
FASTER ALGORITHMS TO FIND NON-SQUARES

MODULO WORST-CASE INTEGERS

DANIEL J. BERNSTEIN

Abstract. This paper presents two algorithms that, given an n-bit positive

integer m ∈ 1 + 8Z that is not a square, find an element of Z/m that is a non-
square or a nonzero non-unit. Under a standard conjecture, the first algorithm

takes time O(n(lgn)3 lg lgn). Under a new but plausible conjecture, the second

algorithm takes expected time O(n).

Consider the problem of finding a nonzero element of Z/m that is not a square
in (Z/m)∗, given an odd positive integer m that is not a square in Z: in other
words, finding an integer r that is not congruent to a square modulo m, or that has
a factor in common with m without being divisible by m.

There are two standard solutions to this problem. One is a randomized algorithm
that takes essentially linear expected time on, for example, a multitape Turing
machine. The other is a deterministic algorithm that, under a standard conjecture,
takes essentially quadratic time.

This paper presents an improved deterministic algorithm that, under the same
conjecture, takes essentially linear time; and an improved randomized algorithm
that, under a new but plausible conjecture, takes linear expected time.

In practice, people use—and should continue to use—the original deterministic
algorithm: its average time over typical distributions of m appears to be linear,
with a very small constant.

Strategy. One can trivially handle certain cases by inspecting a few bits of m. If
m ∈ 3 + 4Z then one can take r = −1. If m ∈ 5 + 8Z then one can take r = 2.

Assume, from now on, that m ∈ 1 + 8Z. Write n = dlgme.
The standard way to find r is to compute the Jacobi symbol of r modulo m for

various candidate r’s:

• If the Jacobi symbol is 0 or 1, try the next r.
• If the Jacobi symbol is −1, stop: r is a non-square modulo m.
• If the Jacobi symbol is undefined, stop: r is a nonzero non-unit modulo m.

Even better, the Jacobi-symbol computation has found a factor of m.

Schönhage’s fast-gcd algorithm in [7] computes the Jacobi symbol of two O(n)-bit
inputs in time O(n(lg n)2 lg lg n).

There are two popular sequences of candidate r’s, as described below.

Deterministic algorithms. One popular sequence is the sequence of odd primes:
try r = 3, then r = 5, then r = 7, then r = 11, etc. It is well known that the
Jacobi-symbol computation of r modulo m becomes simpler and faster when r is

Date: 20011220.
2020 Mathematics Subject Classification. Primary 11Y16.

The author was supported by the National Science Foundation under grant DMS–9970409.

1



2 DANIEL J. BERNSTEIN

small; see, e.g., the proof of [2, Theorem 7.8.2]. Most of the work is a single division,
computing m mod r.

How many r’s are needed? A standard conjecture is that the number of r’s is
n + o(n) for worst-case moduli m. See, e.g., [1] and [5].

If there are n Jacobi-symbol computations, and one Jacobi-symbol computation
takes time at least n, then the total time is at least n2, right? Wrong! One can
use the Moenck-Borodin multipoint-evaluation algorithm to compute m mod r for
many r’s simultaneously. If there are O(n) primes r, each having O(lg n) bits, then
this computation takes time O(n(lg n)3 lg lg n). See, e.g., [3, Theorem 3.4]. It is
easy to complete the Jacobi-symbol computations, and enumerate the primes in
the first place, within the same time bound.

It is already standard practice to compute m mod r for a few r’s simultaneously:
one reduces m modulo a single-word product of r’s, then reduces the result modulo
each r. See, e.g., [6, page 146]. The Moenck-Borodin algorithm uses the same idea
recursively on a larger scale.

Of course, for typical moduli m, the first few r’s suffice. One could try a smaller
set of primes r as a preliminary step. The prime 3 suffices for half of all moduli; it
can be tried in time O(n). The prime 5 suffices for half of the remaining moduli;
it can be tried in time O(n). The primes below (lg n)/ lg lg n suffice for most
moduli; they can all be tried together in time O(n), as explained below. The
primes below n/ lg n suffice for practically all moduli; they can be tried in total
time O(n lg n lg lg n).

Randomized algorithms. The other popular sequence of r’s is a sequence of
independent uniform random odd integers between 0 and m− 1; actually, between
0 and 2n−1, so that one can generate each candidate r by generating n−1 random
bits. This algorithm finds r in expected time O(n(lg n)2 lg lg n): there are at least
(m− 1)/4 ≥ 2n/8 qualifying values of r, so the expected number of Jacobi-symbol
computations is at most 4. (This is not the optimal constant.)

Even better, take r to be a uniform random odd integer between 0 and 2k − 1,
where k is much smaller than n; say k = 2 dlg ne. The bottleneck in the Jacobi-
symbol computation is then an n-bit-by-k-bit division, which takes time O(n) by an
adaptation of Kaminski’s algorithm in [4]. I conjecture that the expected number
of Jacobi-symbol computations is bounded.

I should add a table of numerical evidence for this conjecture. I should probably
explain Kaminski’s algorithm; my recollection is that Kaminski focused entirely on
the function-field case. Perhaps I should just tell people to select r as a sum of 10
random powers of 2, with exponents bounded by n/(lg n)3, although I have to be
a bit more careful with constants in this case to make the conjecture plausible.

References

[1] Eric Bach, Lorenz Huelsbergen, Statistical evidence for small generating sets, Mathematics

of Computation 61 (1993), 69–82. MR 93k:11089.
[2] Eric Bach, Jeffrey Shallit, Algorithmic number theory, volume 1: efficient algorithms, MIT

Press, Cambridge, Massachusetts, 1996. ISBN 0–262–02405–5. Available from http://www.

math.uwaterloo.ca/~shallit/ant.html.
[3] Daniel J. Bernstein, How to find small factors of integers, to appear, Mathematics of Com-

putation. Available from http://cr.yp.to/papers.html.

[4] Michael Kaminski, A linear time algorithm for residue computation and a fast algorithm for
division with a sparse divisor, Journal of the ACM 34 (1987), 968–984. MR 89f:68033.



FASTER ALGORITHMS TO FIND NON-SQUARES 3

[5] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Some results on pseudosquares, Math-

ematics of Computation 65 (1996), 361–372. MR 96e:11010.

[6] Hans Riesel, Prime numbers and computer methods for factorization, 2nd edition; Progress
in Mathematics 126, Birkhauser, Boston, 1994. ISBN 0817637435. MR 95h:11142.

[7] Arnold Schönhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1

(1971), 139–144.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-
versity of Illinois at Chicago, Chicago, IL 60607–7045

Email address: djb@cr.yp.to


