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Abstract. We show that the NISTPQC submission HILA5 is not se-
cure against chosen-ciphertext attacks. Specifically, we demonstrate a
key-recovery attack on HILA5 using an active attack on reused keys.
The attack works around the error correction in HILA5. The attack ap-
plies to the HILA5 key-encapsulation mechanism (KEM), and also to
the public-key encryption mechanism (PKE) obtained by NIST’s proce-
dure for combining the KEM with authenticated encryption. This con-
tradicts the most natural interpretation of the IND-CCA security claim
for HILA5.
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1 Introduction

HILA5 [13] is a public-key scheme designed by Saarinen and published at SAC
2017. HILA5 was submitted as a “Key Encapsulation Mechanism and Public
Key Encryption Algorithm” [12] to NIST’s call [10] for post-quantum proposals.
HILA5’s design is based on Ring Learning With Errors (RLWE) over NTRU
NTT rings. HILA5 takes the same ring parameters as New Hope [2] and changes
the reconciliation method by which Alice and Bob achieve the same key to get
a much lower chance of decryption failures.

The HILA5 submission [12] states
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and project number 645421 (ECRYPT-CSA); and by the U.S. National Science
Foundation under grant 1314919. Date of this document: 2018.03.08.
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This design also provides IND-CCA secure KEM-DEM [CS03] public
key encryption if used in conjunction with an appropriate AEAD [Rog02]
such as NIST approved AES256-GCM [FIP01, Dwo07].

In this paper we show that HILA5 is not CCA secure: We compute Alice’s secret
key by sending her multiple encapsulation messages and using her answers to
determine whether her decapsulated shared secret matches a certain guess or
not. Our attack works independently of whether an AEAD is used or not and
despite the error correcting code introduced in HILA5.

We have fully implemented our attack and experimentally verified that it
works with high probability. We use the HILA5 reference implementation for
Alice’s part and also to verify that the retrieved secret key works for decryption.
We use a slightly modified version of the same software for computations on
the attacker’s side; of course the attacker need not follow the computations an
honest party would.

Acknowledgement.We thank Christine van Vredendaal for helpful discussions.

1.1 Related work

Ajtai–Dwork [1] and NTRU [7] are the oldest lattice-based encryption systems. In
1999 Hall, Goldberg, and Schneier [6] developed a reaction attack which recovers
the Ajtai–Dwork private key by observing decryption failures for suitably crafted
encryptions to the public key. They wrote “We feel that the existance of these
attacks effectively limits these ciphers to theoretical considerations only. That
is, any implementation of the ciphers will be subject to the attacks we present
and hence not safe.”

Hoffstein and Silverman [8] adapted the attack to NTRU. As a defense, they
suggested modifying NTRU to use the Fujisaki–Okamoto transform [5]. For a
system without decryption failures, this transform turns a CPA-secure system
into a CCA-secure one. At the same time this complicates and slows down the
cryptosystem. For NTRU, the transform turns out to still allow attacks that
exploit occasional decryption failures induced by valid ciphertexts; see [9].

New Hope [2] is a key-encapsulation mechanism (KEM), presented as a key-
exchange protocol. It allows occasional decryption failures for valid ciphertexts,
and explicitly avoids the “changes” that would be required for the Fujisaki–
Okamoto transform. To prevent reaction attacks and other chosen-ciphertext
attacks by a malicious Bob, New Hope requires using ephemeral keys, meaning
keys that change with every execution of the protocol. The New Hope paper
warns that reusing a public key in multiple protocol runs (“key caching”) would
be “disastrous for security”, although it does not describe an attack.

Fluhrer [4] showed the details of how to attack key reuse in a similar key-
exchange protocol. Followup work [3] extended the attack to more key-exchange
protocols.

HILA5 is similar to New Hope, and still does not use the Fujisaki–Okamoto
transform. HILA5 includes an error-correction method that practically elimi-
nates decryption failures for valid ciphertexts. HILA5 does not warn against key
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caching: on the contrary, the most natural interpretation of the HILA5 security
claims is that HILA5 is secure against chosen-ciphertext attacks. See Section 5.
We published our results in December 2017; as of February 2018, the designer
of HILA5 has not proposed an alternative interpretation of the security claims.

2 Data flow in the attack

A KEM is defined by three algorithms. Key generation produces a secret key
and a public key. Encapsulation produces a ciphertext and a session key, given
a public key. Decapsulation produces a session key or failure, given a ciphertext
and a secret key. The HILA5 submission document [12] gives details and reference
code for a particular KEM, the “HILA5 KEM”.

Our attack is a key-recovery attack against the HILA5 KEM: the attacker,
evil Bob, ends up computing the secret key of a target Alice. This secret key
gives the attacker the ability to run the decapsulation algorithm using Alice’s
secret key, and thus the ability to immediately decrypt legitimate ciphertexts
sent by other users to Alice.

Our attack is a chosen-ciphertext attack: evil Bob chooses ciphertexts to
provide to Alice (different from the legitimate ciphertexts), and learns something
from observing the outputs of Alice decapsulating those ciphertexts. Formally,
the attack shows that the HILA5 KEM does not provide IND-CCA2 security.

There are two important ways that the attack does not need the full power
of a CCA2 decapsulation oracle. First, the attack is what is called a “reaction
attack” in [6] or a “sloppy Alice attack” in [14]: evil Bob has a guess for the
output of each decapsulation, and learns whether Alice’s actual decapsulation
output matches this guess. Evil Bob does not need any further information.

Second, evil Bob chooses all of his ciphertexts, and learns the secret key from
Alice’s reactions, before seeing the legitimate ciphertexts to decrypt. Formally,
the attack shows not only that the HILA5 KEM does not provide IND-CCA2
security, but also that it does not provide IND-CCA1 security.

2.1 Hashing the secret key does not stop the attack

One can easily stop key-recovery attacks by defining HILA5Hash as follows.
HILA5Hash key generation computes a uniform random 32-byte string s, and
then runs HILA5 key generation to obtain a public key, hashing s to generate
all randomness used in HILA5 key generation. The HILA5Hash secret key is s.
HILA5Hash encapsulation is the same as HILA5 encapsulation. HILA5Hash de-
capsulation reconstructs the HILA5 secret key from s (again running the HILA5
key-generation algorithm; alternatively, the HILA5 secret key can be cached),
and then runs the HILA5 decapsulation algorithm.

Unless the hash function is easy to invert, a key-recovery attack against
HILA5 does not produce a key-recovery attack against HILA5Hash. However,
this hashing does not prevent the attacker from decrypting legitimate ciphertexts
sent by other users to Alice.
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2.2 AEAD does not stop the attack

A PKE is defined by three algorithms. Key generation produces a secret key and
a public key, as in a KEM. Encryption produces a ciphertext, given a plaintext
and a public key. Decryption produces a plaintext or failure, given a ciphertext
and a secret key.

The subtitle of the HILA5 submission is “Key Encapsulation Mechanism
(KEM) and Public Key Encryption Algorithm”. The submission document does
not include a definition of a PKE, but NIST had already stated before submission
that it would automatically convert each submitted KEM to a PKE using the
following “standard conversion technique”: “appending to the KEM ciphertext,
an AES-GCM ciphertext of the plaintext message” where the AES-GCM key is
“the symmetric key output by the encapsulate function”. This is the standard
Cramer–Shoup “KEM-DEM” construction, using AES-GCM as the DEM. We
write “HILA5 PKE” for the PKE that NIST will automatically produce in this
way from the HILA5 KEM.3

Breaking the IND-CCA2 security of a KEM does not necessarily imply break-
ing the IND-CCA2 security of a PKE obtained in this way. IND-CCA2 attacks
against the KEM can see session keys produced by decapsulation, whereas IND-
CCA2 attacks against the PKE are merely able to see the result of AES-GCM
decryption using those keys.

However, our attack against the HILA5 KEM is also a key-recovery attack
against the HILA5 PKE. It is important here that the attack is a reaction attack:
what evil Bob needs to know is merely whether a guessed session key is correct.
Starting from this guessed session key, evil Bob produces a valid AES-GCM
ciphertext using this guess as an AES key. If decapsulation in fact produces
this session key then AES-GCM decryption succeeds and produces the plaintext
that evil Bob started with. If decapsulation produces a different session key then
AES-GCM decryption is practically guaranteed to fail (anything else would be
a surprising security flaw in AES-GCM), so evil Bob sees a decryption failure
from the PKE.

To summarize, evil Bob sees decryption failures from the PKE, and learns
from this which guesses were correct, which is the same information that evil
Bob obtains from the KEM. Evil Bob then computes the secret key from this in-
formation. Consequently, the HILA5 PKE does not provide IND-CCA2 security,
and does not even provide IND-CCA1 security.

2.3 Black holes would stop the attack

Like other chosen-ciphertext attacks, our attack is inapplicable to scenarios
where the results of decapsulation and decryption are hidden from the attacker.
3 NIST actually deviates slightly from the KEM-DEM construction: it specifies a “ran-
domly generated IV” for AES-GCM, while Cramer and Shoup use a deterministic
DEM. For consistency with the ciphertext sizes mentioned in [12], we actually de-
fine “HILA5 PKE” to be the Cramer–Shoup construction using AES-GCM with an
all-zero IV. Switching to NIST’s construction would expand ciphertext sizes by 12
bytes using the default IV sizes for AES-GCM, and would not affect our attack.
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For example, if ciphertexts are sent to NSA’s public key, and if NSA hides the
results of applying its secret key to those ciphertexts, then an attacker outside
NSA cannot use our attack to compute NSA’s secret key. However, if NSA reacts
to those results in a way that leaks to the attacker which ciphertexts were valid,
then the attacker can compute NSA’s secret key.

2.4 The Fujisaki–Okamoto transform would stop the attack

We briefly outline a more radical change to HILA5, which we call “HILA5FO”.
HILA5FO ciphertexts are slightly larger than HILA5 ciphertexts, decapsulation
is more complicated, and decapsulation is extrapolated (from reported HILA5
benchmarks) to be several times slower, but HILA5FO would stop our attack.

The idea of the HILA5FO KEM is to reapply the encapsulation algorithm
as part of decapsulation, and check whether the resulting ciphertext is identical
to the received ciphertext. This is not a new idea: it is used in many other
submissions to NIST (with various differences in details), typically with credit
to Fujisaki and Okamoto [5].

HILA5 does not provide any easy way to reconstruct the randomness used
in encapsulation (most importantly Bob’s b), so the HILA5FO KEM computes
this randomness as a hash of a plaintext recovered as part of decapsulation. The
HILA5 KEM does not transmit a plaintext, so the HILA5FO KEM is instead
built from the HILA5 PKE.

Encapsulation in the HILA5FO KEM thus chooses a random plaintext, and
encrypts this plaintext using the HILA5 PKE (the HILA5 KEM producing a
session key for AES-GCM) using a hash of the plaintext to compute all ran-
domness used inside the PKE. Decapsulation applies HILA5 PKE decryption
(HILA5 KEM decapsulation producing a session key for AES-GCM decryption),
and checks that the resulting plaintext produces the same ciphertext.

Deriving a PKE from the HILA5FO KEM would involve two layers of AES-
GCM, which can be compressed to one layer as follows: place 32 bytes of ran-
domness at the beginning of the user-supplied plaintext, and then encrypt this
plaintext using the HILA5 PKE, again using a hash of the plaintext to compute
all randomness used inside the PKE. The overall ciphertext size is the original
plaintext size, plus 32 bytes (the randomness), plus the HILA5 KEM ciphertext
size, plus 16 bytes (the AES-GCM authenticator), i.e., 32 bytes more than the
HILA5 PKE. The main cost in HILA5FO decryption (for short messages) is
reapplying HILA5 KEM encapsulation, which according to [12, Table 1] is five
times slower than HILA5 KEM decapsulation.

3 Preliminaries

This section describes the HILA5 scheme and Fluhrer’s attack on RLWE schemes.
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3.1 The HILA5 scheme

We describe the scheme as given in [12, Section 4.9] but leave out formatting and
NTT conversions. These are used in the attack implementation to interface with
the reference implementation but do not contribute to the security and hamper
readability.

The major computations take place in the ring R = Zq[x]/(xn + 1), where
n = 1024 and q = 12289. Alice’s secret key is a small, random polynomial a ∈ R,
where small (here and in the following) means that the coefficients are chosen
from a narrow distribution around zero, more precisely the discrete binomial
distribution Ψ16 which has integer values in [−16, 16]. To compute the public
key she picks another small random polynomial e ∈ R and a random g ∈ R and
computes A = ga+ e. She publishes (g,A) and keeps a as her secret.

An honest Bob picks two random small polynomials b, e′ ∈ R and computes
B = gb+ e′ and y = Ab. Bob sends B to Alice. The second value

y = Ab = (ga+ e)b = gab+ eb ≈ gab

is very close to what Alice can compute using her secret:

x = aB = a(gb+ e′) = gab+ e′a ≈ gab,

because a, b, e, e′ are all small.
A simple rounding operation to achieve a shared secret, such as taking the top

bits of each coefficient, will induce differences between Alice’s and Bob’s version
with too high probability. For example, Bob could take k[i] = b2 y[i]/qc and Alice
could take k′[i] = b2x[i]/qc, where we use t[i] to denote the ith coefficient of
polynomial or vector t, but for indices with (gab)[i] ≈ 0 (or q/2) the error-terms
can cause the values to flip to a different bit, i.e., k[i] 6= k′[i]. For this rounding
operation, we call elements of {0, q/2} the “edges”, as these are the values for
which it is probable that errors occur.

This is why Bob sends a second vector, a binary reconciliation vector c, to
help Alice recover the same k as Bob. Basically, this means that the scheme
uses two pairs of edges. If y[i] was close to one edge of a certain pair, Bob
will choose the other pair of edges, so that Alice can still successfully recover
the shared secret. In previous work [11], the reconciliation vector achieves a
successful shared secret with high probability, as long as |x[i]− y[i]| < q/8.

HILA5 differs in how these reconciliation bits are computed. For each coeffi-
cient y[i] of y Bob computes k[i] = b2 y[i]/qc, c[i] ≡ b4 y[i]/qc mod 2, and

d[i] =

{
1 if |(y[i] mod bq/4e)− bq/8c| ≤ β
0 otherwise,

where β = 799. He then selects the first 496 positions i for which d[i] = 1 and
restarts with fresh b and e′ if there are fewer. Positions with d[i] = 1 are those for
which it is likely that Alice and Bob recover the same value. In other words, for
these indices the value (gab)[i] is likely to be far away from an edge, thus further
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reducing the probability of errors in the shared secret. (Note that the description
suggests to discard some positions if there are more than 496 such positions while
the code deterministically discards the later ones by setting d[j] = 0 for them.)

The encapsulation consists of B, d, c, and an extra part r described below;
here d covers the full n positions while c can be compressed to those positions i
where d[i] = 1.

Alice recovers the k[i] at the selected 496 positions by computing

k′[i] =
⌊
2 (x[i]− c[i] · bq/4e+ bq/8e mod q)/q

⌋
.

The HILA5 submission shows that k′[i] = k[i] with probability 1 − 2−36. Let k
(resp. k′) be the 496-bit string given by the concatenation of the k[i] (resp. k′[i]).

The role of r is not well described but the HILA5 design overview says that is
an encrypted encoding of a part of k. It is computed by splitting k as k = m‖z,
where m gets the first 256 bits and z the remaining 240 bits. HILA5 uses a
custom-designed error-correcting code XE5 that corrects at least 5 errors to
compute a 240-bit checksum s of m and then computes r = s ⊕ z, where ⊕
denotes bitwise addition (XOR).

Alice computes k′ = m′‖z′, the checksum s′ on m′, and applies the XE5 error
correction to m′, s′, z′ and r to correct m′ to m.

3.2 Fluhrer’s attack

The chosen-ciphertext attack on HILA5 that we are going to present is a variant
of the following attack against key reuse in RLWE-based key exchange protocols
presented by Fluhrer in 2016 [4]. This section assumes that Bob computes the
c[i] and k[i] in a way similar to the previous section. The d[i] were added in
HILA5 and will be considered in the next section.

Recall that Alice’s version of the shared secret key is

gab+ e′a,

where g is some large public generator element, a and b are Alice’s and Bob’s
small private keys, and e′ is a small noise vector chosen by Bob. This version
of the shared secret differs from Bob’s by some small error, hence they need to
employ a reconciliation mechanism to arrive at the same secret bit string.

The general strategy of an evil Bob is to artificially force one (say, the first)
coefficient of gab to be close to the edgeM between the intervals that are mapped
to bits 0 and 1 during reconciliation. An honest user would set the reconciliation
bit c[0] in that case, so Alice would use another mapping that is less likely to
produce an error; but evil Bob does not. Since evil Bob proceeds honestly except
for the first bit, he knows two possibilities for Alice’s key, hence he can query
Alice with one of these guesses and distinguish between 0 and 1 based on her
reaction. If we assume for the moment that evil Bob can choose, hence knows,
(gab)[0], this tells him that (e′a)[0] lies in a certain interval.

After a few queries using binary search with varying values for (gab)[0], evil
Bob knows the exact distance of (e′a)[0] from the edge, and if he sets e′ = 1, this
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distance is nothing but the first coefficient of Alice’s secret key a. Note that in
Fluhrer’s setting the edgeM is at zero and he uses b with (gab)[0] = 1, hence evil
Bob can just multiply that b by small distances to obtain a prescribed (gab)[0]
when searching for (e′a)[0]. In our adaptation of the attack to HILA5, this step
is more involved; see Section 4.2.

One could apply this method individually to each coefficient to extract Alice’s
full secret key. However, being able to recover the coefficient at one position is
enough: due to the structure of the underlying ring, evil Bob can shift the ith
coefficient of a into the constant term of e′a by setting e′ to −xn−i, i.e., a vector
with one entry of −1 and 0 elsewhere.

We now come back to the assumption made above. Notice that evil Bob
does not a priori know a vector b ∈ R such that (gab)[0] = 1, but he can still
reasonably guess one: Alice’s public key is ga+e for small vectors a and e, hence
if b is a small low-weight vector such that (b · (ga + e))[0] is close to 1, there is
a good chance that in fact (gab)[0] = 1. Thus, while evil Bob does not have a
deterministic method to find an “evil” b, he can still just make educated guesses
based on Alice’s public key until he finds one that works. Finding b ∈ R with
(b · (ga+ e))[0] close to 1 is an offline computation using only Alice’s public key;
testing for (gab)[0] = 1 requires interaction with Alice.

There are several follow-ups to Fluhrer’s paper, e. g. the recently posted [3],
but a small and new generalization of Fluhrer’s attack is sufficient to attack
HILA5.

4 Chosen-ciphertext attack on HILA5

In this section, we describe how we circumvent the error-correction code and
how to adapt Fluhrer’s attack to the HILA5 case.

4.1 Working around error correction

The HILA5 construction includes XE5 as an error-correcting code that is applied
to the shared secret after decapsulation. Both Alice and Bob compute their
version of a redundancy check, which will help Alice to correct up to 5 errors
in the shared secret. The redundancy part r is divided into ten subcodewords
r = r0, . . . , r9 of variable sizes. For the purpose of the attack, these sizes do not
matter, but we use the same notation Li for the size, as in the HILA5 paper.
This means we can index each ri = r(i,0) . . . r(i,Li−1) for i ∈ {0, . . . , 9}.

Bob first computes his part of the HILA5 encapsulation, i.e., he computes his
version of the shared secret, selects the indices that are safe to use by Alice and
computes the reconciliation vector. The last 240 bits of Bob’s shared secret are
used in XE5 error-correction. From these bits, Bob constructs his redundancy
check r′, and sends this as part of the ciphertext.

Upon receiving Bob’s ciphertext, Alice first computes her part of the HILA5
decapsulation, i.e., she computes her version of the shared secret. Then she
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computes her own redundancy check r and computes the distance r∆ with Bob’s
r′ from the ciphertext:

r∆ = r′ ⊕ r
To determine which bits in the shared secret are erroneous, Alice determines a
weight w∆k ∈ [0, 10] for each of the 256 bits by the following formula:

w∆k = r∆0,bk/16c +

9∑
j=1

r∆j,k mod Lj

Now, if a single bit k of Alice’s shared secret is flipped, it means w∆k = 10 [12,
Lemma 2], and it is therefore detectable and correctable by Alice. Moreover, it is
shown that XE5 corrects bit k as long as w∆k ≥ 6 [12, Theorem 1], which means
XE5 can correct at least 5 bits in the shared secret. This means that applying
Fluhrer’s original attack directly to HILA5 will not work, as Fluhrer’s original
attack depends crucially on the attacker’s ability to detect single-bit errors in
Alice’s version of the shared secret. Thus, to apply Fluhrer’s attack, we have to
work around these error-correction abilities.

In the attack described in the next section, we focus on inducing errors only
in the first bit k = 0 of the shared secret. This means the attacker evil Bob
needs to force w∆0 to be less than 6, as this means XE5 is no longer capable of
correcting the first bit. However, evil Bob needs to leave the remaining error-
correction in place, otherwise he still does not know if the first bit was the only
flipped bit. In order to do that, evil Bob needs to change his redundancy check
r′ to do exactly that. As w∆0 is obtained by summing up the first bits of the
subcodeword distances r∆i , he can flip any 5 of the bits labeled r′(0,0) through
r′(9,0) to force w∆0 < 6. Our attack flips the first 5 of these bits. This means in the
following section we consider the issue of error-correction solved and can directly
apply a modification of Fluhrer’s attack.

4.2 Details of the attack

This section elaborates evil Bob’s approach to recover Alice’s secret key. As
mentioned before, the general procedure mimics Fluhrer’s attack (Section 3.2).
The major steps are:

1. Guess a small low-weight secret b0 such that (gab0)[0] is at the edge M .
2. For each δ ∈ {−16, . . . , 16}, compute bδ such that (gabδ)[0] =M + δ.
3. For each target coefficient of Alice’s secret:

(a) Choose e′ such that (e′a)[0] is the target coefficient.
(b) Perform a binary search using the bδ to recover the target coefficient.

(Alice’s coefficient (gabδ + e′a)[0] maps to a 1 bit iff (−e′a)[0] > δ.)
4. If the results look “bad” after recovering a few coefficients in this way, the

guess for b0 was probably wrong and evil Bob should start over at step 1.

Note that for each oracle query, i.e., for every interaction with Alice, Bob pro-
ceeds honestly except for using specially crafted bδ and e′, setting d0 = c0 = 1,
and flipping a few bits in the error correction as described in Section 4.1. We
now explain and analyze the steps above in more detail.
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Forcing coefficients near the edge. In HILA5’s reconciliation mechanism,
there is no edge at zero for any choice of reconciliation bit, hence Fluhrer’s attack
does not apply without modifications. We chose to set the reconciliation bit c0
to 1 and attack the edge at

M = bq/8e = 1536.

To perform the binary search for Alice’s secret coefficients in the attack, we need
to find small low-weight vectors bδ such that

(gabδ)[0] =M + δ

for all δ with |δ| ≤ 16. (As mentioned in Section 3.2, Fluhrer’s evil Bob attacked
M = 0, thus he could guess b1 based on Alice’s public key and set bδ = δ · b1.)
One could of course try to guess each bδ individually based on Alice’s public key,
but as we want to get all bδ right at the same time, this has exponentially low
success probability. Instead, we make use of a special property of the M used in
HILA5: The inverse

M−1 mod q = −8
is small.4 Hence, as soon as evil Bob successfully guessed b0, he may simply set

bδ = (1 + δM−1 mod q) · b0.

In our case, we choose b0 with only two non-zero coefficients from {±1}, thus
bδ will have only two non-zero coefficients bounded by 1 + 8δ. This property
is necessary to make sure evil Bob can actually know what Alice’s version of
the shared secret will be (except for the target bit that leaks information): If
the coefficients of bδ are too large, the error eb− e′a between Alice’s and Bob’s
shared secrets becomes too large to recover from and their secrets will mismatch
no matter what the value of the attacked bit is. In theory, with these parameters
we still expect a tiny possibility of unintended errors, but this happens so rarely
that it is not an issue in practice. If it ever does occur, Bob can detect that his
recovered secret key is wrong and simply start over with a new b0.

When evil Bob chooses a random b0 with two non-zero coefficients in {±1}
and with (Ab0)[0] =M , the probability that in fact (gab0)[0] =M holds is just
the probability that two Ψ16-distributed values sum to zero:

32∑
i=0

(
32

i

)
2
/264 ≈ 9.9%,

hence he can expect to find a good b0 after about 10 tries. Since A can be
approximated by a uniformly distributed sequence over Zq, the expected number
of ±1-combinations of two coefficients of A which equal M is(

1024

2

)
· 4/q ≈ 170.

4 Note that this also holds for some other “natural” choices of M as rounded fractions
of q, but it is not automatically true for any conceivable M .
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Hence, the probability that evil Bob exhausts this pool of choices without finding
a good b0 is roughly 2−25.

(If this ever happens, then evil Bob can still try a larger interval, i.e., search
for b0 with |(Ab0)[0]−M | ≤ K for some small K. This would in theory work for
a wider range of keys, but the expected number of wrong guesses grows slightly.
One could also choose three non-zero coefficients in b0, although this increases
the chance of unintended errors in Alice’s shared secret. We have not had any
problems with K = 0 in practice.)

Detecting bad guesses. After choosing b0 based on Alice’s public key as
described above, evil Bob may just go ahead and try to recover Alice’s secret
key using that b0. If it is correct, he will of course find a sequence that looks like
it was sampled from the Ψ16 distribution. If b0 is bad, say, (gab0)[0] =M + γ for
some small γ 6= 0, then

(gabδ)[0] =M + δ + γ − 8δγ,

hence typically (gabδ)[0] is considerably smaller thanM if δ > 0 and considerably
larger if δ < 0; in both cases Alice’s secret (e′a)[0] is dominated by δ + γ − 8δγ,
which means the oracle output does not depend on the secret. This implies the
binary search will always converge to 0 or −1 when b0 is bad. (For δ = 0, the
behavior does depend on (e′a)[0] since γ is small, so both cases really occur.) Evil
Bob can detect this failure mode by determining a few coefficients and checking
whether all of them are in {0,−1}. If this is the case, evil Bob simply starts over
with a new b0. The probability that an actual secret key starts with a sequence
of k coefficients from {0,−1} is about 0.27k, hence setting k = 8 reduces the
probability of a false negative to roughly 2−15. There is a small probability of
false positives if evil Bob uses only this heuristic (e. g., when |γ| = 1), but this
can easily can be detected using statistical methods (the recovered sequence will
not be Ψ16-distributed) or by simply testing the obtained secret key in the end
and running the attack again if it failed. In practice the heuristic works fine.

The number of queries. Assuming we already have a good b0, the binary
search needs an expected 5 + ε queries to the oracle to recover one coefficient.5
Since evil Bob decides whether he has a good b0 based on the first few coeffi-
cients that he obtains using that b0, he usually wastes a few hundred queries on
guesses for b0 that turn out to be useless: If he looks at the first 8 coefficients
obtained from each b0 as suggested above, this adds expected ≈ 400 queries to
the 5120 needed to recover all the coefficients. In summary, evil Bob will with
overwhelming probability recover Alice’s secret key in less than 6000 queries.

Evil Bob can trade computation for a smaller number of queries: retrieve some
coefficients, and reduce the original lattice problem to low enough dimension to
solve by computation.
5 The ε arises from the fact that Ψ16 samples from 33 > 25 distinct values, but the
extremal values occur so rarely that ε ≈ 2−27.
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4.3 Implementation

We implemented a proof of concept of the attack in Python, reusing portions
of the HILA5 reference implementation via the ctypes library. The only modi-
fications we made to the reference implementation were making some functions
non-static to be able to call them from within Python, and adding extra pa-
rameters to the encapsulation function (not used by Alice) such that evil Bob
can override his private values b and e′. The complete attack script can be found
at https://helaas.org/hila5-20171218.tar.gz. As expected, we have never
observed the attack script failing to recover Alice’s key. The empirical number
of queries matches the theoretical prediction made above.

5 HILA5 security claims

In this section, we discuss our interpretation of security claims made by both
the paper and NIST submission of HILA5, which motivated this paper.

NIST does not require IND-CCA2 security for KEM and PKE submissions.
Instead it requires submissions to say whether they are aiming for IND-CCA2
security or merely for IND-CPA security.

IND-CPA security is adequate in the context of key exchange in TLS, if a new
public key is generated for each TLS session. For example, New Hope [2] appears
to be safe for use in TLS. New Hope does not aim for IND-CCA2 security, and
specifically warns against using a key more than once: “No key caching . . . it is
crucial that both parties use fresh secrets for each instantiation”.

We emphasize that our attack does not break the IND-CPA security of
HILA5. If HILA5 were clearly labeled as aiming merely for IND-CPA security
then our attack would merely be a cautionary note, showing the importance of
not reusing keys.

However, HILA5 went beyond claiming IND-CPA security. There are some
undefined words in the HILA5 security claims, but the most natural interpreta-
tion of the security claims is that the HILA5 PKE provides IND-CCA2 security.
There is certainly a high risk of the claims being interpreted in this way by poten-
tial users. Our attack shows that the HILA5 PKE does not provide IND-CCA2
security.

There is even a risk of users thinking that the HILA5 KEM is being claimed
to provide IND-CCA2 security.6 The HILA5 submission document does not say
that the HILA5 KEM security target is merely IND-CPA. Our attack shows that
the HILA5 KEM does not provide IND-CCA2 security.

We give four quotes from [12] to explain why the HILA5 security claims are
most naturally interpreted as claiming IND-CCA2 security for the HILA5 PKE.
We have not found anything in [12] or [13] indicating a different interpretation.

6 Adam Langley posted an online table of speeds for announced KEMs submitted to
NIST. He wrote “I only want to list CCA-secure KEMs here”. He listed HILA5, and
accepted a correction from the HILA5 author regarding the speed of HILA5. After
the correction, HILA5 had the fastest decapsulation in the entire table.
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[12, Section 1]: The HILA5 KEM can be adopted for public key encryp-
tion in straightforward fashion. We recommend using the AES-256-GCM
AEAD [FIP01, Dwo07] in conjunction with the KEM when public key
encryption functionality is desired.

The details of this “conjunction” are not formally defined. The most natural
interpretation is that this is the HILA5 PKE, using the session key produced by
the HILA5 KEM as the AES-GCM key.

[12, Section 4.1]: NIST requires at least IND-CPA [BDPR98] security
from a KEM scheme (Section 1.6). . . . The design also provides IND-
CCA secure KEM-DEM [CS03] public key encryption if used in conjunc-
tion with an appropriate AEAD [Rog02] such as NIST approved AES256-
GCM [FIP01, Dwo07]. These properties are derived from [Pei14].

This is a claim of IND-CCA security for a PKE. “IND-CCA” in the literature
usually means IND-CCA2, although sometimes it means merely IND-CCA1. The
PKE is not formally defined, but again the most natural interpretation is simply
that the session key produced by the HILA5 KEM is the AES-GCM key used
to encrypt a user-supplied plaintext. Our attack shows that this PKE does not
even provide IND-CCA1 security, let alone IND-CCA2 security.

Our attack does not work against what we call the HILA5FO PKE (see Sec-
tion 2.4), a more complicated PKE using the Fujisaki–Okamoto transformation.
This transformation is also mentioned in “[Pei14]” as a way to achieve IND-CCA
security. It is conceivable that the HILA5 submission was alluding to a PKE of
this type. However, this interpretation does not appear to be compatible with
the statement “Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC”
in [12, Section 6]; the HILA5FO ciphertext size is 32 bytes larger than this.

[12, Section 4.9]: For active security we suggest that K is used as key-
ing material for an AEAD (Authenticated Encryption with Associated
Data) [Rog02] scheme such as AES256-GCM [Dwo07, FIP01] or Keyak
[BDP+16] in order to protect message integrity.

Here “K” is defined as the session key produced by the HILA5 KEM. In the con-
text of KEMs and PKEs, “active security” is normally interpreted as IND-CCA2
security, although it might have other interpretations. The authentication in
AES-GCM prevents modifications to the message encrypted by AES-GCM, but
this is not enough to stop active attacks, since it does not protect the underlying
KEM.

[12, Section 6.1]: HILA5 is essentially drop-in compatible with current
public key encryption applications. There are no practical usage restric-
tions.

Security against chosen-ciphertext attacks is essential for a wide range of current
PKE applications, so this would appear to include a claim of CCA security for
the HILA5 PKE. However, our attack retrieves the secret key from the HILA5
PKE.
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