
become stable. Such Φa,b then have no odd periodic points. Using Theorem 4.1 we
easily check that the 25x− 3 conjugacy map when taken mod 32 has an odd part
consisting of two stable cycles of period 8.
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5. The Highest Order Bit

Throughout this section, Φ = Φa,b is a general ax + b conjugacy map, where a

and b are odd. We analyze the high bit of the iterates of Φ mod 2n+2. All earlier
results follow from Theorem 5.1 below.

For x ∈ Z2, expand x as

(5.1) x =

∞∑
k=0

bitk(x)2k,

where bitk(x) is either 0 or 1. Define the bit sums

(5.2) popk(x) :=

k∑
j=0

bitj(x).

The ax+ b conjugacy map is then given by

(5.3) Φa,b(x) =

∞∑
k=0

−b
apopk(x)

bitk(x)2k,

by (4.2).

Lemma 5.1. If y, z ∈ Z2 with z ≡ y (mod 2n), then

(5.4)

Φ(z)− Φ(y)− (z − y)

≡ 2n+1

(
ab+ 1

2
+
b(a− 1)

2
popn−1(y)

)
(bitn(y) + bitn(z)) (mod 2n+2).

Proof. Expand Φ(z)−Φ(y) (mod 2n+2) using (5.3). We have bitk(z) = bitk(y) and
popk(z) = popk(y) for 0 ≤ k ≤ n − 1, so the first n terms in Φ(z) − Φ(y) cancel.
Thus

Φ(z)− Φ(y) ≡ 2n
((

−b
apopn(z)

)
bitn(z)−

(
−b

apopn(y)

)
bitn(y)

)
+ 2n+1

((
−b

apopn+1(z)

)
bitn+1(z)−

(
−b

apopn+1(y)

)
bitn+1(y)

)
.

Substitute a−1 ≡ a (mod 4) in the coefficient of 2n, and b ≡ a−1 ≡ 1 (mod 2) in
the coefficient of 2n+1:

(5.5)
Φ(z)− Φ(y) ≡ 2n(bapopn(y) bitn(y)− bapopn(z) bitn(z))

+ 2n+1(bitn+1(z)− bitn+1(y)) (mod 2n+2).

On the other hand

(5.6) z − y ≡ 2n(bitn(z)− bitn(y)) + 2n+1(bitn+1(z)− bitn+1(y)) (mod 2n+2).

Subtract (5.6) from (5.5):

Φ(z)−Φ(y)−(z−y) ≡ 2n((bapopn(y)+1) bitn(y)−(bapopn(z)+1) bitn(z)) (mod 2n+2).
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Substitute ak ≡ 1 + (a − 1)k (mod 4), popk(x) bitk(x) = (1 + popk−1(x)) bitk(x),
and then popn−1(z) = popn−1(y):

Φ(z)− Φ(y)− (z − y)

≡ 2n((b(1 + (a− 1) popn(y)) + 1) bitn(y)

− (b(1 + (a− 1) popn(z)) + 1) bitn(z))

≡ 2n((ab+ 1 + b(a− 1) popn−1(y)) bitn(y)

− (ab+ 1 + b(a− 1) popn−1(z)) bitn(z))

≡ 2n((ab+ 1 + b(a− 1) popn−1(y))(bitn(y)− bitn(z))

≡ 2n+1

(
ab+ 1

2
+
b(a− 1)

2
popn−1(y)

)
(bitn(y)− bitn(z)) (mod 2n+2).

This is equivalent to (5.4). �

Now fix x ∈ Z2, and fix n ≥ 0. Set |σn(x)| = 2j and assume from now on that

(5.7) σn+1(x) is inert,

so that |σn+1(x)| = 2j+1. We wish to determine whether or not σn+2(x) is inert.
According to (3.2) this occurs if and only if

(5.8) Φ2j+1

(x) ≡ x+ 2n+1 (mod 2n+2).

We now introduce the quantities

ek[i] := bitk(Φi(x)).

In terms of the ek[i], we have

(5.9) σn+2(x) is inert ⇐⇒ en+1[0] 6= en+1[2j+1],

by (5.8). We proceed to evaluate en+1[2j+1]− en+1[0] mod 2. The main theorems
of this paper are deduced from the following formula.

Theorem 5.1. If |σn(x)| = 2j and σn+1(x) is an inert cycle, then

(5.10) en+1[2j+1]− en+1[0] ≡ 1 +
ab+ 1

2
2j +

b(a− 1)

2
N (mod 2),

where

(5.11) N =

2j−1∑
i=0

popn−1(Φi(x)).

Proof. First we define Xi = (Φi+1+2j (x) − Φi+1(x)) − (Φi+2j (x) − Φi(x)). Since

σn+1(x) is an inert cycle, Φi+2j (x) ≡ Φi(x) + 2n (mod 2n+1), so, by Lemma 5.1,

Xi ≡ 2n+1

(
ab+ 1

2
+
b(a− 1)

2
popn−1(Φi(x))

)
(mod 2n+2).
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Adding up the Xi gives

(5.12)

2j−1∑
i=0

Xi ≡ 2n+1

(
ab+ 1

2
2j +

b(a− 1)

2
N

)
(mod 2n+2).

Next define Yi = 2n((en[i + 1 + 2j ]− en[i + 1])− (en[i + 2j ]− en[i])). The sum of
the Yi telescopes:

2j−1∑
i=0

Yi = 2n(en[2j+1]− en[2j ]− en[2j ] + en[0]).

Since σn+1(x) is an inert cycle, en[0] = en[2j+1] 6= en[2j ], so

(5.13)
2j−1∑
i=0

Yi = 2n(2en[0]− 2en[2j ]) ≡ 2n+1 (mod 2n+2).

On the other hand,

Xi − Yi ≡ 2n+1(en+1[i+ 1 + 2j ]− en+1[i+ 1]− en+1[i+ 2j ] + en+1[i])

≡ 2n+1(en+1[i+ 1 + 2j ] + en+1[i+ 1]− en+1[i+ 2j ]− en+1[i]).

In this form the sum of Xi − Yi also telescopes:

2j−1∑
i=0

(Xi − Yi) ≡ 2n+1(en+1[2j+1]− en+1[0]) (mod 2n+2).

Comparing this sum with (5.12) and (5.13), we get

2n+1(en+1[2j+1]− en+1[0]) ≡ 2n+1

(
ab+ 1

2
2j +

b(a− 1)

2
N

)
− 2n+1 (mod 2n+2),

which implies (5.10). �

Corollary 5.1. (i) If a ≡ 1 (mod 4), then

en+1[2j+1]− en+1[0] ≡
{

1 (mod 2) if b ≡ 3 (mod 4) or j ≥ 1

0 (mod 2) otherwise.

(ii) If a ≡ 3 (mod 4), and σn(x) is inert, then

en+1[2j+1]− en+1[0] ≡
{

1 (mod 2) if j ≥ 2,

0 (mod 2) if j = 1.

Note that (i) proves Theorem 4.1(i), and (ii) proves Theorem 4.1(ii), using (5.9).
Theorem 3.1 then follows as a special case of Theorem 4.1(ii).

Proof. (i) Here a ≡ 1 (mod 4), so the term involving N in (5.10) drops out.
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(ii) Here a ≡ 3 (mod 4), and j ≥ 1, so (5.10) simplifies to

en+1[2j+1]− en+1[0] ≡ 1 +N (mod 2).

The inertness of σn(x) gives

bitn−1(Φi+2j−1

(x)) = 1− bitn−1(Φi(x)),

so
popn−1(Φi+2j−1

(x)) + popn−1(Φi(x)) ≡ 1 (mod 2).

Thus

N =

2j−1−1∑
i=0

(
popn−1(Φi+2j−1

(x)) + popn−1(Φi(x))
)
≡

2j−1−1∑
i=0

1 = 2j−1 (mod 2).

Now (ii) follows. �

6. Cycle Structure of Φ̂n: Short Cycles

We consider the behavior of “short” cycles of the 3x + 1 conjugacy map; i.e.,
the behavior of |Xn,j | as n → ∞ for fixed j. We describe a heuristic model which
relates the asymptotics of |Xn,j | to the number of global odd periodic points of Φ.

We first note that the odd periodic points Per∗(Φ) of Φ determine the entire set
Per(Φ) of periodic points of Φ. The relation

(6.1) Φ(2x) = 2Φ(x)

implies that x has period 2j if and only if 2x has period 2j . Thus

(6.2) Per(Φ) =
{

2kx : k ≥ 0 and x ∈ Per∗(Φ)
}
.

Let Fj be the number of orbits of Φ containing an odd periodic point of minimal
period 2j . The 3x+ 1 Conjugacy Finiteness Conjecture of §2 asserts that all Fj are
finite.

We obtain a simple heuristic model for the 1-cycles Xn,1 of Φ̂n by classifying
them into two types: those arising by reduction mod 2n from an odd fixed point of
Φ, and all the rest. Call these “immortal” and “mortal” 1-cycles, respectively. Our
heuristic model is to assume that each “mortal” 1-cycle has equal probability of
splitting or remaining inert, independently of all other 1-cycles. When a “mortal”
1-cycle splits, both its progeny in Xn+1,1 are “mortal.” An “immortal” 1-cycle in
Xn,1 always splits, and gives rise to two 1-cycles in Xn+1,1, at least one of which is
“immortal.” We also assume that only F0 “immortal” 1-cycles appear in total, i.e.,
for all large enough n each “immortal” 1-cycle splits into one “immortal” 1-cycle
and one “mortal” 1-cycle.

This model is a branching process model with two types of individuals. The
expected number of individuals Zn,1 at step n is

(6.3) E[Zn,1] = F0n+ c0,
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where c0 is a constant depending on the levels of the initial occurrences of the F0

“immortal” 1-cycles. The empirical data in Tables 6.3 and 6.4 seem consistent with
this model, with F0 = 2. We know that F0 ≥ 2 in any case. The two “immortal”
1-cycles that we know of both appear at n = 1, so that if F0 = 2, then c0 = 0 in
(6.3).

To obtain a heuristic model for |Xn,j | when j ≥ 1, we use a refined classification

of cycles of Φ̂n. A step consists of passing from Φ̂n−1 to Φ̂n. For 0 ≤ d ≤ j ≤ n

let Xn,j,d denote the set of cycles of Φ̂n of size 2j which have remained inert for
exactly d steps. Let Yn,j,d denote the subset of Xn,j,d that consists of cycles that

split in going to Φ̂n+1. Then we have

|Xn+1,j,0| = 2

n∑
d=0

|Yn,j,d|

and
|Xn+1,j+1,d+1| = |Xn,j,d| − |Yn,j,d| .

We know the following facts about these quantities:

(1) If a cycle of length at least 8 has been inert for d ≥ 2 steps, it remains inert.
Thus |Yn,j,d| = 0 if j ≥ 3 and d ≥ 2.

(2) Any cycle of length 4 which has been inert for d = 2 steps must split; i.e.,
|Xn,2,2| = |Yn,2,2|.

(3) Any odd periodic point x of Φ of period 2j gives rise to a cycle of period 2j

of Φ̂n for all sufficiently large n. This cycle always splits. Such cycles are
in both Xn,j,0 and Yn,j,0.

The quantity we are interested in is

|Xn,j | =
n∑

d=0

|Xn,j,d| .

The facts above imply that |Xn,j | is entirely determined by knowledge of |Xm,j,0|,
|Ym,j,0|, and |Ym,j,1|, for all m ≤ n.

Our heuristic model is then to suppose the following:

(1) Each cycle in Xn,j,1 has (independently) probability 1/2 of falling in Yn,j,1.
(2) Each “mortal” cycle in Xn,j,0 has (independently) probability 1/2 of falling

in Yn,j,0, and if so its two progeny in Xn+1,j,0 are “mortal.”
(3) Each “immortal” cycle in Xn,j,0 lies in Yn,j,0, and one of its progeny in

Xn+1,j,0 is “immortal” and the other is “mortal,” with finitely many excep-
tions.

This is a multi-type branching process model. If Zn,j denotes the total number of
individuals in such a process, then one may calculate that, for large n,

(6.4) E[Zn,1] =
1

4
F0n

2 + (F1 +
1

4
F0)n− F1 +

1

2
F0 + c1,

in which c1 is a constant depending on the initial occurrence of “immortal” cycles.
(We assume that c0 = 0.) For j ≥ 2, where stable cycles may occur, the formula
for E[Zn,j ] becomes quite complicated.

It might be interesting to further compare predictions of this model for j ≥ 1
with actual data for Φ. We know of one odd periodic cycle of Φ of length 2, namely
{1,−1/3}; i.e., Φ(1) = −1/3 and Φ(−1/3) = 1. Thus F1 ≥ 1.
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Appendix A. Solenoidal Maps

Call a map F : Z2 → Z2 solenoidal if, for all n,

(A.1) x ≡ y (mod 2n) =⇒ F (x) ≡ F (y) (mod 2n).

An equivalent condition in terms of the 2-adic metric |·|2 is that F is nonexpand-
ing; i.e.,

(A.2) |F (x)− F (y)|2 ≤ |x− y|2 , all x, y ∈ Z2.

If F1 and F2 are solenoidal maps, then so is F1 ◦ F2.
Call a family of functions Fn : Z/2nZ → Z/2nZ compatible if Fn agrees with

Fn−1 under projection πn : Z/2nZ → Z/2n−1Z; i.e., if πn ◦ Fn = Fn−1 ◦ πn. A
compatible family {Fn} has an inverse limit F : Z2 → Z2 defined by

(A.3) F (x) ≡ Fn(x) (mod 2n), for all n.

The term “solenoidal” is justified by the following lemma.

Lemma A.1. F is solenoidal if and only if F is the inverse limit of a compatible
family {Fn}.

Proof. If F is solenoidal, then F mod 2n induces a function Fn : Z/2nZ→ Z/2nZ,
for each n; and {Fn} is a compatible family. The reverse implication follows from
(A.3). �

Lemma A.2. Let U be the inverse limit of a compatible family {Un}. Then the
following are equivalent. (i) U is a bijection. (ii) For each n, Un is a permutation.
(iii) For each n, if U(x) ≡ U(y) (mod 2n) then x ≡ y (mod 2n).

Proof. (i) =⇒ (ii). U is surjective, so Un is surjective.
(ii) =⇒ (i). Write Vn = U−1n . Then {Vn} is a compatible family. Let V be its

inverse limit. By construction U ◦ V is the inverse limit of identity functions, so
U ◦ V is the identity. Similarly V ◦ U is the identity. Hence U is a bijection.

(ii) =⇒ (iii). If U(x) ≡ U(y) (mod 2n) then Un(x mod 2n) = Un(y mod 2n) so
x mod 2n = y mod 2n.

(iii) =⇒ (ii). Suppose that Un(a) = Un(b). Select x and y in Z2 such that
a = x mod 2n, b = y mod 2n. Then Un(x mod 2n) = Un(y mod 2n), so U(x) ≡
U(y) (mod 2n), so x ≡ y (mod 2n), so a = b. �

Corollary A.3. The following are equivalent. (i) U is a solenoidal bijection. (ii)
U is a solenoidal homeomorphism. (iii) U is a 2-adic isometry.

U is a 2-adic isometry if |U(x)− U(y)|2 = |x− y|2.

Proof. (i) =⇒ (iii). U is solenoidal so |U(x)− U(y)|2 ≤ |x− y|2. On the other
hand, by Lemma A.1, U is an inverse limit; and U is a bijection, so |U(x)− U(y)|2 ≥
|x− y|2 by Lemma A.2(i =⇒ iii).

(iii) =⇒ (ii). Since |U(x)− U(y)|2 ≤ |x− y|2, U is solenoidal. By Lemma
A.1, U is an inverse limit; by Lemma A.2(iii =⇒ i), U is a bijection. Since
|U(x)− U(y)|2 ≥ |x− y|2, U−1 is solenoidal. Finally, solenoidal implies continuous.

(ii) =⇒ (i). Immediate. �



14 DANIEL J. BERNSTEIN, JEFFREY C. LAGARIAS

Appendix B. Functions Solenoidally Conjugate to the Shift

For any two solenoidal bijections V0, V1 define UV0,V1 : Z2 → Z2 by

U(x) =

{
V0(x/2) if x ≡ 0 (mod 2),

V1((x− 1)/2) if x ≡ 1 (mod 2).

For example, take V0(x) = x and V1(x) = ax+ (a+ b)/2; then UV0,V1
is the ax+ b

function.
In this appendix we show that a map is solenoidally conjugate to the 2-adic shift

map S—i.e., conjugate to S by a solenoidal bijection—if and only if it is of the
form UV0,V1

.

Lemma B.1. Let V be a solenoidal bijection. If z ≡ w (mod 2m−1) then V (z) ≡
V (w) + z − w (mod 2m).

Proof. If z ≡ w (mod 2m) then V (z) ≡ V (w) (mod 2m).
If z ≡ w + 2m−1 (mod 2m) then still V (z) ≡ V (w) (mod 2m−1). By Corol-

lary A.3, V is an isometry, so if V (z) ≡ V (w) (mod 2m) then z ≡ w (mod 2m),
contradiction. Thus V (z) ≡ V (w) + 2m−1 (mod 2m). �

Lemma B.2. Set U = UV0,V1 . Fix m ≥ 1. If y ≡ x + 2me (mod 2m+1) then
U(y) ≡ U(x) + 2m−1e (mod 2m).

Proof. Put b = x mod 2; then U(x) = Vb(S(x)). Also U(y) = Vb(S(y)), since y ≡
x (mod 2). We have S(y) ≡ S(x) + 2m−1e (mod 2m); by Lemma B.1, Vb(S(y)) ≡
Vb(S(x)) + 2m−1e (mod 2m). �

Lemma B.3. Set U = UV0,V1
. Fix m ≥ j ≥ 1. If y ≡ x + 2me (mod 2m+1) then

U j(y) ≡ U j(x) + 2m−je (mod 2m−j+1).

Proof. Lemma B.2 and induction on j. �

Lemma B.4. Set U = UV0,V1 . Fix m ≥ 1. If y ≡ x + 2me (mod 2m+1) then
Um(y) ≡ Um(x) + e (mod 2).

Proof. Lemma B.3 with j = m. �

Lemma B.5. Set U = UV0,V1 . Fix b0, b1, b2, . . . ∈ {0, 1}. Define x0 = 0 and
xm+1 = xm + 2m(bm − Um(xm)). Then y ≡ xm (mod 2m) if and only if U i(y) ≡
bi (mod 2) for 0 ≤ i < m.

Proof. We induct on m. For m = 0 there is nothing to prove.
Say y ≡ xm+1 (mod 2m+1). Then y ≡ xm + 2m(bm − Um(xm)) (mod 2m+1);

by Lemma B.4, Um(y) ≡ Um(xm) + bm − Um(xm) = bm (mod 2). Also y ≡
xm (mod 2m), so by the inductive hypothesis U i(y) ≡ bi (mod 2) for 0 ≤ i < m.

Conversely, say U i(y) ≡ bi (mod 2) for 0 ≤ i ≤ m. By the inductive hypothesis
y ≡ xm (mod 2m). Write y = xm +2me. Then bm ≡ Um(y) ≡ Um(xm)+e (mod 2)
by Lemma B.4. Thus y ≡ xm + 2m(bm − Um(xm)) = xm+1 (mod 2m+1). �

Theorem B.1. Set U = UV0,V1 . Define Q(x) =
∑∞

m=0(Um(x) mod 2)2m. Then
Q is a solenoidal bijection, and U = Q−1 ◦ S ◦Q.

Thus any map of the form UV0,V1
is solenoidally conjugate to S. (See Theorem

B.2 below for the converse.) Q−1 generalizes the ax+ b conjugacy map.
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Proof. Injective: Say Q(y) = Q(x). Define bm = Um(x) mod 2; then Um(y) ≡
Um(x) ≡ bm (mod 2). Next define x0 = 0 and xm+1 = xm + 2m(bm − Um(xm)).
By Lemma B.5, y ≡ xm (mod 2m) and x ≡ xm (mod 2m). Thus y ≡ x (mod 2m)
for every m; i.e., y = x.

Solenoidal: Say y ≡ x (mod 2n). Define bm = Um(x) mod 2, x0 = 0, and
xm+1 = xm + 2m(bm − Um(xm)). Then x ≡ xn (mod 2n) by Lemma B.5, so
y ≡ xn (mod 2n); by Lemma B.5 again, Um(y) ≡ bm (mod 2) for 0 ≤ m < n. Thus
Q(y) ≡ Q(x) (mod 2n).

Surjective: Given b =
∑∞

i=0 bi2
i with bi ∈ {0, 1}, define x0 = 0 and xm+1 = xm+

2m(bm − Um(xm)). Since xm+1 ≡ xm (mod 2m) the sequence x1, x2, . . . converges
to a 2-adic limit y, with y ≡ xm (mod 2m). By Lemma B.5, Um(y) ≡ bm (mod 2)
for all m. Thus Q(y) = b.

Finally, it is immediate from the definition of Q that Q ◦ U = S ◦Q. �

Theorem B.2. Let Q be a solenoidal bijection. Define U = Q−1 ◦ S ◦ Q. Then
U = UV0,V1 for some solenoidal bijections V0, V1.

Proof. If Q(0) is even then Q−1(x) ≡ x (mod 2) for all x; so write

Q−1(x) =

{
2W0(x/2) if x ≡ 0 (mod 2),

1 + 2W1((x− 1)/2) if x ≡ 1 (mod 2).

Then W0,W1 are solenoidal bijections, and U = UV0,V1
where Vi = Q ◦Wi.

Similarly, if Q(0) is odd then Q−1(x) ≡ −1− x (mod 2) for all x; so write

Q−1(x) =

{
1 + 2W0(x/2) if x ≡ 0 (mod 2),

2W1((x− 1)/2) if x ≡ 1 (mod 2).

Again W0,W1 are solenoidal bijections, and U = UV0,V1 where Vi = Q ◦Wi. �
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