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Abstract. This paper proposes a new representation for ideals of any
order in an algebraic number field. This representation is compact and
highly readable; for example, (95, x+65)(2216) and (7, x2+4)(95, x+46)
are two ideals of Z[x]/(x4 − x3 + 7x2 − 11x + 5), with sum (19, x + 8).
Arithmetic on ideals in this form is generally much faster than arithmetic
in the Z-basis or two-element representations.

1 Introduction

I propose a new, highly readable representation for ideals of any order in a
number field. Arithmetic in this representation is generally much faster than
arithmetic in the Z-basis or two-element representations.

The idea is as follows. Any nonzero ideal contains some positive integer N .
Represent the ideal locally at all the primes of Z dividing N . This representation
is compatible with arithmetic: all the usual ideal operations are local.

It is not possible in practice to find the set of primes dividing N . So, following
a philosophy of Hendrik W. Lenstra, Jr., I work instead with a coprime base
P for N : a pairwise coprime set of positive integers generating a semigroup that
contains N . (Initially P may be taken as {N}.) A typical p ∈ P might not
be prime, but I nevertheless think of p as prime—until encountering a nonzero
nonunit modulo p, at which point I factor p and continue the computation.

To add or multiply or intersect two ideals one must first find a common
coprime base for them. This can be done in essentially linear time; see [1]. Once
the ideals are represented on a common coprime base, all operations are “local”;
see section 4.

Throughout this paper ϕ ∈ Z[x] is an irreducible monic integer polynomial.
The ring Z[x]/ϕ is an order inside the number field Q[x]/ϕ. Most of this paper
focuses on the representation of ideals of Z[x]/ϕ. For fractional ideals see section
8. For orders bigger than Z[x]/ϕ see section 9.

In this paper, all rings are commutative.

Thanks to Hendrik W. Lenstra, Jr., for his helpful comments.



2 Flat modules

The reader willing to accept Lemma 3.1 and Lemma 3.3 without proof may skip
this section.

Let R be a ring, M an R-module. For any subgroup G of Rn, write MG for
the subgroup of Mn generated by {mg : m ∈M, g ∈ G}.

Definition: M is flat over R if the M -kernel of any R-matrix is M -generated
by the R-kernel. In other words, if M is flat over R, and A is an n-column
matrix with coefficients in R, and z ∈ Mn satisfies Az = 0, then z is in
M {x ∈ Rn : Ax = 0}. See [3, Theorem 7.6].

Lemma 2.1. Let R be a ring, M a flat R-module. Let I and J be R-submodules
of Rn. Then MI ∩MJ = M(I ∩ J).

Proof. It suffices to show that MI ∩MJ ⊆ M(I ∩ J). Take t ∈ MI ∩MJ . By
definition of MI, there are elements b1, b2, . . . , br ∈ M and g1, g2, . . . , gr ∈ I
with t = b1g1 + b2g2 + · · ·+ brgr. Similarly there are elements c1, c2, . . . , cs ∈M
and h1, h2, . . . , hs ∈ J with t = c1h1 + c2h2 + · · ·+ cshs.

Let A be the matrix for the map Rn×Rr×Rs → Rn×Rn that takes (y, d, e)
to (y − d1g1 − · · · − drgr, y − e1h1 − · · · − eshs). Note that if A(y, d, e) = 0 then
y ∈ I ∩ J .

Now the vector z = (t, b1, b2, . . . , br, c1, c2, . . . , cs) satisfies Az = 0. By flat-
ness, z is a combination with coefficients in M of vectors x ∈ Rn × Rr × Rs

satisfying Ax = 0. Hence t is the same combination of vectors y ∈ I ∩ J . ut

Lemma 2.2. Let R be a ring, B a flat extension of R. Let I be an R-submodule of
Rn. If x ∈ BI∩Rn then 1 = b1m1+b2m2+ · · ·+bsms for some b1, b2, . . . , bs ∈ B
and m1,m2, . . . ,ms ∈ R with m1x,m2x, . . . ,msx ∈ I.

Proof. By definition of BI, there are coefficients c1, c2, . . . , cr ∈ B and elements
g1, g2, . . . , gr ∈ I with x = c1g1 + · · · + crgr. Let A be the matrix for the map
R×Rr → Rn that takes (m, d) to mx−d1g1−· · ·−drgr. Note that if A(m, d) = 0
then mx ∈ I.

Now the vector z = (1, c1, . . . , cr) satisfies Az = 0. By flatness, there are
coefficients b1, . . . , bs ∈ B and vectors (m1, d1), . . . , (ms, ds) ∈ R×Rr satisfying
A(mi, di) = 0 and z = b1(m1, d1) + · · · + bs(ms, ds). In particular mix ∈ I and
1 = b1m1 + · · ·+ bsms. ut



3 The ring Zp

Let p be an integer. The completion of Z at p, written Zp, is the projective
limit of Z/pn. An element of Zp is a sequence (x1, x2, . . .), with xn ∈ Z/pn, such
that xn+1 mod pn = xn. For p > 1, Zp is an extension of Z.

Zp is flat over Z. This follows from the fact that Zp is torsion-free. Indeed, Z
is a Prüfer domain—any torsion-free Z-module is flat. (Any Dedekind domain
is a Prüfer domain; see [3, Exercise 11.8].)

More generally, any completion of a Noetherian ring is flat. See [3, Theorem
8.8].

Lemma 3.1. Let p be an integer. Let I and J be subgroups of Zn. Then ZpI ∩
ZpJ = Zp(I ∩ J).

Proof. Lemma 2.1. ut

Lemma 3.2. Let p > 1 be an integer. If Q ∈ Zp and peQ ∈ Z then Q ∈ Z.

Proof. The image of peQ in Z/pe is 0, so peQ is divisible by pe in Z; let q ∈ Z
be the quotient. Now pe(q −Q) = 0, but Zp is torsion-free, so q = Q. ut

Lemma 3.3. Let p and u be integers with p > 1. Let I be a subgroup of Zn

containing peuZn. Then u(ZpI ∩ Zn) ⊆ I.

Proof. Pick x ∈ ZpI ∩ Zn. By Lemma 2.2 there are b1, b2, . . . , bs ∈ Zp and
m1,m2, . . . ,ms ∈ Z such that mix ∈ I and 1 = b1m1 + b2m2 + · · ·+ bsms. Write
bi = peqi + ri with qi ∈ Zp and ri ∈ Z, and define Q = q1m1 + · · · + qsms;
then 1 = peQ + r1m1 + · · · + rsms, so Q is an integer by Lemma 3.2. Finally
ux = peuQx+ ur1m1x+ · · ·+ ursmsx ∈ I. ut

4 Ideals of Z[x]/ϕ versus ideals of Zp[x]/ϕ

For any ideal I of Z[x]/ϕ consider ZpI, the smallest subgroup of Zp[x]/ϕ con-
taining {ci : c ∈ Zp, i ∈ I}. ZpI is an ideal of Zp[x]/ϕ.

If I is generated by β then ZpI is generated by the image of β in Zp[x]/ϕ.
If J is another ideal of Z[x]/ϕ then Zp(I + J) = ZpI + ZpJ ; Zp(IJ) =

(ZpI)(ZpJ); and, by Lemma 3.1, Zp(I ∩ J) = ZpI ∩ ZpJ .

Lemma 4.1. Let p > 1 be an integer. Let I be a nonzero ideal of R = Z[x]/ϕ.
Then the natural map R → Zp[x]/ϕ induces an isomorphism R/(ZpI ∩ R) →
(Zp[x]/ϕ)/ZpI.

Proof. Let f be the natural map from R to (Zp[x]/ϕ)/ZpI. It is enough to show
that f is surjective.



Since I is nonzero it contains some positive integer N . Given any g ∈ Zp[x]/ϕ,
write g = qN + r with q ∈ Zp[x]/ϕ and r ∈ R. Then qN ∈ ZpI so g mod ZpI =
f(r). ut

Lemma 4.2. Let I be an ideal of R = Z[x]/ϕ containing a positive integer N . Let
P be a coprime base for N . Then R/I is isomorphic to

∏
p∈P−{1}(R/(ZpI∩R)).

Proof. ZpI ∩R contains the maximum power of p dividing N , for p ∈ P . Hence
ZpI ∩R and ZqI ∩R are coprime whenever p and q are coprime.

It thus suffices to show that I =
⋂

p(ZpI∩R). Certainly I ⊆ ZpI∩R. For the
converse it is convenient to write up for the non-p-part of N ; i.e., N is up times
a power of p, and up is coprime to p. Now say β ∈ R is in ZpI. By Lemma 3.3,
upβ ∈ I. If this is true for all p then β ∈ I since gcd {up : p ∈ P, p 6= 1} = 1. ut

5 A standard representation for ideals of Zp[x]/ϕ

Let p > 1 be an integer. In this section I describe a standard representation for
finite-norm ideals of Zp[x]/ϕ. Not every ideal can be written in this representa-
tion, unless p is prime; however, there is an algorithm that, given generators for
an ideal, either (1) finds a standard representation for the ideal or (2) finds a
nontrivial factor of p. The algorithm appears in section 6.

I begin with the representation in [2, Theorem 4.7.5], which is an improve-
ment (specific to ideals) of the Hermite normal form ([2, section 2.4.2]). Recall
that a representation for I is a Zp-basis for I of the form {cnfn : 0 ≤ n < degϕ}.
Here fn ∈ Zp[x] is a monic polynomial of degree n, and cn ∈ Zp is some nonzero
coefficient. (One can take cn ∈ Z and fn ∈ Z[x].)

I improve this representation in two ways. First, if several polynomials fn
have the same leading coefficient cn, I record only the polynomial of lowest de-
gree. The ideals of Zp[x] that show up in practice seem to contain few distinct
coefficients. This makes arithmetic much faster, at the expense of a more com-
plicated implementation, for the simple reason that there are fewer numbers to
manipulate. It also makes the output more readable, for the same reason.

Second, I insist that each leading coefficient be a power of p. This again
improves speed and readability: I can store, manipulate, and print the exponent
rather than the power. If p is not prime, there is no guarantee that one can
successfully write an ideal this way, but failure reveals a nontrivial factor of p.

My representation is thus a sequence (d0, e0, f0), (d1, e1, f1), . . ., with 0 =
d0 < d1 < · · · < degϕ, e0 > e1 > · · · ≥ 0, and fi a monic integer polynomial of
degree di, such that

I = pe0f0Zp + pe0f0xZp + pe0f0x
2Zp + · · ·+ pe0f0x

d1−1Zp

+ pe1f1Zp + pe1f1xZp + pe1f1x
2Zp + · · ·+ pe1f1x

d2−d1−1Zp

+ pe2f2Zp + pe2f2xZp + pe2f2x
2Zp + · · ·+ pe2f2x

d3−d2−1Zp

+ · · · .



I is generated as an ideal by pe0f0, p
e1f1, . . .. The norm of I is #((Zp[x]/ϕ)/I) =

pe0d1+e1(d2−d1)+e2(d3−d2)+···. One can impose bounds upon the coefficients of
each fi to make this representation unique; see [2, section 2.4.2].

In practice I display (pe0f0, p
e1f1, . . .). Five examples of ideals, with ϕ =

x4 − x− 3: (11, x+ 5); (11, x2 + 3x+ 1); (112, 11(x+ 5), x2 + 91x+ 12); (1025);
(65, x3 + 58x2 + 49x+ 46).

6 Computing a representation for an ideal of Zp[x]/ϕ

Let p > 1 be an integer. Let I be the ideal of Zp[x]/ϕ generated by a finite set
B. Assume that I contains a positive integer N . Given p,N,B, Algorithm 6.1
attempts to compute a standard representation for I. It may instead take a “side
exit,” producing a nontrivial factor of p.

Algorithm 6.1 works with a set C of nonnegative integer polynomials con-
tained in I. At the beginning of steps 3, 4, and 5, C has exactly one polynomial of
each degree from 0 through degϕ−1. The leading coefficient of each polynomial
is a power of p.

Write M for the Zp-module generated by C. Algorithm 6.1 uses a subroutine,
Algorithm 6.2, which expands M to contain any given polynomial h, printing 1
if C was changed or 0 if h was already in M . Algorithm 6.1 repeatedly invokes
Algorithm 6.2 to ensure that B ⊆ M and that M is closed under multiplica-
tion by x. Algorithm 6.1 and Algorithm 6.2 terminate because the norm of M ,
#((Zp[x]/ϕ)/M), decreases whenever Algorithm 6.2 prints 1.

Algorithm 6.1.

1. Compute the maximum n such that pn divides N . If N/pn is not coprime
to p, side exit: gcd {N/pn, p} is a nontrivial factor of p.

2. (Now pn ∈ I.) Set N ← pn. Set C ←
{
N,Nx,Nx2, . . . , Nxdegϕ−1}.

3. (Now C ∪B generates I as an ideal.) For each β ∈ B: Apply Algorithm 6.2
to β.

4. (Now C generates I as an ideal.) For each g ∈ C: Apply Algorithm 6.2 to
gx; if Algorithm 6.2 prints 1, go back to the beginning of step 4.

5. (Now C generates I as an ideal; and gx ∈ M for each g ∈ C. Thus M =
I. Each polynomial in C is divisible by its leading coefficient, and by the
leading coefficients of all higher-degree polynomials in C; see the proof of [2,
Theorem 4.7.5].) Remove from C any polynomial whose leading coefficient
appears on a polynomial of smaller degree. Now the set of (deg f, e, f), where
e is an integer and f is a monic integer polynomial with pef ∈ C, is a
standard representation for I.

Algorithm 6.2.

1. Set h← (h mod ϕ) mod N .

2. (Now deg h < degϕ.) If h = 0: Print 0 and stop.



3. (Now 0 ≤ deg h < degϕ.) Let g be the polynomial in C with deg g = deg h.
Set L to the leading coefficient of h. If the leading coefficient of g divides L,
set h← (h mod g) mod N and go back to step 2.

4. (Now 0 ≤ deg g = deg h < degϕ; g ∈ C; and the leading coefficient of g
does not divide L, the leading coefficient of h. Thus h /∈ M .) Compute the
maximum n such that pn divides L. If L/pn is not coprime to p, side exit:
gcd {L/pn, p} is a nontrivial factor of p.

5. Find integers u and v so that uh − vg has leading coefficient pn. Set h ←
(uh − vg) mod N . (Note that u is coprime to p; thus this does not change
the Zp-module generated by C ∪ {h}.)

6. Set C ← (C − {g}) ∪ {h}. (This decreases the norm of M .)
7. Apply Algorithm 6.2, recursively, to g.
8. Print 1.

In practice, step 4 of Algorithm 6.1 should tag each element g ∈ C for which
gx is already known to be in M ; then it can avoid feeding gx to Algorithm 6.2
more than once.

7 A representation for nonzero ideals of Z[x]/ϕ

Let I be a nonzero ideal of the ring R = Z[x]/ϕ. I propose to represent I by
{(p,ZpI) : p ∈ P}, where P is a coprime base (not containing 1) for some positive
integer in I. This representation is compatible with computing principal ideals,
ideal sums, and ideal norms; a fortiori it determines I.

In practice I display the concatenation of {ZpI : p ∈ P}. For example, the
ideal generated by 27075 and 3(x2 + 36x+ 2010) modulo x4−x3 + 7x2−11x+ 5
is (3)(52, 5(x+ 1), x2 + x)(192, 19(x+ 9), x2 + 17x+ 34).

Basic operations. To find the ideal generated by β 6= 0: Let N be the absolute
value of the norm of β. Set P = {N}. Then find a standard representation for
the ideal generated by β in ZN [x]/ϕ. (Exception: If N = 1, set P = {}.)

To find the norm #(R/I) of an ideal I: Multiply the local norms. By Lemma
4.1 and Lemma 4.2, #(R/I) =

∏
p #((Zp[x]/ϕ)/ZpI).

To add or multiply or intersect two ideals: Say they have coprime bases Q
and Q′. Find a coprime base P for Q ∪ Q′, as discussed in [1], and split each
ideal into P -pieces. Then find a standard representation for the sum or product
or intersection of local pieces. For more details on intersection see [2, Exercise
4.18]; an alternate method appears in section 8.

As noted in section 5, some ideals of Zp[x]/ϕ do not have a standard rep-
resentation. Whenever Algorithm 6.1 or Algorithm 6.2 discovers a nontrivial
factor q of p ∈ P , I replace p by a coprime base for {p, q}. Then I restart the
computation.

Here is a numerical example. Fix ϕ = x4 − x3 + 7x2 − 11x+ 5. Consider the
ideals I = (95, x+65)(2216) and J = (7, x2+4)(95, x+46); what is I+J? I start



with P = {7, 95, 221} and add the 7-pieces, 95-pieces, and 221-pieces separately.
Focus on 95: the 95-piece of the sum is generated by 95, x+ 65, 95, x+ 46. I feed
these generators to Algorithm 6.1, which discovers the factor 19 of 95, so I replace
95 with 5, 19 and restart. To split (95, x + 65) into a 5-piece and a 19-piece, I
feed the generators 95, x+65 to Algorithm 6.1, first with p = 5, producing (5, x),
and then with p = 19, producing (19, x + 8). Similarly, I split (95, x + 46) into
(5, x+ 1)(19, x+ 8). Then I add the 5-pieces and 19-pieces separately. The final
result is I + J = (19, x+ 8).

Other operations. The above operations suffice to construct many further
operations. For example, J ⊆ I if and only if #(R/(I + J)) = #(R/I); β ∈ I if
and only if βR ⊆ I; J = I if and only if #(R/I) = #(R/J) = #(R/(I + J)). In
practice it is better to implement these other operations separately.

8 Fractional ideals

I represent a fractional ideal as a nonzero ideal divided by an integer. It is
convenient to break the integer into local pieces.

Fractional ideals admit several new operations. All of them are special cases
of ratio: if I and J are subgroups of K = Q[x]/ϕ then the ratio J ÷ I =
{x ∈ K : xI ⊆ J} is also a subgroup of K.

Define T = {x ∈ K : traceK:Q x ∈ Z}. For any fractional ideal I, the ratio
T ÷ I is also a fractional ideal; it is the dual of I with respect to the trace,
written Dual I. This is called a dual because Dual Dual I = I. It is easy to
compute Dual I; see [2, section 4.8.4].

If J and I are both fractional ideals then J ÷ I is a fractional ideal. The
operation (J, I) 7→ J ÷ I is called ideal division.

Lemma 8.1. If I and J are fractional ideals then J ÷ I = Dual(I Dual J).

Thus J ÷ I is easy to compute. It appears that this observation was first due
to Peter Montgomery. My thanks to Hendrik W. Lenstra, Jr., for pointing out
that this works in all orders, not just Dedekind domains. Lenstra also notes that
J ∩ I = Dual(DualJ + Dual I), so intersection can be implemented in terms of
addition (or vice versa).

Proof. In general A÷BC = (A÷B)÷C. Thus Dual(I Dual J) = T÷(I Dual J) =
(T ÷Dual J)÷ I = (Dual Dual J)÷ I = J ÷ I. ut



9 Ideals of non-equation orders

An order in a number field need not be of the form Z[x]/ϕ. The technique
of lazy localization applies in tremendous generality; one can straightforwardly
tensor the known computational universe with Zp, or with completions of other
convenient base rings. However, the ideal representation in section 5 is specific
to Zp[x]/ϕ, and it is not clear how to preserve the benefits of that representation
in more general settings.

There is a very simple solution. If A is an order of Q(α) containing Z[α],
where α is a root of ϕ, then any fractional ideal over A is—and can be represented
as—a fractional ideal over Z[α]. In particular, I represent A itself as a fractional
ideal over Z[α]; then I can compute a principal ideal βA by multiplying βZ[α]
and A.

An alternate approach avoids fractional ideals. Say I is an ideal of A. One
can multiply I by the discriminant of Z[α], or the different ϕ′(α), to obtain an
ideal of Z[α].
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