FASTER ALGORITHMS TO FIND NON-SQUARES
MODULO WORST-CASE INTEGERS

DANIEL J. BERNSTEIN

ABSTRACT. This paper presents two algorithms that, given an n-bit positive
integer m € 1+ 8Z that is not a square, find an element of Z/m that is a non-
square or a nonzero non-unit. Under a standard conjecture, the first algorithm
takes time O(n(Ign)3 lglgn). Under a new but plausible conjecture, the second
algorithm takes expected time O(n).

Consider the problem of finding a nonzero element of Z/m that is not a square
in (Z/m)*, given an odd positive integer m that is not a square in Z: in other
words, finding an integer r that is not congruent to a square modulo m, or that has
a factor in common with m without being divisible by m.

There are two standard solutions to this problem. One is a randomized algorithm
that takes essentially linear expected time on, for example, a multitape Turing
machine. The other is a deterministic algorithm that, under a standard conjecture,
takes essentially quadratic time.

This paper presents an improved deterministic algorithm that, under the same
conjecture, takes essentially linear time; and an improved randomized algorithm
that, under a new but plausible conjecture, takes linear expected time.

In practice, people use—and should continue to use—the original deterministic
algorithm: its average time over typical distributions of m appears to be linear,
with a very small constant.

Strategy. One can trivially handle certain cases by inspecting a few bits of m. If
m € 3 + 47 then one can take r = —1. If m € 5 + 8Z then one can take r = 2.
Assume, from now on, that m € 1+ 8Z. Write n = [lgm].
The standard way to find r is to compute the Jacobi symbol of » modulo m for
various candidate 7’s:

e If the Jacobi symbol is 0 or 1, try the next r.
e If the Jacobi symbol is —1, stop: r is a non-square modulo m.
e If the Jacobi symbol is undefined, stop: r is a nonzero non-unit modulo m.
Even better, the Jacobi-symbol computation has found a factor of m.
Schonhage’s fast-ged algorithm in [7] computes the Jacobi symbol of two O(n)-bit
inputs in time O(n(lgn)?1glgn).
There are two popular sequences of candidate r’s, as described below.

Deterministic algorithms. One popular sequence is the sequence of odd primes:
try r = 3, then r = 5, then » = 7, then » = 11, etc. It is well known that the
Jacobi-symbol computation of » modulo m becomes simpler and faster when r is

Date: 20011220.
2020 Mathematics Subject Classification. Primary 11Y16.
The author was supported by the National Science Foundation under grant DMS—-9970409.

1



2 DANIEL J. BERNSTEIN

small; see, e.g., the proof of [2, Theorem 7.8.2]. Most of the work is a single division,
computing m mod r.

How many r’s are needed? A standard conjecture is that the number of 7’s is
n + o(n) for worst-case moduli m. See, e.g., [1] and [5].

If there are n Jacobi-symbol computations, and one Jacobi-symbol computation
takes time at least n, then the total time is at least n2, right? Wrong! One can
use the Moenck-Borodin multipoint-evaluation algorithm to compute m mod r for
many r’s simultaneously. If there are O(n) primes r, each having O(lgn) bits, then
this computation takes time O(n(lgn)3lglgn). See, e.g., [3, Theorem 3.4]. It is
easy to complete the Jacobi-symbol computations, and enumerate the primes in
the first place, within the same time bound.

It is already standard practice to compute m mod r for a few r’s simultaneously:
one reduces m modulo a single-word product of 7’s, then reduces the result modulo
each 7. See, e.g., [6, page 146]. The Moenck-Borodin algorithm uses the same idea
recursively on a larger scale.

Of course, for typical moduli m, the first few r’s suffice. One could try a smaller
set of primes r as a preliminary step. The prime 3 suffices for half of all moduli; it
can be tried in time O(n). The prime 5 suffices for half of the remaining moduli;
it can be tried in time O(n). The primes below (lgn)/lglgn suffice for most
moduli; they can all be tried together in time O(n), as explained below. The
primes below n/lgn suffice for practically all moduli; they can be tried in total
time O(nlgnlglgn).

Randomized algorithms. The other popular sequence of r’s is a sequence of
independent uniform random odd integers between 0 and m — 1; actually, between
0 and 2™ — 1, so that one can generate each candidate r by generating n — 1 random
bits. This algorithm finds r in expected time O(n(lgn)?1glgn): there are at least
(m —1)/4 > 2™ /8 qualifying values of r, so the expected number of Jacobi-symbol
computations is at most 4. (This is not the optimal constant.)

Even better, take r to be a uniform random odd integer between 0 and 2¥ — 1,
where k is much smaller than n; say k& = 2 [lgn]. The bottleneck in the Jacobi-
symbol computation is then an n-bit-by-k-bit division, which takes time O(n) by an
adaptation of Kaminski’s algorithm in [4]. T conjecture that the expected number
of Jacobi-symbol computations is bounded.

I should add a table of numerical evidence for this conjecture. I should probably
explain Kaminski’s algorithm; my recollection is that Kaminski focused entirely on
the function-field case. Perhaps I should just tell people to select r as a sum of 10
random powers of 2, with exponents bounded by n/(Ign)?, although I have to be
a bit more careful with constants in this case to make the conjecture plausible.

REFERENCES

[1] Eric Bach, Lorenz Huelsbergen, Statistical evidence for small generating sets, Mathematics
of Computation 61 (1993), 69-82. MR 93k:11089.

[2] Eric Bach, Jeffrey Shallit, Algorithmic number theory, volume 1: efficient algorithms, MIT
Press, Cambridge, Massachusetts, 1996. ISBN 0-262—-02405-5. Available from http://wuw.
math.uwaterloo.ca/"shallit/ant.html.

[3] Daniel J. Bernstein, How to find small factors of integers, to appear, Mathematics of Com-
putation. Available from http://cr.yp.to/papers.html.

[4] Michael Kaminski, A linear time algorithm for residue computation and a fast algorithm for
division with a sparse divisor, Journal of the ACM 34 (1987), 968-984. MR 89f:68033.



FASTER ALGORITHMS TO FIND NON-SQUARES 3

[5] Richard F. Lukes, C. D. Patterson, Hugh C. Williams, Some results on pseudosquares, Math-
ematics of Computation 65 (1996), 361-372. MR 96e:11010.

[6] Hans Riesel, Prime numbers and computer methods for factorization, 2nd edition; Progress
in Mathematics 126, Birkhauser, Boston, 1994. ISBN 0817637435. MR 95h:11142.

[7] Arnold Schonhage, Schnelle Berechnung von Kettenbruchentwicklugen, Acta Informatica 1
(1971), 139-144.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-
VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045
Email address: djb@cr.yp.to



