
A SECURE PUBLIC-KEY SIGNATURE SYSTEM

WITH EXTREMELY FAST VERIFICATION

DANIEL J. BERNSTEIN

Abstract. This paper presents a variant of the Rabin-Williams public-key

signature system. The new system offers the same security and signing speed

but much faster verification. Generic attacks against this system are provably
as difficult as factorization.

1. Introduction

This paper establishes a new speed record for signature verification in RSA-type
public-key signature systems.

The signature system introduced here is a variant of the Rabin-Williams system,
which held the speed record for two decades. The systems have the same key size,
security, and signing speed.

A signature in this system takes more space than a Rabin-Williams signature:
it is, in fact, a Rabin-Williams signature with some extra information attached. A
receiver can discard the extra information to save space, and regenerate the extra
information later. See Figure 1.

In each of these systems, the public key is an integer. An attacker can break
the system if he can factor the integer into primes. This paper restricts attention
to 1536-bit public keys, i.e., integers between 21535 and 21536. If it ever becomes
practical to factor keys of this size, users will have to move to larger keys, making
appropriate modifications in the details of the system.

This system, like the Rabin-Williams system, has the best security guarantee
known for any RSA-type system: if an attacker can quickly forge signatures under
an arbitrary hash function, then the attacker can quickly factor public keys. See
section 6. Beware, however, that many specific hash functions are breakable.

2. Keys

A secret key is a pair of prime numbers (p, q) such that p mod 40 = 3, q mod
40 = 7, 4 · 2765 < p < 5 · 2765, and 2800π < pq < 2800(π + 1). Here π ≈ 2.16 · 10221

is the integer obtained by writing the first 222 digits of π in reverse order; in
hexadecimal it is

9949AB0B 00D505ED 84F87BF4 6E10D628 5C86E943 7729912B DDD99955

B3877272 B6D65463 1772C6BE F62755DC 39DBB3A3 47D512C4 71838883 72BE4B91

59883460 B03ECBF4 88DAFE8B 6E49454C 010C23FE C6F682E4 9E241C1A 28E0B6F5.

Date: 20000809.
2000 Mathematics Subject Classification. Primary 94A60; Secondary 11Y16.

The author was supported by the National Science Foundation under grant DMS–9600083.

1

2 DANIEL J. BERNSTEIN

Message hash r, h
64 bytes

!!

Secret key p, q

��

''
Compressed signature r, h, f, s

257 bytes

!!
Public key pq

192 bytes

��
**

''
Signature r, h, f, s, t

449 bytes

[[

%%Compressed public key
100 bytes

OO

Verified signature

Figure 1. Data flow in the signature system.

The following procedure seems to generate a random secret key with a nearly
uniform distribution. Generate a uniform random number p between 4 · 2765 and
5 ·2765 satisfying p mod 40 = 3; repeat until p is prime. Generate a uniform random
number q between

⌈
2800π/p

⌉
and

⌊
2800(π + 1)/p

⌋
satisfying q mod 40 = 7; repeat

until q is prime.
I check whether p is prime by the following combination of tests:

• Compute p mod r for all primes r < 100. If p mod r = 0 then p is composite.
• Compute 2(p−1)/2 mod p. If the result is anything other than 1 or p− 1 then
p is composite.

• Find the first integer b ≥ 3 such that the Jacobi symbol of b2 − 4 modulo p
is −1. In the ring (Z/p)[x]/(x2 − bx + 1) compute x(p+1)/2. If the result is
anything other than 1 or p− 1 then p is composite. (In this application, b is
always 3, since p mod 5 ∈ {2, 3}.)

There is no known example of a composite number p that slips past all of these
tests; I am confident that nobody will ever find one by accident. For motivation
see, e.g., [18, section 10]. See [6, chapter 9] and [17] for some practical methods to
prove that p is prime. Beware that the techniques of [17] do not apply to q.

Public keys. The public key corresponding to (p, q) is the product pq. This
product is between 21535 and 21536.

There is no known practical algorithm that will compute pq 7→ (p, q) with non-
negligible probability. The number field sieve needs roughly 2100 operations to find
p and q; see [13]. Presumably the attacker does not have this much time, so he will
instead use Lenstra’s elliptic curve method, which has a tiny chance of discovering
p and q after a small amount of computation; see [14]. If he can afford 280 such
computations then his chance of success is still below 2−40.

Compressed public keys. One can recover pq from pq mod 2800 as follows: pq =
2800π + (pq mod 2800). Consequently one can store and transmit pq in only 100
bytes.

PUBLIC-KEY SIGNATURE SYSTEM WITH EXTREMELY FAST VERIFICATION 3

The idea of prespecifying some bits of public keys to save space was patented by
Vanstone and Zuccherato in 1994. Fortunately, the patent is invalid, because the
idea had been published years before. See, e.g., [10, page 467].

One might object to the requirement that π be used in every public key: there
could be an exceptionally fast factorization algorithm for numbers containing that
bit pattern. This objection is fundamentally flawed. Any particular number pq is
instantaneously factored by the algorithm “print p and q”—but how is an attacker
supposed to find that algorithm? Church’s thesis states that the attacker’s behavior
is simulated by some predetermined probabilistic algorithm A; the crucial question
is whether that algorithm succeeds against a randomly generated pair (p, q). Define
α as the probability that A succeeds against a pair (p, q) with 21535 < pq < 21536,
and define β(t) for 2735 < t < 2736 as the conditional probability that A succeeds
when

⌊
pq/2800

⌋
= t. Then α is the average of β(t), weighted by the distribution of

t, which is nearly uniform. Consequently there cannot be a noticeable fraction of
t’s for which β(t) is much larger than α. It would be a cosmic conspiracy beyond
belief for the choice t = π to be especially bad.

3. Signatures

The signature system is parametrized by (1) a set X of messages and (2) a hash
function H :

{
r ∈ Z : 0 ≤ r < 2256

}
×X →

{
h ∈ Z : 0 < h < 21531, h mod 8 = 1

}
.

Let n be a public key. A signature of m under n is a vector of integers
(r, h, f, s, t) such that 0 ≤ r < 2256, h = H(r,m), f ∈ {−2,−1, 1, 2}, 0 ≤ s < 21536,
0 ≤ t < 21536, and s2 = tn+ fh.

Each message has many signatures. Signers are required to follow certain rules
in generating signatures; some signatures must not be generated even though they
will be accepted by verifiers. See section 4 for the complete signing procedure and
section 6 for a security analysis.

Verifying signatures. Let m be a message, and let r, h, f, s, t be integers with
0 ≤ r < 2256, 0 ≤ h < 21531, f ∈ {−2,−1, 1, 2}, 0 ≤ s < 21536, and 0 ≤ t < 21536.
Define c = s2 − tn − fh. Checking that (r, h, f, s, t) is a signature of m under n
means checking that h = H(r,m) and that c = 0.

One way to check whether c = 0 is to check whether c is divisible by a small secret
prime. Consider, for example, prime numbers between 2114 and 2115 congruent to
2 modulo 5; there are more than 40 · 2100 such primes. If c 6= 0 then c cannot be
divisible by more than 26 of these primes, since |c| < 23072; so the chance that a
uniform random prime will divide c is below 2−100. This possibility can be safely
ignored.

So choose a prime u; compute s′ = s mod u, t′ = t mod u, n′ = n mod u, and
h′ = h mod u; finally compute ((s′)2 − t′n′ − fh′) mod u. The result is c mod u: it
is zero if c = 0, and it is practically guaranteed to be nonzero if c 6= 0.

Note that the same prime u can be used to check many signatures. If part of h
is determined by the hash function H then that part can be precomputed mod u.
Similarly, n′ can be saved if there are several signatures to check under the same
public key n.

It may be inconvenient for the verifier to store a secret random prime. An
alternative is to simply compute c and verify that c = 0; or to verify that c is
divisible by a set of moduli whose least common multiple exceeds a computed
bound on |c|. The moduli can be selected to support fast division.

4 DANIEL J. BERNSTEIN

Software to perform these computations, using the techniques explained in [5],
is available from http://cr.yp.to/sigs.html.

Compressed signatures. A compressed signature of m under n is a vector
(r, h, f, s) such that (r, h, f, s, t) is a signature of m under n for some t.

Let m be a message, and let r, h, f, s be integers with 0 ≤ r < 2256, 0 ≤ h < 21531,
f ∈ {−2,−1, 1, 2}, and 0 ≤ s < 21536. There are several good ways to compute
an integer t such that s2 − fh = tn if and only if s2 − fh is divisible by n. Then
(r, h, f, s) is a compressed signature of m under n if and only if (r, h, f, s, t) is a
signature of m under n.

Signatures can be compressed further: one can recover (r, h, f, s) from (r, s).
Bellare and Rogaway in [4, section 6] suggested a different method of signature
randomization in which signatures can be compressed to simply s; but their method
is incompatible with fast verification.

A typical hash function. In my software, messages are strings of bytes, and H
is defined as follows. Feed (r,m) through Merkle’s Snefru-8/256 (see [16]), little-
endian, to obtain an integer z with 0 ≤ z < 2256. Then H(r,m) = 2320e+ 264z+ 1.
Here e ≈ 9.07 · 10363 is the integer obtained by writing the first 364 digits of exp 1
in reverse order; in hexadecimal it is

20EC2CF 9A875185 23FE3A9D 2F0146A5 91B19A5B 1D9B5799

AB577BA7 D2CF9561 A90606F1 48BC9CDB 98BFBAD3 27663C51 56C5EC8F DAF79AB5

7BC4FA99 5083FB9D EEF66C84 10F54365 DA041484 817305DD 16A6294E 28980AD7

C3D172C9 D0454CAD A219FC7B A0A5E47F B16FDAD7 7A4E33A3 9E673D5B F932E1F1

210405D4 CC46B9E3 EEDFDA4E 043D1196 81144131 4ECE679B 97D28C87 6467D34C.

One can compress H(r,m) to the 32-byte value z. Figure 1 assumes implicitly that
this is done.

Notes. Rivest, Shamir, and Adleman in [21] proposed the signature equation sk ≡
h (mod pq), with public key (pq, k); here k is a randomly chosen integer coprime
to (p − 1)(q − 1). Knuth in [12, page 388] proposed the much more easily verified
equation s3 ≡ h (mod pq). Rabin in [20] proposed s2 ≡ h (mod pq). But what if
h is not a square modulo pq? Rabin suggested trying a new r. Williams in [22]
suggested the answer used above: require p mod 8 = 3 and q mod 8 = 7, and then
allow s2 ≡ fh (mod pq) with f ∈ {−2,−1, 1, 2}.

In March 1997 on sci.crypt I suggested providing t = (s2 − fh)/pq as part of
the signature. This makes verification much easier with no effect on security. The
new signature equation s2 = tn+ fh is a ring equation; testing a ring equation by
mapping it to a random quotient ring is a standard technique, as is proving a ring
equation by mapping it to enough quotient rings.

Rabin in [19] pointed out that the choice of hash function H is crucial for security.
For example, given n, an attacker must not be able to find (m, r, s) with s2 mod n =
H(r,m); otherwise (r,H(r,m), 1, s, (s2 −H(r,m))/n) is an unauthorized signature
of m. The original RSA system was blatantly insecure: the set of messages was
{0, 1, . . . , pq − 1}, and H(r,m) was simply m.

See [11, page 13] and [10] for more examples of hash functions. Some hash
functions allow compression of m (“message recovery”) given h.

PUBLIC-KEY SIGNATURE SYSTEM WITH EXTREMELY FAST VERIFICATION 5

4. Standard signatures

Let m be a message, and let n be a public key. A standard signature of m
under n is a vector of integers (r, h, f, s, t) such that

• 0 ≤ r < 2256,
• h = H(r,m),
• s2 = tn+ fh,
• n/2 < s ≤ n,
• either s or −s (not both!) is a square modulo n, and
• f is the first integer in the sequence 1, 2,−1,−2 such that fh is a square

modulo n.

Observe that if (r, h, f, s, t) is a standard signature of m under n then it is also a
signature of m under n.

The security analysis in section 6 assumes that (1) the signer always generates
standard signatures and (2) the signer chooses a uniform random r for each message
to be signed. Algorithm S achieves these results.

The requirement to generate standard signatures must not be violated under any
circumstances. No guarantees are provided for signers who generate nonstandard
signatures.

In contrast, non-uniform choices of r are not a disaster; even if r is always chosen
as 0, one can combine my proof in section 6 with the Bellare-Rogaway proof in [4,
section 3] to prove a security guarantee similar to Theorem 6.1. However, the
guarantee in Theorem 6.1 is quantitatively stronger. The advice to randomize r is
due to Rabin in [20].

Algorithm S. Given a message m, a secret key (p, q), the public key n = pq, and
integers x, y with xp+ yq = 1, to compute a signature of m under n:

1. Choose a uniform random r ∈
{

0, 1, . . . , 2256 − 1
}

.
2. Compute h← H(r,m).
3. If the Legendre symbol of h modulo q is −1, set e← −1; otherwise set e← 1.
4. If the Legendre symbol of eh modulo p is −1, set f ← 2e; otherwise set f ← e.
5. (Now fh is a square modulo n.) Set a← fh.
6. Compute c← yq(a(p+1)/4 mod p) + xp(a(q+1)/4 mod q) mod n.
7. If c > n/2, set s ← c; otherwise set s ← n − c. (Now s2 ≡ a (mod n), and
n/2 < s ≤ n.)

8. Compute t← (s2 − a)/n.
9. Print (h, f, s, t).

Theorem 4.1. Algorithm S prints a standard signature of m under n.

Proof. By the definition of secret key, p mod 8 = 3 and q mod 8 = 7. Conclusions:
−1 is not a square modulo q; 2 is a square modulo q; 2 is not a square modulo p.

If e = 1 then h is a square modulo q so 2h is a square modulo q. If f = 1 then
h is a square modulo p, hence modulo n. If f = 2 then h is a nonsquare modulo p,
hence modulo n; but 2h is a square modulo p, hence modulo n.

If e = −1 then h and 2h are nonsquares modulo q, hence modulo n. On the
other hand, −h and −2h are squares modulo q. If f = −1 then −h is a square
modulo p, hence modulo n. If f = −2 then −h is a nonsquare modulo p, hence
modulo n; but −2h is a square modulo p, hence modulo n.

Therefore a = fh is a square modulo n. Select a square root b.

6 DANIEL J. BERNSTEIN

By construction c2 ≡ a (mod p). Indeed, xp ≡ 0, and yq = 1 − xp ≡ 1, so
c ≡ a(p+1)/4 ≡ b(p+1)/2; thus c2 ≡ bp+1 ≡ b2 ≡ a.

By the same argument c2 ≡ a (mod q); so c2 ≡ a (mod n). Thus s2 ≡ a
(mod n), so t is an integer, and s2 = tn+ a = tn+ fh. By construction 0 ≤ c < n,
so n/2 ≤ s ≤ n.

Finally, c is a square modulo p and modulo q, hence modulo n. Note that h is
not divisible by n, so c 6≡ −c (mod n). If c 6≡ −c (mod p) then −c is a nonsquare
modulo p, hence modulo n; otherwise c 6≡ −c (mod q) so −c is a nonsquare modulo
q, hence modulo n.

5. Squares

This section is a prelude to the security analysis in section 6. It shows how an
attacker can carry out various tasks involving a public key n, without being given
the factorization of n.

A hash value is an integer h with 0 < h < 21531 and h mod 8 = 1. A scribble
under n is a vector of integers (h, f, s, t) such that

• h is a hash value,
• s2 = tn+ fh,
• n/2 < s ≤ n,
• either s or −s is a square modulo n, and
• f is the first integer in the sequence 1, 2,−1,−2 such that fh is a square

modulo n.

Thus (r, h, f, s, t) is a standard signature of m under n if and only if 0 ≤ r < 2256,
h = H(r,m), and (h, f, s, t) is a scribble under n.

Algorithm V generates a uniform random hash value h. At the same time it
generates (f, s, t) such that (h, f, s, t) is a scribble modulo n.

Algorithm W generates a uniform random hash value h. At the same time it
generates auxiliary information so that a signature involving h determines a square
root modulo n of a given number y.

Algorithm H. Given a public key n and a square a modulo n with 0 ≤ a < n:

1. Compute an integer z such that 2z ≡ a (mod n).
2. Find f ∈ {−2,−1, 1, 2} such that (2/f)z mod n is a hash value. If no such f

exists, proclaim failure and stop.
3. Set h← (2/f)z mod n. (Now fh is a square modulo n.)
4. If gcd {h, n} = 1, go to step 6.
5. (Since h is a hash value, it is not divisible by n; so it has a nontrivial factor in

common with n.) Use h to factor n. Check, as in Algorithm S, whether f is
the first integer in the sequence 1, 2,−1,−2 such that fh is a square modulo
n. If not, proclaim failure and stop.

6. Print (h, f).

Theorem 5.1. Algorithm H prints (h, f) if and only if (1) h is a hash value; (2)
f is the first integer in the sequence 1, 2,−1,−2 such that fh is a square modulo n;
and (3) a = fh mod n.

Proof. Say Algorithm H prints (h, f). Step 2 selects f so that h is a hash value in
step 3. Also fh ≡ 2z ≡ a (mod n), so fh is a square modulo n. If gcd {h, n} = 1
then f is the only integer in {1, 2,−1,−2} such that fh is a square modulo n; if

PUBLIC-KEY SIGNATURE SYSTEM WITH EXTREMELY FAST VERIFICATION 7

gcd {h, n} 6= 1 then step 7 checks whether f is the first integer in 1, 2,−1,−2 such
that fh is a square modulo n.

Conversely, say (h, f) is a pair satisfying the stated conditions. Then f is found
in step 2 of Algorithm H, since there cannot be two hash values among z mod
n, 2z mod n,−z mod n,−2z mod n; and h is found in step 3. Algorithm H will not
fail in step 5, since f is the first integer in 1, 2,−1,−2 such that fh is a square
modulo n.

Algorithm U. Given a public key n, to print a uniform random square modulo
n:

1. Generate a uniform random integer x ∈
{

0, 1, . . . , 21536 − 1
}

.
2. If x ≥ n, go back to step 1.
3. If x = 0, print 0 and stop.
4. Generate a uniform random bit. If it is 0, go back to step 1.
5. If gcd {x, n} > 1, print x2 mod n and stop.
6. Generate a uniform random bit. If it is 0, go back to step 1.
7. Print x2 mod n and stop.

Theorem 5.2. Algorithm U prints a uniform random square modulo n.

Proof. Consider a square c modulo n. If c ≡ 0 then c has one square root, namely
0; step 1 sets x ← 0 with probability 1/21536, at which point step 3 will print c.
If c is nonzero but divisible by p or q then c has two square roots; step 1 sets x
to a square root of c with probability 2/21536, and step 4 allows x to pass with
conditional probability 1/2, at which point step 5 will print c. If c is coprime to n
then c has four square roots; step 1 sets x to a square root of c with probability
4/21536, and steps 4 and 6 allow x to pass with conditional probability 1/4, at
which point step 7 will print c. To summarize: Each invocation of step 1 leads to
the algorithm printing c with probability 1/21536, no matter what c is.

Algorithm V. Given a public key n, to print a uniform random scribble under n:

1. Generate a uniform random square c modulo n by Algorithm U.
2. If c > n/2, set s← c; otherwise set s← n− c.
3. Compute (h, f) from s2 mod n by Algorithm H. If Algorithm H fails, go back

to step 1.
4. Compute t← (s2 − fh)/n.
5. Print (h, f, s, t).

Theorem 5.3. Algorithm V prints a uniform random scribble under n.

Proof. By construction n/2 < s ≤ n. By Theorem 5.1, h is a hash value, f is the
first integer in the sequence 1, 2,−1,−2 such that fh is a square modulo n, and
s2 ≡ fh mod n; so t is an integer and s2 = tn + fh. Exactly one of s and −s is a
square modulo n, as in Theorem 4.1. Thus the output of Algorithm V is a scribble
under n.

Now consider any scribble (h′, f ′, s′, t′). By definition exactly one of s′ and −s′
is a square modulo n. I claim that Algorithm V prints (h′, f ′, s′, t′) if and only if, in
step 1, c is that square. Each square modulo n is generated with equal probability,
so each scribble is generated with equal probability.

Proof of the claim: If c ≡ ±s′, then s must equal s′ in step 2; thus f ′h′ ≡ s2

(mod n), so (h, f) = (h′, f ′) by Theorem 5.1; and t = t′ in step 4. Conversely, if
s = s′, then certainly c ≡ ±s′.

8 DANIEL J. BERNSTEIN

Theorem 5.4. The map (h, f, s, t) 7→ h is a bijection from scribbles under n to
hash values.

Proof. Injectivity: Consider two scribbles (h, f, s, t) and (h, f ′, s′, t′).
By assumption f is the first integer in the sequence 1, 2,−1,−2 such that fh is

a square modulo n, and f ′ is the first integer in the sequence 1, 2,−1,−2 such that
f ′h is a square modulo n, so f = f ′.

By assumption s ≡ ±u2 (mod n) for some integer u. Write a = fh and c =
a(pq−p−q+5)/8 mod n. Then u2 ≡ c (mod n): indeed, u2 ≡ up+1 ≡ a(p+1)/4 ≡ c
(mod p), and similarly for q. Hence s ≡ ±c (mod n). If c > n/2 then s = c since
n/2 < s < n; otherwise s = n− c since n/2 < s < n. The same logic applies to s′,
so s′ = s.

Finally t′n = s2 − fh = tn.
Surjectivity: Given h, construct f, s, t as in Theorem 4.1.

Algorithm W. Given a public key n, and an integer y coprime to n that is a
square modulo n:

1. Generate a uniform random square w modulo n by Algorithm U.
2. Compute (h, f) from w2y mod n by Algorithm H. If Algorithm H fails, go

back to step 1.
3. Print (h, f, w).

Theorem 5.5. Algorithm W prints (h, f, w) where h is a uniform random hash
value, f is the first integer in the sequence 1, 2,−1,−2 such that fh is a square
modulo n, and fh ≡ w2y (mod n).

Proof. By Theorem 5.1, h is a hash value, f is the right integer, and fh ≡ w2y
(mod n).

There is a square root x of y modulo n such that x is a square modulo n. Write
c = wx mod n. Then c is a uniform random square modulo n, with c2 mod n =
w2y mod n, so the distribution of (h, f) in step 2 of Algorithm W is the same as
the distribution of (h, f) in step 3 of Algorithm V. By Theorem 5.3, h is uniformly
distributed.

Notes. Algorithm V is reasonably fast. There are 21528 hash values, and therefore
21528 choices of c that succeed in step 1, out of about n/4 squares modulo n. Thus
step 1 is repeated about n/21530 < 64 times on average. Similar comments apply
to Algorithm W.

In practice it is safe to assume that a uniform random 1536-bit number will
not have any factors in common with n. One can therefore skip steps 4 and 5 of
Algorithm H and steps 3 through 6 of Algorithm U.

6. Security

The point of this section is that, unless H has some exploitable structure, the
attacker’s only hope is to factor the public key n. More precisely: if there is
an efficient generic algorithm to forge signatures under n—i.e., an algorithm that
works with most hash functions H—then there is an efficient algorithm to compute
a square root of any given square modulo n.

The threat model considered here is an adaptive chosen-message attack. The
attacker supplies a message to the user; the user publishes a standard signature of

PUBLIC-KEY SIGNATURE SYSTEM WITH EXTREMELY FAST VERIFICATION 9

the message. The attacker repeats this process any number of times. He then
attempts to sign a different message.

Generic attacks. A generic adaptive chosen-message attack is an algorithm
A using two oracles: a hashing oracle and a signing oracle. The input to A is
a public key n.

Let H be a hash function. The user’s hashing oracle for H prints H(x) given
x. The user’s signing oracle for H is Algorithm S: given a message m, it prints a
standard signature (r, h, f, s, t) for m under n, where r is a uniform random element
of

{
0, 1, . . . , 2256 − 1

}
generated independently for each oracle query.

By definition A is successful if it prints a vector (r,m, h, f, s) such that

• r is in
{

0, 1, . . . , 2256 − 1
}

,
• m is a message that was not a query to the signing oracle,
• (r,m) was a query to the hashing oracle, with output h,
• f is in {−2,−1, 1, 2}, and
• s is an integer such that s2 ≡ fh (mod n).

The generic success probability of A is the probability that A is successful for
a random public key n, given the user’s hashing and signing oracles for a uniform
random hash function H.

How to compute square roots. Let A be a generic adaptive chosen-message
attack. Here is an algorithm A′ that, given an integer y coprime to n and known
to be a square modulo n, attempts to compute a square root of y modulo n.

The idea of A′ is to run A with oracles that simulate the behavior of Algorithm S
with a uniform random hash function H. The oracles build a dictionary D mapping
pairs (r,m) to scribbles (h, f, s, t), and a second dictionary E mapping pairs (r,m)
to vectors (h, f, w). Initially both dictionaries are empty.

The attacker’s signing oracle handles a query m as follows. Generate a
uniform random element r of

{
0, 1, . . . , 2256 − 1

}
. If (r,m) is in E, abort. If (r,m)

is in D, print (r, h, f, s, t) where (h, f, s, t) = D(r,m). Otherwise generate a scribble
(h, f, s, t) with Algorithm V, set D(r,m)← (h, f, s, t), and print (r, h, f, s, t).

The attacker’s hashing oracle handles a query (r,m) as follows. If (r,m) is in
D, look up (h, f, s, t) = D(r,m), and print h. If (r,m) is in E, look up (h, f, w) =
E(r,m), and print h. Otherwise generate a vector (h, f, w) with Algorithm W, set
E(r,m)← (h, f, w), and print h.

If A succeeds then A′ finds a square root of y as follows. Consider the vector
(r,m, h, g, s) printed by A. By assumption (r,m) was a query to the hashing oracle,
and m was not a query to the signing oracle, so (r,m) must be in E. By assumption
the hashing oracle printed h given (r,m), so E(r,m) = (h, f, w) for some f, w.
Now w2y ≡ fh with f ∈ {−2,−1, 1, 2} by Theorem 5.5, and s2 ≡ gh with g ∈
{−2,−1, 1, 2} by assumption. If h has a nontrivial factor in common with n then
A′ finds a square root of y as in Algorithm S. Otherwise the squares fh and gh
must be equal, so w2y ≡ s2, and w is coprime to n; so A′ finds a square root of y
by computing w−1s mod n.

Theorem 6.1. If A performs at most L hashing queries and at most M signing
queries, then A′ prints a square root of y with probability at least ε − 2−256LM
where ε is the generic success probability of A.

Proof. When A is run with the user’s oracles for a uniform random hash function
H, the probability of a collision—i.e., of the signing oracle generating r such that

10 DANIEL J. BERNSTEIN

(r,m) was a previous hashing query—is at most 2−256LM . Therefore there is
probability at least ε− 2−256LM that A succeeds without collisions.

In the absence of collisions, the attacker’s oracles produce any particular sequence
of results with the same conditional probability as the user’s oracles. Indeed, in
this case, the attacker’s signing oracle does not abort; the attacker’s hashing oracles
produce uniform random hash values by Theorem 5.5; the attacker’s signing oracles
produce uniform random hash values, and the corresponding scribbles, by Theorem
5.3 and Theorem 5.4.

Therefore the probability of A succeeding without collisions using the attacker’s
oracles is at least ε− 2−256LM .

Notes. The idea of proving security against generic attacks was popularized by
Bellare and Rogaway in [2]. Of course, such a proof says nothing about the security
of the hash functions actually used in practice. Perhaps every easily computed hash
function is insecure.

The method of proof in this section is similar to the method outlined in [4]. The
main difference is that Algorithm S selects a particular square root of a, whereas
[4, Theorem 6.1] requires that the signer select a uniform random square root of a.

References

[1] Victoria Ashby (editor), First ACM conference on computer and communications security,

Association for Computing Machinery, New York, 1993.

[2] Mihir Bellare, Phillip Rogaway, Random oracles are practical: a paradigm for designing
efficient protocols, in [1] (1993), 62–73.

[3] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with
RSA and Rabin, in [15] (1996), 399–416.

[4] Mihir Bellare, Phillip Rogaway, The exact security of digital signatures: how to sign with

RSA and Rabin, draft available as [3], newer draft available as http://wwwcsif.cs.ucdavis.
edu/~rogaway/papers/exactsigs.ps.gz.

[5] Daniel J. Bernstein, Floating-point arithmetic and message authentication, submitted for

publication; draft available as http://cr.yp.to/papers/hash127.dvi.
[6] Henri Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin,

1993.

[7] Ivan B. Damg̊ard (editor), Advances in cryptology—EUROCRYPT ’90, Lecture Notes in
Computer Science 473, Springer-Verlag, Berlin, 1991. ISBN 3–540–53587–X.

[8] Richard A. DeMillo, David P. Dobkin, Anita K. Jones, Richard J. Lipton (editors), Founda-

tions of secure computation, Academic Press, New York, 1978. ISBN 0-12-210350-5.
[9] Yvo Desmedt (editor), Advances in cryptology—CRYPTO ’94, Lecture Notes in Computer

Science 839, Springer-Verlag, Berlin, 1994.
[10] Louis Claude Guillou, Jean-Jacques Quisquater, Precautions taken against various potential

attacks in ISO/IEC DIS 9796, in [7] (1991), 465–473.

[11] Burt Kaliski, Matthew Robshaw, The secure use of RSA, CryptoBytes 1.3 (1995), 7–13.
[12] Donald E. Knuth, The art of computer programming, volume 2: seminumerical algorithms,

3rd edition, Addison-Wesley, Reading, 1997. ISBN 0–201–89684–2.

[13] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field
sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.

[14] Hendrik W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics 126

(1987), 649–673.
[15] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96, Lecture Notes in Com-

puter Science 1070, Springer-Verlag, Berlin, 1996. ISBN 3–540–61186–X.

[16] Ralph Merkle, A fast software one-way hash function, Journal of Cryptology 3 (1990), 43–58.
[17] Preda Mihailescu, Fast generation of provable primes using search in arithmetic progressions,

in [9] (1994), 282–293. MR 95j:11122.

[18] Carl Pomerance, John L. Selfridge, Samuel S. Wagstaff, Jr., The pseudoprimes to 25 · 109,
Mathematics of Computation 35 (1980), 1003–1026.

PUBLIC-KEY SIGNATURE SYSTEM WITH EXTREMELY FAST VERIFICATION 11

[19] Michael O. Rabin, Digitalized signatures, in [8] (1978), 155–168.
[20] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as factor-

ization, Technical Report 212, MIT Laboratory for Computer Science, 1979.

[21] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications of the ACM 21 (1978), 120–126.

[22] Hugh C. Williams, A modification of the RSA public-key encryption procedure, IEEE Trans-

actions on Information Theory 26 (1980), 726–729.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The Uni-

versity of Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@pobox.com

