
The SPHINCS+ Signature Framework
Full version, September 23, 2019

Daniel J. Bernstein
University of Illinois at Chicago

Ruhr University Bochum
djb@cr.yp.to

Andreas Hülsing
Eindhoven University of Technology

andreas@huelsing.net

Stefan Kölbl
Cybercrypt

stek@mailbox.org

Ruben Niederhagen
Fraunhofer SIT, Darmstadt

ruben@polycephaly.org

Joost Rijneveld
Radboud University

joost@joostrijneveld.nl

Peter Schwabe
Radboud University

peter@cryptojedi.org

ABSTRACT

We introduce SPHINCS+, a stateless hash-based signature frame-
work. SPHINCS+ has significant advantages over the state of the
art in terms of speed, signature size, and security, and is among the
nine remaining signature schemes in the second round of the NIST
PQC standardization project. One of our main contributions in this
context is a new few-time signature scheme that we call FORS. Our
second main contribution is the introduction of tweakable hash
functions and a demonstration how they allow for a unified security
analysis of hash-based signature schemes. We give a security reduc-
tion for SPHINCS+ using this abstraction and derive secure param-
eters in accordance with the resulting bound. Finally, we present
speed results for our optimized implementation of SPHINCS+ and
compare to SPHINCS-256, Gravity-SPHINCS, and Picnic.

CCS CONCEPTS

• Security and privacy → Digital signatures.

KEYWORDS

Post-quantum cryptography, SPHINCS, hash-based signatures, state-
less, tweakable hash functions, NIST PQC, exact security

1 INTRODUCTION

Hash-based signature schemes are among the oldest designs to
construct digital signatures. First introduced by Lamport [35] and
refined by Merkle [37] in 1979, forty years later the basic construc-
tions remain largely the same. With well-understood security and
minimal assumptions, they are often considered to be the most
conservative option available. Yet, it took the potentially imminent
construction of a quantum computer for them to gain popularity
and be considered for real-world applications. Today hash-based
signature schemes are the first post-quantum signature schemes
formally defined in two RFCs [31, 36], and SPHINCS+, the scheme
presented in this work, is among the nine remaining signature pro-
posals in the second round of the NIST post-quantum cryptography
standardization project [1].

The performance of hash-based signatures, in terms of both
speed and size, has traditionally been an obstacle for adoption.
Developments over the past decade have taken significant steps
towards practicality, in particular through the design of XMSS [16].
Arguably the biggest hurdle towards practicality is of a more funda-
mental order: almost all hash-based signature schemes in literature

(including the schemes described in RFCs above) are stateful; they
need to keep track of all produced signatures. This was addressed in
practice by SPHINCS [9] in 2015, building upon theoretical work by
Goldreich [26, 27]. Merkle’s design crucially relies on iterating over
signing keys in order, to prevent reuse. Contrarily, the structure in
the designs following Goldreich is so large that, roughly, one can
pick a signing key at random each time and reasonably assume it
has not been used before. This is essential for many real-world uses,
where continuously updating a stateful key pair is often impossible:
consider, e.g., distributed servers and backups.

In this work we make three contributions to evolve the state of
the art in the area of hash-based signature schemes:

(1) We introduce SPHINCS+, a stateless hash-based signature
framework which has significant advantages over SPHINCS
in several dimensions and meets the requirements of the
NIST PQC project [40].

(2) We introduce the concept of tweakable hash functions and
show how it allows us to unify the security analysis of hash-
based signature schemes.

(3) We present speed results for our optimized implementa-
tion of SPHINCS+ and a comparison with the other rel-
evant symmetric-cryptography-based signature schemes:
SPHINCS-256 [9], Gravity-SPHINCS [6], and Picnic [17].

Introducing SPHINCS+. Although in a practical range, signature
size and speed of SPHINCS are far off from what we are used to
from RSA or ECDSA signatures. This work presents SPHINCS+, a
stateless hash-based signature framework which improves upon
SPHINCS in terms of speed and signature size. This is achieved by
introducing several improvements that strengthen the security of
the scheme and thereby allow for smaller parameters. We introduce
a signature framework instead of a specific signature scheme. The
main reason for this is the large flexibility offered by the many
parameter options. This allows users to make highly application-
specific trade-offs with regards to the signature size, the signing
speed, the required number of signatures and the desired security
level, and even account for platform considerations such as memory
limits or hardware support for specific hash functions.

As SPHINCS+ resembles SPHINCS in many details, we refrain
from giving a detailed description of the full scheme in this paper
but rather focus on the aspects that differ from previous work. A full
formal specification of SPHINCS+ is available in the official submis-
sion to NIST [4]. We now briefly recall the high-level construction

1

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

pk

m

h = 9

d = 3

hash node

OTS node

FTS node

Figure 1: An illustration of a (small) SPHINCS structure.

of SPHINCS-like schemes to afterwards explain our improvements.
See Section 3 for a more specific description.

Hash-based signature constructions center around a Merkle tree
with one-time signature key pairs on its leaf nodes. For efficiency
reasons, the XMSSMT and SPHINCS constructions make use of a
hypertree: a tree of trees, linked together using one-time signa-
tures (OTS). As the leaf nodes of the SPHINCS tree are randomly
selected, there is a trade-off to be made between the size of the
tree and the likelihood of selecting the same leaf node twice. To
sway this trade-off towards allowing smaller trees, SPHINCS uses
a few-time signature scheme (FTS) at the bottom of the tree. The
generic construction of such a hypertree is illustrated in Figure 1.

Among the main distinguishing contributions of SPHINCS+ is
the introduction of a new few-time signature scheme: FORS, in-
troduced in Section 3.4. Another important change from SPHINCS
to SPHINCS+ is the way leaf nodes are chosen. SPHINCS+ uses
publicly verifiable index selection, described in Section 3.5. These
two changes together make it harder to attack SPHINCS+ via the
few-time signature scheme and hence allow us to choose smaller
parameters. With the same goal, we apply multi-target attack miti-
gation techniques as proposed in [33], making it harder to attack
SPHINCS+ using a (second-)preimage attack. We give a security
reduction in Section 4 to formally show these claims. Analyzing the
complexity of generic attacks against the required hash-function
properties, we derive a formula for the bit security of a given pa-
rameter set from our security reduction (Section 5).

Tweakable hash functions. Over the last decade there was a line
of work [15, 16, 19, 30, 33] focusing on reducing the assumptions
that have to be made to prove a hash-based signature scheme secure.
The first goal of this was to move away from collision resistance and
towards collision resilient schemes. This leads to the use of targeted
security notions like second-preimage and preimage resistance,

making multi-target attacks a concern. Consequently, more recent
proposals aimed at mitigating multi-target attacks [33].

Comparing these works, it turns out that the high-level con-
structions remain the same. What changes is the way nodes in
hash chains and trees are computed. In some works, inputs first
get XORed with random values, in others, functions are addition-
ally keyed. Some proposals do both, and others just prepend or
append additional data to the inputs before hashing. Although the
differences in schemes are somewhat local, each work redid a full se-
curity analysis of the whole signature scheme. While these security
analyses were already complex for stateful hash-based signature
schemes, the case of stateless schemes adds further complexity.

We introduce an abstraction which we call tweakable hash func-
tions in Section 2. Tweakable hash functions allow us to unify the
description of hash-based signature schemes, abstracting away the
details of how exactly nodes are computed. This allows us to sepa-
rate the analysis of the high-level construction from the analysis
of how this computation is done. We demonstrate the utility of
this approach by proposing and analyzing three constructions of
tweakable hash functions in Section 2, one of which is essentially
the construction from [33]. Afterwards, the SPHINCS+ security
reduction in Section 4 bases security of large parts of SPHINCS+
on the properties of the used tweakable hash functions and ignores
how these are implemented (in addition security is based on proper-
ties of the initial message compression and the used PRFs). Hence,
changing the way nodes are computed in SPHINCS+ now only
requires analyzing the hashing construction as a tweakable hash
function. This also supports the design of dedicated constructions,
as it provides a clear specification of the required properties.

Performance & comparison. Having defined a generic frame-
work, we provide concrete parameters and instances (see Section 6)
and evaluate the performance of the resulting signature scheme.
Then we go for a comparison to similar signature schemes. The chal-
lenge here is that the schemes provide different levels of security
under different assumptions. In a demonstration of the flexibility
and competitiveness of our framework, we also define instances
that carefully mimic the security level and properties of other signa-
ture schemes based on symmetric primitives and compare to these;
see Section 7 for a discussion.

2 TWEAKABLE HASH FUNCTIONS

In this section we give a definition of tweakable hash functions,
provide security notions, and discuss different instantiations. In Sec-
tion 4 we then give a proof of security for the SPHINCS+ framework
using the properties of tweakable hash functions for the security
of node computations.

2.1 Functional definition.

A tweakable hash function takes public parameters P and context
information in form of a tweak T in addition to the message input.
The public parameters might be thought of as a function key or
index. The tweak might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Letn,α ∈ N, P the public
parameters space and T the tweak space. A tweakable hash function

2

The SPHINCS+ Signature Framework

is an efficient function

Th : P × T × {0, 1}α → {0, 1}n, MD←Th(P,T ,M)

mapping an α-bit message M to an n-bit hash value MD using a
function key called public parameter P ∈ P and a tweak T ∈ T .

We sometimes write ThP ,T (M) in place of Th(P,T ,M). We use
the term public parameter for the function key to emphasize that
it is intended to be public. Tweaks are used to define context and
take the role of nonces when it comes to security. In SPHINCS+ we
use as public parameter a public seed PK.seed which is part of the
SPHINCS+ public key. As tweak we use a hash function address
ADRS which identifies the position of the hash function call within
the virtual structure defined by a SPHINCS+ key pair. This allows
us to make the hash-function calls for each SPHINCS+ key pair
and position in the virtual tree structure of SPHINCS+ independent
from each other.

2.2 Security notions.

Of course, this abstraction is only useful for us if it provides some
security properties. What we require from tweakable hash func-
tions are two properties, which we call post-quantum single func-

tion, multi-target-collision resistance for distinct tweaks (pq-sm-tcr)
and post-quantum single function, multi-target decisional second-

preimage resistance for distinct tweaks (pq-sm-dspr).

pq-sm-tcr. Essentially, sm-tcr is a variant of target-collision re-
sistance. It is a two-stage game where an adversary A is allowed
to adaptively specify p targets (multi-target) instead of a single
one during the first stage. For this purpose A is given access to an
oracle implementing the already keyed function (single-function
as the same public parameters are used for all targets). The adver-
sary’s queries specify its targets for the second stage. In addition
we require distinct tweaks, i.e., A is not allowed to use the same
tweak for more than one query. Hence, A can only define one
target per tweak. After specifying all targets,A receives the public
parameters which are similar to a function key. The adversary wins
if it finds a collision for one of the targets. It should be noted that
as we are considering the post-quantum setting, we assume that
adversaries have access to a quantum computer but honest parties
do not. In consequence, all oracles in our definitions, except for ran-
dom oracles, only allow classical access. A more detailed discussion
of the post-quantum setting and quantum-accessible oracles can
be found in Appendix A. We formalize the above in the following
definition.

Definition 2 (pq-sm-tcr). In the following let Th be a tweakable
hash function as defined above. We define the success probability
of any adversary A = (A1,A2) against the sm-tcr security of Th.
The definition is parameterized by the number of targetsp for which
it must hold that p ≤ |T |. In the definition,A1 is allowed to make p
queries to an oracle Th(P, ·, ·). We denote the set of A1’s queries
by Q = {(Ti ,Mi)}

p
i=1 and define the predicate DIST({Ti }

p
i=1) =

(∀i,k ∈ [1,p], i , k) : Ti , Tk , i.e., DIST({Ti }
p
i=1) outputs 1 iff all

tweaks are distinct.

Succsm-tcr
Th,p (A) = Pr

[
P ←R P; S ← ATh(P , ·, ·)

1 ();

(j,M) ← A2(Q, S, P) : Th(P,Tj ,Mj) =Th(P,Tj ,M)

∧M , Mj ∧ DIST({Ti }
p
i=1)

]
.

We define the insecurity of a tweakable hash function against
p target, time ξ , pq-sm-tcr adversaries as the maximum success
probability of any possibly quantum adversary A with p targets
and running time ≤ ξ :

InSecpq-sm-tcr (Th; ξ ,p) = max
A

{
Succsm-tcr

Th,p (A)

}
.

As a special case, we refer to pq-sm-tcr with tweak advice if A1
informs the oracle about all p tweaks it will use ahead of its queries.

sm-tcr is implied by collision resistance; a more detailed discus-
sion of the relation between the two notions is given in Appendix B.

pq-sm-dspr. sm-tcr is a collision-finding notion. There are cases
in the security reduction for SPHINCS+ (and also XMSS-T [33])
where the adversary A works as a preimage finder. A reduction
from a one-wayness notion leads to a non-tight reduction. The
reason is that the reduction has to return preimages for some of
the potential one-wayness targets as part of the answers to signing
queries. If a preimage challenge was planted at a position for which
a preimage is required to answer the signing query, the reduction
fails. Consequently, the reduction has to guess where it may plant
a preimage challenge and where it must not.

If we could instead ensure that (at least with high probability)
the preimage returned by preimage finder A is different from the
one we used to compute the image, we could turnA into a second-
preimage finder that we might be able to use to break sm-tcr.
The advantage of this approach is that the reduction now knows
preimages for all targets and hence can answer all signing queries.

One way that was used before in [33] to ensure that the preimage
finderA returns a second-preimage (and not the one already known
to the reduction) is to assume that for every domain element of
the function there exists at least one colliding domain element.
As it is unknown to A which of the two or more preimages was
used to compute the image its output must be independent of the
used preimage. Hence, the returned preimage differs from the one
already known to the reduction with probability at least 1/2. The
problem with this approach is that in the case of SPHINCS+ and
XMSS-T, the preimage finder works on a length-preserving hash
function and a random length-preserving function does not have
this property. Indeed, approximately 1/e of all domain elements
do not have a colliding value in this case. Hence, we would expect
cryptographic hash functions to also not have this property. It is
possible to turn any length-preserving hash function into a hash
function with this property [10], but this comes at the cost of a
slight loss in security and a factor-two slowdown.

An alternative approach was recently proposed in [10] under the
name decisional second-preimage resistance (dspr). The intuition
here is that while there might exist domain elements that do not
have a colliding value, it is computationally hard to detect those. It
was shown in [10] that for functions which are dspr, a preimage
finder can be used to find second-preimages with approximately

3

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

the same success probability. In the following, we formally define a
version of dspr adopted to the setting of tweakable hash functions
which we call post-quantum single function, multi-target decisional
second preimage resistance for distinct tweaks (pq-sm-dspr).

The definition of DSPR requires a definition of a second-preim-
age-exists predicate. We derive a workable definition for tweakable
hash functions from the definition for keyed hash functions from
[10] and use this definition to further define what it means for a
tweakable hash function to be pq-sm-dspr.

Definition 3 (SPexists for tweakable hash functions). The second-
preimage-exists predicate SPexists(Th) for a tweakable hash func-
tion Th is the function SP : P × T × {0, 1}α → {0, 1} defined as
follows:

SPP ,T (M) =

{
1 if |Th−1

P ,T (ThP ,T (M))| ≥ 2
0 otherwise,

where Th−1
P ,T refers to the inverse of the function obtained by fixing

the first two inputs to Th to the given values.

Definition 4 (pq-sm-dspr). In the following let Th be a tweakable
hash function as defined above. We define the advantage of any
adversary A = (A1,A2) against the sm-dspr-security of Th. The
definition is parameterized by the number of targets p for which it
must hold that p ≤ |T |. In the definition, A1 is allowed to make
p queries to an oracle Th(P, ·, ·). The query set Q and predicate
DIST({Ti }

p
i=1), are defined as in Definition 2.

Advsm-dspr
Th,p (A) = max{0, succ − triv}

with
succ = Pr

[
P ←R P; S ← ATh(P , ·, ·)

1 (); (j,b) ← A2(Q, S, P) :

SPP ,Tj (Mj) = b ∧ DIST({Ti }
p
i=1)

]
;

triv = Pr
[
P ←R P; S ← ATh(P , ·, ·)

1 (); (j,b) ← A2(Q, S, P) :

SPP ,Tj (Mj) = 1 ∧ DIST({Ti }
p
i=1)

]
.

We define the pq-sm-dspr insecurity of a tweakable hash func-
tion against p target, time ξ adversaries as the maximum advantage
of any (possibly quantum) adversaryA with p targets and running
time ≤ ξ :

InSecpq-sm-dspr (Th; ξ ,p) = max
A

{
Advsm-dspr

Th,p (A)

}
As a special case, we refer to pq-sm-dspr with tweak advice if A1
informs the oracle about all p tweaks it will use ahead of its queries.

The above definition of the dspr advantage might look unfamiliar
to the reader. The idea is the common concept that the advantage
should be defined as the advantage of an adversary over the trivial
algorithm that just guesses the right answer. Usually, the right
answer is a uniformly random bit and hence we simply subtract
1/2 as the guessing probability. For the case of dspr, the guessing
probability depends on the actual function used. E.g., for a random
length-preserving function1 Th, the probability that SPP ,T (M) = 1
is about 1 − 1/e . This turns out to significantly complicate the
definition of an advantage. To obtain a usable definition, the authors
1We consider a tweakable hash function length-preserving if the message length equals
the output length.

of [10] made some choices. Most importantly, the trivial attack to
compare to was decided to be the algorithm that always outputs 1.
This was justified by showing that for the overwhelming majority
of functions Pr[SPP ,T (M) = 1] > 1/2 and for the cases where
Pr[SPP ,T (M) = 1] < 1/2 dspr turns out to not be useful. For a
much more detailed discussion of the choices, see [10].

2.3 Generic constructions

In this section we give three generic constructions of tweakable
hash functions. Our constructions make use of keyed hash functions
H : K×{0, 1}α → {0, 1}n . For keyK and message M we sometimes
write HK (M) in place of H(K,M). The first construction is in the
standard model but requires public parameters with size linear
in the size of the tweak space. For SPHINCS+ this would lead
to exponential-size public parameters. This construction is thus
mainly meant as an example to motivate the second construction,
which is essentially the same as the first with the difference that it
replaces the public parameters by a short public seed from which
everyone can generate the required parameters using a keyed hash
function H2. While this massively reduces the public parameter size
it comes at the cost of requiring the quantum accessible random
oracle model (QROM) for the proof. If we assumed that H2 was a
PRF and if we just initialized the public parameters using H2 and
never output the used seed, we would still achieve security in the
standard model. However, as we are handing out the seed, nothing
can be derived from the PRF security of H2 which requires the
seed to be kept secret. Hence, we could either formulate a new,
interactive security assumption or we use the QROM to show that
this public-parameter compression is secure. We did the latter. The
third construction goes even one step further and assumes that
all hash functions used behave like quantum accessible random
oracles (QROs).

Construction 5. Given a keyed hash function H with n-bit keys,
we constructTh as

Th(P,T ,M) = H(P[(α + n)T ,n],M⊕) ,

M⊕ = M ⊕ (P[(α + n)T + n,α]) ,

where P is a length-(α + n)|T | bit string and P[i, j] denotes the j-bit
substring of P that starts with the ith bit.

Construction 6. Given two hash functions H1 : {0, 1}2n×{0, 1}α
→ {0, 1}n with 2n-bit keys, and H2 : {0, 1}2n → {0, 1}α we con-

struct Th with P = T = {0, 1}n , as
Th(P,T ,M) = H1(P | |T ,M

⊕) , withM⊕ = M ⊕ H2(P | |T) .

Construction 7. Given a hash function H : {0, 1}2n+α →
{0, 1}n , we constructTh with P = T = {0, 1}n as

Th(P,T ,M) = H(P ∥T ∥M) .

Construction 6 is essentially the construction used in [33] which
was proven secure in the QROM using the post-quantum multi-
function, multi-target second-preimage resistance (pq-mm-spr) of
H. Construction 6 differs from [33] in that it does not key H with
a (pseudo-)random bit string but just with (P | |T) which ensures
distinct keys for distinct tweaks. Construction 7 is in spirit similar
to the construction used for LMS signatures [36].

4

The SPHINCS+ Signature Framework

SM-TCR security. We first show under what conditions these con-
structions are pq-sm-tcr. Afterwards, we look at pq-sm-dspr. We
show that Construction 5 is pq-sm-tcr if H is post-quantum multi-
function, multi-target second-preimage resistant (pq-mm-spr), that
Construction 6 is pq-sm-tcr with tweak advice if H1 is post-quan-
tum distinct-function, multi-target second-preimage resistant (pq-
dm-spr) and H2 is modeled as QRO, and that Construction 7 is
pq-sm-tcr if H is modeled as QRO. We only achieve pq-sm-tcr
with tweak advice for Construction 6 for technical reasons. How-
ever, for the use in SPHINCS+ and XMSS-T pq-sm-tcr with tweak
advice is sufficient. pq-dm-spr differs from pq-mm-spr in that it
does not require the use of random but just distinct function keys:

Definition 8 (pq-dm-spr). Let H : K × {0, 1}α → {0, 1}n be a
keyed hash function. We define the advantage of any adversaryA =
(A1,A2) against distinct-function, multi-target second-preimage
resistance (dm-spr). This definition is parameterized by the number
of targets p.

Succdm-spr
H,p (A) =Pr

[
{Ki }

p
i=1 ← A1(), {Mi }

p
1 ←R ({0, 1}α)p ;

(j,M ′) ←R A2({(Ki ,Mi)}
p
i=1) : M ′ , Mj

∧H(Kj ,Mj) = H(Kj ,M
′) ∧ DIST({Ki }

p
i=1)

]
.

where we assume that A1 and A2 share state and DIST({Ki }
p
1) is

as in Definition 2.
We define the insecurity of a keyed hash function H against

p target, time-ξ , pq-dm-spr adversaries as the maximum success
probability of any possibly quantum adversary A with p targets
and running time ≤ ξ :

InSecpq-dm-spr (H; ξ ,p) = max
A

{
Succdm-spr

H,p (A)

}
.

The definition of mm-spr as given in [33] is obtained from the
above by replacing {Ki }

p
1 ← A1() by {Ki }

p
1 ←R K

p and ignoring
the DIST condition (and of course renaming A2 as A).

Theorem 9. Let H be a hash function as in Construction 5 and

Th the tweakable hash function constructed by Construction 5. Then

the success probability of any time-ξ (quantum) adversaryA against

sm-tcr ofTh is bounded by

Succsm-tcrTh,p (A) ≤ InSecpq-mm-spr (H; ξ ,p) .

Proof. Assume we are given access to an adversary A against
sm-tcr of Th. We show how to construct an oracle machineMA
that breaks mm-spr of H. Essentially,MA uses the mm-spr chal-
lenge set

{
(K∗i ,M

∗
i)

}p
i=1 to generate the public parameters P . For

the ith query (Mi ,Ti) made by A1,MA sets P[(α + n)Ti ,n] = K∗i
and P[(α +n)Ti +n,α] = Mi ⊕M

∗
i and answers the query. After all

p queries,MA fills the remaining spots in P with random bits and
starts A2. When A2 outputs a target collision (j,M),MA outputs
(j,M ⊕P[(α +n)Tj +n,α])which by construction is a second preim-
age for M∗j under HK ∗j . Hence, the success probability ofMA is
exactly that of A and it runs in essentially the same time. □

Theorem 10. Let H1 and H2 be hash functions as in Construction 6
andTh the tweakable hash function constructed by Construction 6.

Then the success probability of any time-ξ (quantum) adversary A

against sm-tcr ofTh with tweak advice is bounded by

Succsm-tcrTh,p (A) ≤ InSecpq-dm-spr (H1; ξ ,p) ,

when modeling H2 as quantum-accessible random oracle and not

giving A1 access to this oracle.

Note that the restriction that A1 does not get access to the
random oracle is sufficient in later proofs, because when A1 is
implemented by a reduction, it will only use the function oracle to
generate the challenges.

Proof. Assume we are given access to an adversary A against
sm-tcr (with tweak advice) of Th. We show how to construct an
oracle machineMA that breaks dm-spr of H1. The idea is essen-
tially the same as above. The main difference is that now instead
of setting elements in P , we program the random oracle H2. The
reductionMA first receives the tweak advice which allows it to
generate

{
K∗i

}p
1 by first sampling a random P ←R P and setting

K∗i = P ∥Ti . With this,MA can request the dm-spr challenge mes-
sages M∗1 , . . . ,M

∗
p .

For the ith query (Mi ,Ti) by A1,MA programs H2(P | |Ti) =
Mi ⊕ M∗i and records the query. Then it applies the construction
to answer the query. After all p queries were made,MA runs A2.
When A2 outputs a target collision (j,M),MA outputs (j,M ⊕
H2(P | |Tj))which by construction is a second preimage forM∗j under
H1(K∗j , ·). Hence, the success probability ofMA is exactly that of
A and it runs in essentially the same time. As all random oracle
programming is done before A gets access to H2, the reduction is
history-free and thereby also works in the QROM. □

Theorem 11. Let H be a hash function as in Construction 7, mod-

eled as quantum-accessible random oracle, andTh the tweakable hash

function constructed by Construction 7. Then the success probability of

any (quantum) adversary A making at most q-queries to H, against
sm-tcr ofTh is bounded by

Succsm-tcrTh,p (A) ≤ 8(2q + 1)2/2n,

when A1 is not given access to the random oracle.

The reason for not giving A1 access to the random oracle is
the same as in Theorem 10. We delay the proof of Theorem 11 to
Appendix D. The reason is that it is a direct proof of a quantum
query complexity lower bound, which uses a framework from [33]
that we only introduce in Appendix C.

SM-DSPR security. Now we take a look at sm-dspr. We will re-
duce distinct function, multi-target decisional second-preimage
resistance (dm-dspr) of the used hash function to sm-dspr of the
tweakable hash. dm-dspr needs the following definition from [10].

Definition 12 (SPexists for keyed hash functions). The second-
preimage-exists predicate SPexists(H) for a keyed hash function H
is the function SP : K × {0, 1}α → {0, 1} defined as follows:

SPK (M) =

{
1 if |H−1

K (HK (M))| ≥ 2
0 otherwise,

5

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Definition 13 (pq-dm-dspr). In the following let H be a keyed
hash function as defined above. We define the advantage of any
adversary A = (A1,A2) against dm-dspr of H. The definition is
parameterized by the number of targets p.

Advdm-dspr
H,p (A)

def
= max{0, succ − triv},

where
succ =Pr

[
{Ki }

p
1 ← A1(); {Mi }

p
1 ←R ({0, 1}α)p ;

(j,b) ← A2({(Ki ,Mi)}
p
1) : SPKj (Mj) = b ∧ DIST({Ki }

p
1)

]
;

triv =Pr
[
{Ki }

p
1 ← A1(); {Mi }

p
1 ←R ({0, 1}α)p ;

(j,b) ← A2({(Ki ,Mi)}
p
1) : SPKj (Mj) = 1 ∧ DIST({Ki }

p
1)

]
;

and where DIST({Ki }
p
1) is defined as in Definition 2.

We define the pq-dm-dspr insecurity of a keyed hash function
against p-target, time-ξ adversaries as the maximum advantage of
any (possibly quantum) adversary A with p targets and running
time ≤ ξ :

InSecpq-dm-dspr (H; ξ ,p) = max
A

Advdm-dspr
H,p (A) .

Theorem 14. Let H be a hash function as in Construction 5 and

Th the tweakable hash function constructed by Construction 5. Then

the advantage of any time-ξ (quantum) adversaryA against sm-dspr

ofTh is bounded by

Advsm-dsprTh,p (A) ≤ InSecpq-dm-spr (H; ξ ,p)

Proof. The reductionMA works exactly the same as in the
proof of Theorem 9 with the single difference that hereMA just
forwards A’s output. The extraction procedure in the proof of
Theorem 9 shows that a collision under the function simulated
towards A implies the existence of a collision under H. Hence,
MA is correct with the same probability as A. There also is no
difference between triv for the two cases (which would imply a
difference in advantage) as SPP ,Tj (Mj) = SPKj (M

⊕
j). □

In the case of Construction 6 we again only achieve sm-dspr
with tweak advice, but again this is sufficient for the use in the
context of hash-based signatures.

Theorem 15. Let H1 and H2 be hash functions as in Construction 6
andTh the tweakable hash function constructed by Construction 6.

Then the advantage of any time-ξ (quantum) adversary A against

sm-dspr ofTh with tweak advice is bounded by

Advsm-dsprTh,p (A) ≤ InSecpq-dm-dspr (H; ξ ,p) ,

when modeling H2 as quantum-accessible random oracle and not

giving A1 access to this oracle.

Proof. Again, the reductionMA works exactly the same as
in the corresponding sm-tcr case, discussed in the proof of Theo-
rem 10. Again, the single difference is thatMA just forwards A’s
output in this case. The argument thatMA is correct wheneverA
is correct and that the values of triv do not differ carries over from
the proof of Theorem 14. □

For Construction 7 it is an open research question to prove
sm-dspr security. We conjecture the following bound.

Conjecture 16. Let H be a hash function as in Construction 7,

modeled as quantum-accessible random oracle and Th the tweakable

hash function constructed by Construction 7. Then the advantage of

any (quantum) adversary A making at most q-queries to H, against
sm-dspr ofTh is bounded by

Advsm-dsprTh,p (A) ≤ O(q2/2n),

when A1 is not given access to the random oracle.

The reasoning behind this bound is similar to the reasoning
behind the hardness of dm-dspr given in Table 5. The difference
here is that the adversary is allowed to choose messages and tweaks
while the public parameters are hidden instead of choosing the
function keys and getting the messages afterwards. However, given
that we are considering a random oracle, the adversary does not
gain any advantage from being able to partially determine the
challenges in either way. This is the case as the behavior of the
functions is hidden from it until after the challenge generation.

3 THE SPHINCS+ FRAMEWORK

We now describe the SPHINCS+ framework. We roughly follow
the description in the SPHINCS+ submission to NIST [4], often
citing it literally in sections where precise definitions are required.

3.1 Cryptographic (Hash) Function Families

SPHINCS+ makes use of several different function families with
cryptographic properties. This description will use them generically,
and we defer giving specific instantiations to Section 6.

SPHINCS+ applies the multi-target mitigation technique from
[33] using the abstraction of tweakable hash functions from above.
In addition to several tweakable hash functions, SPHINCS+ makes
use of two PRFs and a keyed hash function. Input and output length
are given in terms of the security parameter n and the message-
digest lengthm, both to be defined more precisely below.

Tweakable hash functions. The constructions described in this
work are built on top of a collection of tweakable hash functions
with one function per input length. For SPHINCS+ we fix P =
{0, 1}n and T = {0, 1}256, limit the message length to multiples
of n, and use the same public parameter for the whole collection
of tweakable hash functions. We write Thℓ : {0, 1}n × {0, 1}256 ×
{0, 1}ℓn → {0, 1}n, for the function with input length ℓn.

There are two special cases which we rename for consistency
with previous descriptions of hash-based signature schemes: F :
{0, 1}n × {0, 1}256 × {0, 1}n → {0, 1}n , F def

= Th1; H : {0, 1}n ×
{0, 1}256 × {0, 1}2n → {0, 1}n , H def

= Th2.

Pseudorandom functions and themessage digest. SPHINCS+

makes use of a pseudorandom function PRF for pseudorandom
key generation, PRF : {0, 1}n × {0, 1}256 → {0, 1}n, and a pseudo-
random function PRFmsg to generate randomness for the message
compression: PRFmsg : {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n . To
compress the message to be signed, we use an additional keyed
hash function Hmsg that can process arbitrary length messages:
Hmsg : {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m .

6

The SPHINCS+ Signature Framework

3.2 WOTS
+

WOTS+ [30] is a one-time signature scheme: a private key must be
used to sign exactly one message. When it is reused to sign multiple
messages, security quickly degrades [14].

Parameters. WOTS+ has two parameters n andw . n is the security
parameter; it is the message length as well as the length of a private
key element, public key element, and signature element in bits. w
is the Winternitz parameter; it can be used to make a trade-off
between signing time and signature size: a higher value implies a
smaller, slower, signature. w is typically restricted to 4, 16 or 256.

Define len1 = ⌈n/log(w)⌉ and len2 = ⌊log (len1(w−1))/log(w)⌋ + 1.
The sum of these, len, represents the number of n-bit values in an
uncompressed WOTS+ private key, public key, and signature.

The WOTS
+
key pair. In the context of SPHINCS+, the WOTS+

private key is derived from a secret seed SK.seed that is part of
the SPHINCS+ private key, and the address of the WOTS+ key pair
within the hypertree, using PRF.

The corresponding public key is derived by applying F iteratively
for w repetitions to each of the n-bit values in the private key,
effectively constructing len hash chains. Here, F is parameterized
by the address of the WOTS+ key pair, as well as the height of the
F invocation and its specific chain, in addition to a seed PK.seed
that is part of the SPHINCS+ public key.

In contrast to previous definitions of WOTS+, and as a direct
consequence of the use of tweakable hash functions to mitigate
multi-target attacks, we do not use so-called ℓ-trees to compress
the WOTS+ public key. Instead, the public key is compressed to an
n-bit value using a single tweakable hash function call to Thlen.
We use ‘WOTS+ public key’ to refer to the compressed public key.

WOTS
+
signature and verification. An input message m is in-

terpreted as len1 integers mi , between 0 and w − 1. We compute a
checksum C = Σlen1

i=1 (w − 1 −mi) over these values, represented as
string of len2 base-w valuesC = (C1, . . . ,Clen2). This checksum is
necessary to prevent message forgery: an increase in at least one
mi leads to a decrease in at least one Ci and vice-versa.

Using these len integers as chain lengths, the chaining function
F is applied to the private key elements. This leads to len n-bit
values that make up the signature. The verifier can then recompute
the checksum, derive the chain lengths, and apply F to complete
each chain to its full length. This leads to the chain heads that are
hashed using Thlen to compute the n-bit public key.

3.3 The hypertree

We first describe a single-tree hash-based signature that is essen-
tially equivalent to the XMSS construction [16]. We then extend
this to a multi-tree setting, in the same style as XMSSMT [32].

A single tree. To be able to sign 2h′ messages, the signer derives
2h′ WOTS+ public keys. We use these keys as leaf nodes. To con-
struct a binary tree, one repeatedly applies H on pairs of nodes,
parameterized with the unique address of this application of H as
well as the public seed PK.seed. We consider such a tree to be of
height h′, corresponding to the number of H applications to move
from the leaves to the root. The root of this tree is what will now
briefly serve as the public key of the single tree scheme.

pk

Figure 2: The authentication path to authenticate the fifth

leaf is shown in gray.

One of the WOTS+ leaf nodes is used to create a signature on
an n-bit message. Simply publishing the WOTS+ signature is not
sufficient, as the verifier also requires information about the rest of
the tree. For this, the signer includes the so-called ‘authentication
path’ (see Figure 2). The verifier first derives the WOTS+ public
key from the signature, and then uses the nodes included in the
authentication path to reconstruct the root node.

A tree of trees. To make it sufficiently unlikely that random selec-
tion of a leaf node repeatedly results in the same leaf node being
selected, a SPHINCS tree needs to be considerably large.

Rather than increasing h′ (and incurring the insurmountable
cost of computing 2h′ WOTS+ public keys per signing operation),
we create a hypertree. For a more detailed discussion on this con-
struction, refer to the paper introducing SPHINCS [9, Section 1].

This construction serves as a certification tree. The WOTS+ leaf
nodes of the trees on the bottom layer are used to sign messages
(or, in our case, FTS public keys), while the leaf nodes of trees on
all other layers are used to sign the root nodes of the trees below.
The WOTS+ signatures and authentication paths from a leaf at the
bottom of the hypertree to the root of the top-most tree constitutes
an authentication path. See Figure 1 on page 2 for an illustration.

Crucially, all leaf nodes of all intermediate trees are determinis-
tically generated WOTS+ public keys that do not depend on any
of the trees below it. This means that the complete hypertree is
purely virtual: it never needs to be computed in full. During key
generation, only the top-most subtree is computed to derive the
public key. We define the total tree to be of height h and the number
of intermediate layers to be d , retroactively setting h′ to be h/d .

3.4 FORS

As the few-time signature scheme in SPHINCS+, we define FORS:
Forest of Random Subsets, an improvement of HORST [9]. FORS
security is captured in Section 4, where we introduce a new security
notion for hash functions for this very reason. The new security
notion strengthens the notion of target subset resilience as previ-
ously used to analyze HORS and HORST. FORS is defined in terms
of integers k and t = 2a , and can be used to sign strings of ka bits.

The FORS key pair. The FORS private key consists of kt random
n-bit values, grouped together into k sets of t values each. In the
context of SPHINCS+, these values are deterministically derived
from SK.seed using PRF and the address of the key in the hypertree.

To construct the FORS public key, we first construct k binary
hash trees on top of the sets of private key elements. Each of the
t values is used as a leaf node, resulting in k trees of height a. We
use H, addressed using the location of the FORS key pair in the

7

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

r0 r1 r2

r3 r4 r5

Figure 3: An illustration of a FORS signature with k = 6 and

a = 3, for the message 100 010 011 001 110 111.

hypertree and the unique position of the hash function call within
the FORS trees. As in WOTS+, we compress the root nodes using a
call to Thk . The resulting n-bit value is the FORS public key.

FORS signatures. Given a message of ka bits, we extract k strings
of a bits. Each of these bit strings is interpreted as the index of a
single leaf node in each of thek FORS trees. The signature consists of
these nodes and their respective authentication paths (see Figure 3).

The verifier reconstructs each of the root nodes using the au-
thentication paths and uses Thk to reconstruct the public key. As
part of SPHINCS+, a FORS signature is never verified explicitly.
Rather, the resulting public key is used as a message, to be implicitly
checked together with a WOTS+ signature.

3.5 SPHINCS+

Given the components defined above, we now construct SPHINCS+.

The SPHINCS+ key pair. Almost all elements that make up an
SPHINCS+ key pair have been introduced implicitly, above. The
public key consists of two n-bit values: the root node of the top tree
in the hypertree, and a random public seed PK.seed. In addition,
the private key consists of two more n-bit random seeds: SK.seed,
to generate the WOTS+ and FORS secret keys, and SK.prf, used
below for the randomized message digest.

The SPHINCS+ signature. It should come as no surprise that the
signature consists of a FORS signature on a digest of the message, a
WOTS+ signature on the corresponding FORS public key, and a se-
ries of authentication paths and WOTS+ signatures to authenticate
that WOTS+ public key. To verify this chain of paths and signa-
tures, the verifier iteratively reconstructs the public keys and root
nodes until the root node at the top of the SPHINCS+ hypertree is
reached. Two points have not yet been addressed: the computation
of the message digest, and leaf selection. Here, SPHINCS+ differs
from the original SPHINCS in subtle but important details.

First, we pseudorandomly generate a randomizer R, based on the
message and SK.prf.R can optionally be made non-deterministic by
adding additional randomness OptRand. This may counteract side-
channel attacks that rely on collecting several traces for the same
computation. Note that setting this value to the all-zero string (or
using a low-entropy value) does not negatively affect the pseudoran-
domness of R. Formally, we say that R = PRF(SK.prf, OptRand,M).
R is part of the signature. Using R, we then derive the index of

Table 1: Overview of the number of function calls we require

for each operation. We omit the single calls to Hmsg, PRFmsg,
andThk for signing and single calls to Hmsg andThk for ver-

ification as they are negligible when estimating speed.

keypair sign verify

F 2h/dw · len kt + d(2h/d)w · len k + dw · len

H 2h/d − 1 k(t − 1) + d(2h/d − 1) k log t + h

PRF 2h/d · len kt + d(2h/d) · len + 1 –

Thlen 2h/d d2h/d d

the leaf node that is to be used, as well as the message digest as
(MD| |idx) = Hmsg(R, PK.seed, PK.root,M).

In contrast to SPHINCS, this method of selecting the index is
publicly verifiable, preventing an attacker from freely selecting a
seemingly random index and combining it with a message of their
choice. Crucially, this counteracts multi-target attacks on the few-
time signature scheme. As the index can now be computed by the
verifier, it is no longer included in the signature.

3.6 Theoretical Performance Estimates

In the following section we provide formulas to estimate computa-
tional cost and data sizes for a given SPHINCS+ parameter set.
KeyGeneration.Generating the key seeds for SPHINCS+ requires
three calls to a random number generator. For the leaves of the
top tree we need to perform 2h/d WOTS+ key generations (len
calls to PRF to generate the sk and w · len calls to F for the pk),
and we have to compress the WOTS+ public key (one call to Tlen).
Computing the root of the top tree requires (2h/d − 1) calls to H.
Signing. For randomization and message compression we need
one call to PRF, PRFmsg and Hmsg. The FORS signature requires
kt calls to PRF and F. To compute the root of the k binary trees
of height log t , we add k(t − 1) calls to H and one call to Thk to
combine them. For the authentication paths, we compute d trees
similarly to key generation. This implies d(2h/d) times len calls to
PRF and w · len calls to F for the leaves, d(2h/d) calls to Thlen for
key compressions, and d(2h/d − 1) calls to H for the nodes in the
trees.
Verification. We first compute the message hash using Hmsg. We
need to perform one FORS verification, which requires k calls to
F, k log t calls to H and one call to Thk to hash the roots. Next, we
verify d layers in the hypertree, which takes < w · len calls to F
and one call to Thlen each per WOTS+ signature verification, as
well as dh/d calls to H for the d root computations.
Table 1 summarizes the required calls to F, H, and PRF. The private
and public key consist of 4n and 2n bits, respectively. The signature
adds up to (h + k(log t + 1) + d · len + 1)n bits.

4 SECURITY EVALUATION

In this work we make an attempt to unify the security reductions
for hash-based signature schemes. We move one of the main dif-
ferences – the way hashing is done – out of the reduction for

8

The SPHINCS+ Signature Framework

the construction and hide it inside the notion of tweakable hash
functions. This allows us to focus on the actual difference in the
high-level construction here and discuss the difference in hashing
in the tweakable-hash-function section.

In this section, we prove the following Theorem. Note that F and
H are just renamings of Th for message lengths n and 2n. We only
treat F separately at one point as the length-preserving case needs
additional attention in the proof.

Theorem 17. For parameters n,w , h, d ,m, t , k as described above,

SPHINCS+ is pq-eu-cma secure if

• Th (and thereby also F andH) is post-quantum single-function

multi-target-collision resistant for distinct tweaks (with tweak

advice),

• F is post-quantum single-function multi-target decisional sec-

ond-preimage resistant for distinct tweaks (with tweak advice),

• PRF and PRFmsg are post-quantum pseudorandom function

families, and

• Hmsg is post-quantum interleaved target subset resilient.

More concretely,

InSecpq-eu-cma
(
SPHINCS+; ξ ,qs

)
≤ InSecpq-prf (PRF; ξ ,q1) + InSecpq-prf

(
PRFmsg; ξ ,qs

)
+ InSecpq-itsr

(
Hmsg; ξ ,qs

)
+ InSecpq-sm-tcr (Th; ξ ,q2)

+ 3 · InSecpq-sm-tcr (F; ξ ,q3) + InSecpq-sm-dspr (F; ξ ,q3) ,

where q1 < 2h+1(kt + len), q2 < 2h+2(w · len + 2kt), and q3 <
2h+1(kt +w · len).

For the definitions of pq-eu-cma and pq-prf we refer the reader
to Appendix A.

4.1 (Post-quantum) interleaved target subset

resilience.

Before we start with the proof, we need to define one new security
property for hash functions. The security of HORST, the few-time
signature scheme used in the original SPHINCS was based on the
notion of target subset-resilience. Here, we define a strengthening of
this notion called interleaved target subset resilience (itsr), which
captures the use of FORS in SPHINCS+.

The idea for itsr is that from a theoretical point of view, one can
think of the 2h FORS instances as a single huge HORS-style [43]
signature scheme. The secret key consists of 2h key sets, which in
turn each consist of k key subsets of t secret n-byte values. The
message digest function Hmsg maps a message to a key set (by
outputting the corresponding index) and a set of indexes such that
each index is used to select one secret value per key subset of the
selected key set.

Formally, the security of this multi-instance FORS boils down to
the inability of an adversary
• to learn secret values which were not disclosed before,
• to replace secret values by values of its choosing, and
• to find a message which is mapped to a key set and a set of

indexes such that the adversary has already seen all secret
values indicated by the indexes for that key set.

The former two points will be shown to follow from the properties
of F, H, and Th as well as those of PRF. The latter point is exactly
what itsr captures.

Definition 18 (pq-itsr). Let H : {0, 1}κ × {0, 1}α → {0, 1}m
be a keyed hash function. Further consider the mapping function
MAPh,k ,t : {0, 1}m → {0, 1}h × [0, t − 1]k which, for parameters
h,k, t , maps an m-bit string to a set of k indexes ((I , 1, J1), . . . ,
(I ,k, Jk)), where I is chosen from [0, 2h − 1] and each Ji is chosen
from [0, t − 1]. Note that the same I is used for all tuples (I , i, Ji).

We define the success probability of any (quantum) adversary
A against itsr of H. Let G = MAPh,k ,t ◦ H. The definition uses
an oracle O(·) which on input an α-bit message Mi samples a key
Ki ←R {0, 1}κ and returns Ki and G(Ki ,Mi). The adversary may
query this oracle with messages of its choosing.

Succitsr
H,q (A) = Pr

[
(K,M) ← AO(·)(1n)

s.t. G(K,M) ⊆
q⋃
j=1

G(Kj ,Mj) ∧ (K,M) <
{
(Kj ,Mj)

}q
j=1

]
,

where q denotes the number of oracle queries of A and the pairs{
(Kj ,Mj)

}q
i=1 represent the responses of oracle O.

We define the pq-itsr insecurity of a keyed hash function against
q-query, time-ξ adversaries as the maximum advantage of any
quantum adversary A with running time ≤ ξ , that makes no more
than q queries:

InSecpq-itsr (H; ξ ,q) = max
A

Succitsr
H,q (A) .

Note that this is actually a weakening of the target subset re-
silience assumption used in the analysis of SPHINCS in the multi-
target setting. In the multi-target version of target subset resilience,
A was able to freely choose the common index I for its output.
In interleaved target subset resilience, I is determined by G and
input M . We assess the hardness of pq-itsr through a complexity
analysis of generic attacks against pq-itsr in Section 5.

4.2 Security reduction

The security reduction follows largely along the lines of the original
SPHINCS security reduction. The new security properties shift
certain details towards the analysis of the tweakable hash function
and the message-digest function. In the remainder of this section
we will prove Theorem 17.

Proof (of Theorem 17) . We want to bound the success proba-
bility of a (quantum) adversary A against the EU-CMA security of
SPHINCS+. Towards this end we use the following series of games.

We start with GAME.0 which is the EU-CMA experiment for
SPHINCS+ (ExpEU-CMA

SPHINCS+
(A)) as defined in Appendix A. Now con-

sider a GAME.1 which is essentially GAME.0 but the experiment
makes use of a SPHINCS+ version where all the outputs of PRF,
i.e., the WOTS+ and FORS secret-key elements, get replaced by
truly random values. Recall that in GAME.0 these were outputs of
PRF on input secret SK.seed and a unique address per generated
secret-key element.

Next, consider a game GAME.2, which is the same as GAME.1
but in the signing oracle PRFmsg(SK.prf, ·) is replaced by a truly
random function.

9

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Afterwards, we consider GAME.3, which differs from GAME.2 in
that we are considering the game lost if an adversary outputs a valid
forgery (M, SIG) where the FORS signature part of SIG contains
only secret values which were contained in previous signatures
with that FORS key pair obtained by A via the signing oracle.

Finally, we consider game GAME.4, which differs from GAME.3
in that we are considering the game lost if an adversary outputs
a valid forgery (M, SIG) which (implicitly or explicitly) contains a
second preimage for an input to Th that was part of a signature
returned as a signing-query response. By implicitly we here refer
to a second preimage which is observed during the verification of
the signature, e.g., when computing a root node from a leaf and an
authentication path.

In the following we bound the differences in success probability
of any adversary and the success probability of an adversary in the
last game. The different numbers of queries refer to the quantities
in the theorem statement.

Analyzing this sequence of games leads to the following five
claims which we prove in Appendix E.

Claim 19.���SuccGAME.1 (A) − SuccGAME.0 (A)
��� ≤ InSecpq-prf (PRF; ξ ,q1) .

Claim 20.���SuccGAME.2 (A) − SuccGAME.1 (A)
��� ≤ InSecpq-prf

(
PRFmsg; ξ ,qs

)
.

Claim 21.���SuccGAME.3 (A) − SuccGAME.2 (A)
��� ≤ InSecpq-itsr

(
Hmsg; ξ ,qs

)
.

Claim 22.���SuccGAME.4 (A) − SuccGAME.3 (A)
��� ≤ InSecpq-sm-tcr (Th; ξ ,q2) .

Claim 23.
SuccGAME.4 (A) ≤ 3 · InSecpq-sm-tcr (F; ξ ,q3)

+ InSecpq-sm-dspr (F; ξ ,q3) .

We combine the bounds from the claims to obtain the bound of
the theorem. □

5 SECURITY LEVEL / SECURITY AGAINST

GENERIC ATTACKS

As shown in Theorem 17, the security reduction for Construction 6,
and the security arguments for specific instantiations in the last sec-
tion, the security of SPHINCS+ relies on properties of the concrete
instantiations of all the cryptographic functions and the way they
are used. In the following we assume that there are no structural at-
tacks against the used concrete instantiations of H1, H2, and H from
Construction 6 and Construction 7 as well as for Hmsg, PRFmsg,
and PRF. We thus consider generic classical and quantum attacks
against dm-spr, PRF security, and itsr. Runtime of adversaries is
counted in terms of calls to the used functions. We summarize the
bounds in Table 2.
Generic attacks against dm-spr. To evaluate the complexity of
generic attacks against hash-function properties, the hash functions

Table 2: Bounds for generic quantum and classical

attacks against used function properties. We added

a superscript (c) for conjectured bounds. We use

X =
∑
γ

(
1 −

(
1 − 1

t

)γ)k (qs
γ
) (

1 − 1
2h

)qs−γ 1
2hγ .

dm-spr/ prf dm-dspr(c) itsr

classical Θ
(
q+1
2n

)
Θ

(
q+1
2n

)
Θ ((q + 1)X)

quantum Θ
(
(q+1)2

2n
)

Θ
(
(q+1)2

2n
)

Θ
(
(q + 1)2X

)
are commonly modeled as random (keyed) functions. For random
functions there is no difference between dm-spr and multi-function
multi-target second-preimage resistance (mm-spr). Every key effec-
tively selects a new random (unkeyed) function, independent of the
key being random or not. Hence, the complexity of generic attacks
is the same for both notions. We formally show this in Appendix C.

In [33] it was shown that the success probability of any classical
q-query adversary against mm-spr of a random function with range
{0, 1}n (and hence also against dm-spr) is exactly (q + 1)/2n . For q-
query quantum adversaries the success probability is Θ((q+1)2/2n).
Note that these bounds are independent of the number of targets.
Generic attacks against dm-dspr. As argued above, for random
keyed functions there is no difference between the distinct-function
and multi-function cases. In [10] it is shown that the success proba-
bility of a quantum adversary against (single-target) dspr of ann-bit
function is O((q + 1)2/2n). Considering a classical adversary this
bound becomes O(q/2n). Moreover, the authors of [10] give a loose
reduction from dspr to dm-dspr (which they call T-DSPR). The
reduction loses exactly one over the number of targets. However,
as also discussed in [10], the best attack against DSPR the authors
could think of is executing a high-probability (second-)preimage
attack. Given that multi-function multi-target attacks do not give
an adversary any advantage over single-target attacks for PRE and
SPR, we conjecture that the same holds for DPSR. Hence, we use
the above bounds: O((q + 1)2/2n) for quantum and O((q + 1)/2n)
for non-quantum adversaries.
Generic attacks against prf security. The best generic attack
against the prf security of a keyed function is commonly believed
to be exhaustive search for the key. Hence, for a function with
key space {0, 1}n the success probability of a classical adversary
that evaluates the function on qk keys is bounded by (qk + 1)/2n .
For qk -query quantum adversaries the success probability of ex-
haustive search in an unstructured space with {0, 1}n elements
is Θ((qk + 1)2/2n) as implicitly shown in [33] (this can be seen
considering this as preimage search in a random function).
Generic attacks against itsr. To evaluate the attack complex-
ity of generic attacks against interleaved target subset resilience
we again assume that the used hash function is a random keyed
function.

Recall the parametersh,k , and t = 2a , which define the following
process of choosing sets: generate independent uniformly random
integers I , J1, . . . , Jk , with I chosen from [0, 2h − 1] and each Ji cho-
sen from [0, t −1]; then define S = {(I , 1, J1), (I , 2, J2), . . . , (I ,k, Jk)}.

10

The SPHINCS+ Signature Framework

(In the context of SPHINCS+, S is a set of positions of FORS private-
key values revealed in a signature: I selects the FORS instance, and
Ji selects the position of the value revealed from the ith set inside
this FORS instance. To distinguish the number of queries to the
oracle from the itsr game from hash-function queries, we call the
former qs and the latter qh .)

The core combinatorial question here is the probability that
S0 ⊂ S1 ∪ · · · ∪ Sqs , where each Si is generated independently
by the above process. (In the context of SPHINCS+, this is the
probability that a new message digest selects FORS positions that
are covered by the positions already revealed in qs signatures.)
Write Sα as {(Iα , 1, Jα ,1), (Iα , 2, Jα ,2), . . . , (Iα ,k, Jα ,k)}.

For each α , the event Iα = I0 occurs with probability 1/2h ,
and these events are independent. Consequently, for each γ ∈
{0, 1, . . . ,qs }, the number of indexes α ∈ {1, 2, . . . ,qs } such that
Iα = I0 is γ with probability

(qs
γ
)
(1 − 1/2h)qs−γ /2hγ .

Define DarkSideγ as the conditional probability that (I0, i, J0,i) ∈
S1 ∪ · · · ∪ Sqs , given that the above number is γ . In other words,
1−DarkSideγ is the conditional probability that (I0, i, J0,i) is not in
the set {(I1, i, J1,i), (I2, i, J2,i), . . . , (Iqs , i, Jqs ,i)}. There are exactly
γ choices of α ∈ {1, 2, . . . ,qs } for which Iα = I0, and each of these
has probability 1 − 1/t of Jα ,i missing J0,i . These probabilities are
independent, so 1 − DarkSideγ = (1 − 1/t)γ .

The conditional probability that S0 ⊂ S1 ∪ · · · ∪ Sqs , again given
that the above number is γ , is the kth power of the DarkSideγ
quantity defined above. Hence the total probability ϵ that S0 ⊂
S1 ∪ · · · ∪ Sqs is

∑
γ

DarkSidekγ
(
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ

=
∑
γ

(
1 −

(
1 − 1

t

)γ)k (
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ
.

For example, if t = 214, k = 22, h = 64, and qs = 264, then
ϵ ≈ 2−256.01 (with most of the sum coming from γ between 7 and
13). The set S0 thus has probability 2−256.01 of being covered by
264 sets S1, . . . , Sqs . (In the SPHINCS+ context, a message digest
chosen by the attacker has probability 2−256.01 of selecting positions
covered by 264 previous signatures.)

Hence, for any classical adversary which makes qh queries to
Hmsg the success probability is

(qh + 1)
∑
γ

(
1 −

(
1 − 1

t

)γ)k (
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ
.

For randomHmsg the task of finding a message digest that is covered
by the previous signatures is search in unstructured data. Hence,
we can reduce average search as defined in Definition 31 to this
task. This can be shown along the lines of the proofs in Appendix C.
This leads to a success probability for quantum adversaries of

O

(
(qh + 1)2

∑
γ

(
1 −

(
1 − 1

t

)γ)k (
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ

)
.

For computations, note that the O is small, and that (1 − 1/t)γ is
well approximated by 1 − γ/t .

Security Level of a Given Parameter Set. If we take the above
success probabilities for generic attacks and plug them into The-
orem 10, Theorem 15, and Theorem 17 we get a bound on the
success probability of SPHINCS+-robust against generic attacks of
classical and quantum adversaries. The final bounds are the same
for SPHINCS+-simple up to small constant factors, hidden by the
O-notation, given that our conjectures are true. Let qs denote the
number of adversarial signature queries. For classical adversaries
that make no more than qh queries to the cryptographic hash func-
tion used, this leads to

InSeceu-cma (
SPHINCS+;qh

)
≤

qh + 1
2n +

qh + 1
2n

+ InSecitsr (
Hmsg;qh

)
+
qh + 1

2n + 3 · qh + 1
2n +

qh + 1
2n

= O

(
qh
2n + qh

∑
γ

(
1 −

(
1 − 1

t

)γ)k (
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ

)
.

Similarly, for quantum adversaries that make no more than qh
queries to the cryptographic hash function used, this leads to

InSecpq-eu-cma (
SPHINCS+;qh

)
≤
O(qh + 1)2

2n +
O(qh + 1)2

2n

+InSecpq-itsr (
Hmsg;qh

)
+
O(qh + 1)2

2n +3· O(qh + 1)2

2n +
O(qh + 1)2

2n

= O

(
qh

2

2n + qh
2
∑
γ

(
1 −

(
1 − 1

t

)γ)k (
qs
γ

) (
1 − 1

2h

)qs−γ 1
2hγ

)
.

To compute the security level also known as bit security one sets
this bound on the success probability to equal 1 and solves for qh .

6 PARAMETER SELECTION AND SPHINCS+

INSTANCES

What is still missing to obtain concrete signature schemes from the
SPHINCS+ framework, is choosing parameters and instantiating
the tweakable hash functions. We explain our approach to address-
ing these two aspects in this section and then give examples of
concrete instantiations in Section 7.
Selecting parameters. Our approach to selecting the hyper-tree
parameters h and d , the FORS parameters b and k , and the Win-
ternitz parameter w is to fix the maximum number of signatures
and the target security level and then search through a large space
of possible parameter sets. For each of those parameter sets we
compute the probability ϵ that an attacker-provided message can
be signed with the information known about FORS secret keys after
the maximum number of messages has been signed (see Section 5).

For each of the parameter sets with a probability ϵ satisfying the
desired security level, we accept the parameter set as a possibly
interesting one and print the parameters together with the resulting
signature size and an estimate of performance based on the total
number of hash calls. In a post-processing step we use standard
command-line tools to sort the output according to size or speed
and pick the parameter set with the most favorable trade-off for the
given application. The complete Python script we use to explore the
parameter space is given in Listing 1 in Appendix G and available
for download at https://sphincs.org/software.html.

11

https://sphincs.org/software.html

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Instantiating tweakable hash functions. Finally, we propose a
total of 6 different instantiations of the tweakable hash functions.
Concretely, we are using Construction 6 (in the following referred
to as robust) and Construction 7 (in the following referred to as
simple). For each of those we recommend three different instanti-
ations of the underlying hash functions H1 and H2 (for Construc-
tion 6) and H (for Construction 7): SHA-256 [38], SHAKE256 [39],
and Haraka [34]. Note that the instantiations using Haraka cannot
reach the same security levels that can be reached with SHA-256
or SHAKE256. This is due to a generic meet-in-the-middle attack
computing collisions in the internal state, which has (classical)
complexity 2128. For a full specification of the instantiations of
tweakable hash functions see Appendix F.

7 PERFORMANCE AND COMPARISON

In order to illustrate the performance of signature schemes de-
rived from the SPHINCS+ framework we now give instantiations
targeting the security level of other symmetric-crypto-based sig-
nature schemes. Specifically, we derive signature schemes to com-
pare to the SPHINCS-256 scheme [9], to the NIST round-1 can-
didate Gravity-SPHINCS [6], and to the NIST round-2 candidate
Picnic [17]. Generally all these stateless signature schemes based
only on symmetric primitives do not reach the performance of, e.g.,
lattice-based signature schemes like Dilithium [22, 23], Falcon [25],
or qTESLA [3, 12]. They are mainly interesting for applications with-
out strong latency requirements, such as offline code signing or
certificate signing. This makes signature size (and only to a smaller
extent public-key size, signing speed, and verification speed) the
most important optimization target. In the comparisons, we thus
primarily focus on finding parameter sets with similar signature
size and then compare computational performance. Note that for
hash-based signatures, a rule of thumb is that a linear decrease in
signature size comes with an exponential decrease in signing speed.
See Table 3 for details on sizes and cycle counts.

Comparison to SPHINCS-256. SPHINCS-256 was the first signa-
ture scheme advertising a post-quantum security level of 128 bits.
This claim is derived from an analysis of the security of individual
building blocks and a theorem stating that the whole scheme is
secure as long as each of the building blocks is secure. The state-
ment ignores a significant tightness gap in the proof. Part of this
tightness gap was later shown to be more than just a proof artifact,
but actually due to attacks that compute a preimage to one out of

many hashes inside the SPHINCS-256 tree [33]. As a consequence,
the actual security of SPHINCS-256 is less than 190 bits classically
and 95 bits post-quantum. SPHINCS+ includes protections against
such multi-target attacks and can thus achieve this security level
with n = 192. The hash functions H and F used in SPHINCS-256 are
built from the 512-bit ChaCha12 permutation [8] in a sponge mode
with capacity 256 bits. This construction is susceptible to the same
kind of meet-in-the-middle collision attacks with complexity 2128

that apply to Haraka. For the comparison to SPHINCS-256, we thus
choose robust tweakable hash functions derived from Haraka. It
should be noted that SPHINCS+ in this case makes slightly stronger
assumptions as Construction 6 requires a proof in the QROM to
achieve compact public parameters (see Section 2.3 for a discussion
of what slightly means in this context). Putting all this together,

with parameters n = 192,h = 51,d = 17,b = 7,k = 45,w = 16
we obtain a signature scheme, which has signatures that are 25%
shorter than SPHINCS-256 signatures, has a signing routine that
is 1.7× faster than SPHINCS-256 signing and, like SPHINCS-256,
guarantees security for up to 250 signatures under the same key.

Comparison to Gravity-SPHINCS. The second natural compar-
ison is with the NIST round-1 candidate Gravity-SPHINCS [6, 7].
Gravity-SPHINCS aims for a simpler scheme and increased speed
at the cost of basing security on collision resistance. Like SPHINCS-
256, it does not build in countermeasures against multi-target at-
tacks. So the best attacks against Gravity-SPHINCS—which rely on
computing a preimage for one out of many targets—are consider-
ably more efficient than computing a preimage in the underlying
hash function. Compared to SPHINCS+ it does not make use of
a ROM assumption which SPHINCS+ needs even for the robust
parameters (again, note that the assumption here is only necessary
to prove the public parameter compression secure). A conservative
instantiation of SPHINCS+, which achieves a higher security level
both in terms of what is proven and against best known attacks
uses parameters n = 192,h = 66,d = 22,b = 8,k = 33,w = 16
with robust tweakable hash functions derived from Haraka (which
is also used in Gravity-SPHINCS). As Table 3 shows, this instan-
tiation has slightly larger signatures and slightly slower signing
speed than Gravity-SPHINCS. However, this is due to a “caching
mechanism” in Gravity-SPHINCS that is orthogonal to all design
decisions discussed in this paper: Gravity-SPHINCS uses a higher
top layer in the tree, computes this layer only once during key
generation and stores it in the secret key. This design choice results
in somewhat smaller signatures and faster signing at the cost of
increased code complexity, much longer key-generation time and
much bigger secret-key size.

More similar in spirit to Gravity-SPHINCS is SPHINCS+ with the
simple instantiation of tweakable hash functions, which are essen-
tially exactly what Gravity-SPHINCS uses plus multi-target protec-
tion. This multi-target protection allows us to choose a smaller value
of n to achieve the same level of security against known attacks
(requiring second preimages) as Gravity-SPHINCS, but a lower level
of security when following the reductions from collision resistance.
With parameters n = 192,h = 64,d = 16,b = 7,k = 49,w = 16 and
the simple construction for tweakable hash functions SPHINCS+
achieves smaller signatures, only slightly slower signing speed, and
(because it does not employ the caching mechanism) much faster
key generation and smaller secret keys. Note that generally Gravity-
SPHINCS has faster verification than SPHINCS+. This is because
Gravity-SPHINCS employs plain hashing for node computations,
while SPHINCS+ needs more costly calls to tweakable hashes.

Comparison to Picnic. Finally, we compare SPHINCS+ to the
only other symmetric-crypto-based NIST round-2 candidate, Pic-
nic [17, 18]. Picnic has three variants, two based on the Fiat-Shamir
transform [24] with a non-tight security reduction in the ROM and
one based on the Unruh transform [44–46] with a non-tight reduc-
tion in the QROM. Signatures of Picnic with the Unruh transform
are about 4× larger than those obtained from the SPHINCS+ frame-
work for comparable security levels. Also, the “Picnic1” Fiat-Shamir
signatures are more than a factor 2 larger than the speed-optimized
instantiations of SPHINCS+ proposed to NIST (see below). The only

12

The SPHINCS+ Signature Framework

Table 3: Performance comparison of symmetric-crypto-based signature schemes on the Intel Haswell microarchitec-

ture. All software is optimized using architecture-specific optimizations such as AESNI or AVX2 instructions.

Scheme Cycles Bytes

keypair sign verify sig pk sk

Comparison to SPHINCS-256

SPHINCS-256 [9] 2 868 464a 50 462 856a 1 672 652a 41 000 1 056 1 088

SPHINCS+ (Haraka, robust) 1 254 968b 29 015 002b 2 739 770b 30 696 48 96
(n = 192,h = 51,d = 17,b = 7,k = 45,w = 16)

Comparison to Gravity-SPHINCS

Gravity-SPHINCS [6] 30 729 044 392a 32 564 796a 625 752a max: 35 168 32 1 048 608
(parameter-set L) avg: ?c

SPHINCS+ (Haraka, robust) 1 257 826b 38 840 268b 3 467 192b 35 664 48 96
(n = 192,h = 66,d = 22,b = 8,k = 33,w = 16)

SPHINCS+ (Haraka, simple) 1 892 462b 35 029 380b 1 460 204b 30 552 48 96
(n = 192,h = 64,d = 16,b = 7,k = 49,w = 16)

Comparison to Picnic

Picnic2-L5-FS [17] 18 244c 904 189 188c 268 485 212c max: 54 732 65 97
avg: 46 282

SPHINCS+ (SHA-256, simple) 43 317 320b 527 413 100b 5 463 884b 33 408 64 128
(n = 256,h = 63,d = 9,b = 12,k = 29,w = 16)

a As reported by SUPERCOP [11] from 3.5GHz Intel Xeon E3-1275 V3 (Haswell)
b Median of 100 runs on 3.5GHz Intel Xeon E3-1275 V3 (Haswell), compiled with gcc-5.4 -O3 -march=native -fomit-frame-pointer -flto
c As reported by SUPERCOP [11] from 3.1GHz Intel Xeon E3-1220 V3 (Haswell)
d Neither [6] nor [7] report the average size of signatures; the analysis in [5] suggests that it is about 1KB smaller than the worst-case size.

Picnic variant that offers signatures with sizes in a similar ballpark
as SPHINCS+ is the “Picnic2” instantiation. In Table 3 we compare
the NIST level-5 parameter set of Picnic2 with SPHINCS+ using pa-
rameters n = 256,h = 63,d = 9,b = 12,k = 29,w = 16 and simple
tweakable hash functions based on SHA-256. SPHINCS+ signatures
with those parameters are 28% smaller than the average Picnic2
signatures and 39% smaller than the worst-case Picnic2 signatures.
Signing of SPHINCS+ is more than 70% faster, key generation is
much slower, but verification is almost 50 times faster than for Pic-
nic2. This performance of SPHINCS+ is achieved with an instance
that has a tight QROM proof and conservative choice of underlying
symmetric primitive (SHA-256). The performance of Picnic2 on the
other hand heavily relies on version 3 of the rather aggressively
optimized symmetric encryption scheme LowMC, which was origi-
nally proposed in [2]. As far as we know, this latest version has not
been intensively studied; earlier versions were shown to not offer
the claimed security [20, 21, 42].

NIST instantiations. The instantiations of SPHINCS+ chosen
for comparison to SPHINCS-256, Gravity-SPHINCS, and Picnic
are not the recommended instantiations. The NIST submission of
SPHINCS+ includes a total of 36 instantiations (3 security levels,
3 hash functions, simple and robust instantiations, speed and size
optimized). The performance of all NIST instantiations in terms

of sizes and cycle counts for optimized software is presented in
Table 4 in Appendix H.

ACKNOWLEDGMENTS

The authors would like to thank Jean-Philippe Aumasson, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag,
Panos Kampanakis, Tanja Lange, Martin M. Lauridsen, Florian
Mendel, and Christian Rechberger, for their support and comments,
and the anonymous reviewers of CCS for finding a mistake in an
earlier version of this work. This work has been supported by the
European Research Council through Starting Grant No. 805031
(EPOQUE), by Cisco under the University Research Program, by
the U.S. National Science Foundation under grant 1913167, and by
the German Research Foundation under Cluster of Excellence 2092
“CASA: Cyber Security in the Age of Large-Scale Adversaries”.

REFERENCES

[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang,
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson,
and Daniel Smith-Tone. 2019. Status Report on the First Round of the NIST Post-
Quantum Cryptography Standardization Process. NISTIR 8240. available online
at https://doi.org/10.6028/NIST.IR.8240.

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. 2015. Ciphers for MPC and FHE. In Advances in Cryptology –

EUROCRYPT 2015 (LNCS), Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056.
Springer, 430–454. https://eprint.iacr.org/2016/687.

13

https://doi.org/10.6028/NIST.IR.8240
https://eprint.iacr.org/2016/687

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

[3] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Patrick Longa, and Jefferson E.
Ricardini. 2019. The Lattice-Based Digital Signature Scheme qTESLA. Cryptology
ePrint Archive, Report 2019/085. https://eprint.iacr.org/2019/085.

[4] Jean-Philippe Aumasson, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kam-
panakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rijneveld, and Peter Schwabe. 2019.
SPHINCS+ . Submission to NIST’s post-quantum crypto standardization project.
http://sphincs.org/data/sphincs+-round2-specification.pdf.

[5] Jean-Philippe Aumasson and Guillaume Endignoux. 2017. Clarifying the subset-
resilience problem. Cryptology ePrint Archive, Report 2017/909. https://eprint.
iacr.org/2017/909.

[6] Jean-Philippe Aumasson and Guillaume Endignoux. 2017. Gravity-SPHINCS.
Submission to the NIST PQC project. https://github.com/gravity-postquantum/
gravity-sphincs/blob/master/Supporting_Documentation/submission.pdf.

[7] Jean-Philippe Aumasson and Guillaume Endignoux. 2018. Improving stateless
hash-based signatures. In Topics in Cryptology – CT-RSA 2018 (LNCS), Nigel P.
Smart (Ed.), Vol. 10808. Springer, 219–242. https://eprint.iacr.org/2017/933.

[8] Daniel J. Bernstein. 2008. ChaCha, a variant of Salsa20. SASC 2008: The State of
the Art of Stream Ciphers.

[9] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based Signatures. In
Advances in Cryptology – EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin
(Eds.). LNCS, Vol. 9056. Springer, 368–397. https://eprint.iacr.org/2014/795.

[10] Daniel J. Bernstein and Andreas Hülsing. 2018. Decisional second-preimage
resistance: When does SPR imply PRE? https://eprint.iacr.org/2019/492.pdf.

[11] Daniel J. Bernstein and Tanja Lange. accessed 2019-05-10. eBACS: ECRYPT
Benchmarking of Cryptographic Systems. http://bench.cr.yp.to.

[12] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick Longa, Harun
Polat, Jefferson E. Ricardini, and Gustavo Zanon. 2019. Submission to NIST’s post-
quantum project (2nd round): lattice-based digital signature scheme qTESLA.
Round-2 submission to the NIST PQC project. https://qtesla.org/wp-content/
uploads/2019/04/qTESLA_round2_04.26.2019.pdf.

[13] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. 2011. Random Oracles in a Quantum World. In ASIACRYPT

2011, DongHoon Lee and Xiaoyun Wang (Eds.). LNCS, Vol. 7073. Springer, 41–69.
[14] Leon Groot Bruinderink and Andreas Hülsing. 2017. “Oops, I did it again” –

Security of One-Time Signatures under Two-Message Attacks. In International

Conference on Selected Areas in Cryptography – SAC 2017 (LNCS), Carlisle Adams
and Jan Camenisch (Eds.). Springer, 299–322. https://eprint.iacr.org/2016/1042.

[15] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus
Rückert. 2011. On the Security of the Winternitz One-Time Signature Scheme.
In Africacrypt 2011, A. Nitaj and D. Pointcheval (Eds.). LNCS, Vol. 6737. Springer,
363–378.

[16] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. 2011. XMSS - A Prac-
tical Forward Secure Signature Scheme Based on Minimal Security Assumptions.
In Post-Quantum Cryptography, Bo-Yin Yang (Ed.). LNCS, Vol. 7071. Springer,
117–129. https://eprint.iacr.org/2011/484.

[17] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz, Vladimir
Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel
Slamanig, Xiao Wang, and Greg Zaverucha. 2019. The Picnic Signature Scheme –
Design Document. Round-2 submission to the NIST PQC project. version 2.0,
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf.

[18] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-
Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, CCS’17. ACM, 1825–1842. https://eprint.iacr.org/2017/279.
[19] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume. 2008.

Digital Signatures Out of Second-Preimage Resistant Hash Functions. In Post-

Quantum Cryptography, Johannes Buchmann and Jintai Ding (Eds.). LNCS,
Vol. 5299. Springer, 109–123.

[20] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. 2015. Optimized In-
terpolation Attacks on LowMC. In Advances in Cryptology – ASIACRYPT 2015

(LNCS), Tetsu Iwata and Jung Hee Cheon (Eds.), Vol. 9558. Springer, 535–560.
https://eprint.iacr.org/2015/418.

[21] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. 2015. Higher-
Order Cryptanalysis of LowMC. In Information Security and Cryptology – ICISC

2015 (LNCS), Soonhak Kwon and Aaram Yun (Eds.), Vol. 9558. Springer, 87–101.
https://eprint.iacr.org/2015/407.

[22] Láo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, , and Damien Stehlé. 2019. CRYSTALS–Dilithium: Algorithm
Specification and Supporting Documentation. Round-2 submission to the NIST
PQC project. https://pq-crystals.org/dilithium/data/dilithium-specification-
round2.pdf.

[23] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS – Dilithium: Digital Sig-
natures from Module Lattices. Transactions on Cryptographic Hardware and

Embedded Systems 1 (2018), 238–268. Issue 2018.
[24] Amos Fiat and Adi Shamir. 1986. How To Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology – CRYPTO ’86

(LNCS), Andrew M. Odlyzko (Ed.), Vol. 263. Springer, 186–194.
[25] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,

Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. 2019. Falcon: Fast-Fourier Lattice-based Com-
pact Signatures over NTRU – Specifications v1.1. Round-2 submission to the
NIST PQC project. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-2/submissions/Falcon-Round2.zip.

[26] Oded Goldreich. 1987. Two Remarks Concerning the Goldwasser-Micali-Rivest
Signature Scheme. In Advances in Cryptology - CRYPTO ’86, Andrew M. Odlyzko
(Ed.). LNCS, Vol. 263. Springer, 104–110.

[27] Oded Goldreich. 2004. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, Cambridge, UK.

[28] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17, 2
(1988), 281–308.

[29] Andreas Hülsing. 2013. Practical Forward Secure Signatures using Minimal Security

Assumptions. Ph.D. Dissertation. TU Darmstadt. http://tuprints.ulb.tu-darmstadt.
de/3651.

[30] Andreas Hülsing. 2013. W-OTS+ – Shorter Signatures for Hash-Based Signature
Schemes. In Progress in Cryptology – AFRICACRYPT 2013 (LNCS), Amr Youssef,
Abderrahmane Nitaj, and Aboul-Ella Hassanien (Eds.), Vol. 7918. Springer, 173–
188. https://eprint.iacr.org/2017/965.

[31] Andreas Hülsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. 2018. XMSS: eXtended Merkle Signature Scheme. RFC 8391. https:
//doi.org/10.17487/RFC8391 https://rfc-editor.org/rfc/rfc8391.txt.

[32] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. 2013. Optimal Parame-
ters for XMSSMT . In Security Engineering and Intelligence Informatics, Alfredo
Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida Xu (Eds.).
LNCS, Vol. 8128. Springer, 194–208. https://eprint.iacr.org/2017/966.

[33] Andreas Hülsing, Joost Rijneveld, and Fang Song. 2016. Mitigating Multi-target
Attacks in Hash-Based Signatures. In PKC 2016 (LNCS), Chen-Mou Cheng, Kai-
Min Chung, Guiseppe Persiano, and Bo-Yin Yang (Eds.), Vol. 9614. Springer,
387–416. https://eprint.iacr.org/2015/1256.

[34] Stefan Kölbl, Martin Lauridsen, Florian Mendel, and Christian Rechberger. 2017.
Haraka v2 – Efficient Short-Input Hashing for Post-Quantum Applications. IACR
Transactions on Symmetric Cryptology 2016, 2 (2017), 1–29. https://doi.org/10.
13154/tosc.v2016.i2.1-29 https://eprint.iacr.org/2016/098.

[35] Leslie Lamport. 1979. Constructing digital signatures from a one way function.
Technical Report SRI-CSL-98. SRI International Computer Science Laboratory.

[36] David McGrew, Michael Curcio, and Scott Fluhrer. 2019. Leighton-Micali Hash-
Based Signatures. RFC 8554. https://doi.org/10.17487/RFC8554

[37] Ralph Merkle. 1990. A Certified Digital Signature. In Advances in Cryptology –

CRYPTO ’89 (LNCS), Gilles Brassard (Ed.), Vol. 435. Springer, 218–238.
[38] NIST 2015. FIPS PUB 180-4: Secure Hash Standard (SHS). http://nvlpubs.nist.

gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.
[39] NIST 2015. FIPS PUB 202 – SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
202.pdf.

[40] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. https://csrc.nist.gov/CSRC/
media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf.

[41] Bart Preneel and Paul C. van Oorschot. 1995. MDx-MAC and Building Fast MACs
from Hash Functions. In Advances in Cryptology – CRYPTO ’95 (LNCS), Vol. 963.
Springer, 1–14.

[42] Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. 2018. Cryptanalysis of
Low-Data Instances of Full LowMCv2. IACR Transactions on Symmetric Cryptol-

ogy 2018, 3 (2018), 163–181. https://doi.org/10.13154/tosc.v2018.i3.163-181.
[43] Leonid Reyzin and Natan Reyzin. 2002. Better than BiBa: Short One-Time Signa-

tures with Fast Signing and Verifying. In Information Security and Privacy 2002,
Lynn Batten and Jennifer Seberry (Eds.). LNCS, Vol. 2384. Springer, 1–47.

[44] Dominique Unruh. 2012. Quantum Proofs of Knowledge. In Advances in Cryp-

tology – EUROCRYPT 2012 (LNCS), David Pointcheval and Thomas Johansson
(Eds.), Vol. 7237. Springer, 135–152.

[45] Dominique Unruh. 2015. Non-Interactive Zero-Knowledge Proofs in the Quantum
Random Oracle Model. In Advances in Cryptology – EUROCRYPT 2015 (LNCS),
Elisabeth Oswald and Marc Fischlin (Eds.), Vol. 9056. Springer, 755–784.

[46] Dominique Unruh. 2016. Computationally binding quantum commitments. In
Advances in Cryptology – EUROCRYPT 2016 (LNCS), Marc Fischlin and Jean-
Sébastien Coron (Eds.), Vol. 9666. Springer, 497–527.

14

https://eprint.iacr.org/2019/085
http://sphincs.org/data/sphincs+-round2-specification.pdf
https://eprint.iacr.org/2017/909
https://eprint.iacr.org/2017/909
https://github.com/gravity-postquantum/gravity-sphincs/blob/master/Supporting_Documentation/submission.pdf
https://github.com/gravity-postquantum/gravity-sphincs/blob/master/Supporting_Documentation/submission.pdf
https://eprint.iacr.org/2017/933
https://eprint.iacr.org/2014/795
https://eprint.iacr.org/2019/492.pdf
http://bench.cr.yp.to
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf
https://qtesla.org/wp-content/uploads/2019/04/qTESLA_round2_04.26.2019.pdf
https://eprint.iacr.org/2016/1042
https://eprint.iacr.org/2011/484
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf
https://eprint.iacr.org/2017/279
https://eprint.iacr.org/2015/418
https://eprint.iacr.org/2015/407
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/Falcon-Round2.zip
http://tuprints.ulb.tu-darmstadt.de/3651
http://tuprints.ulb.tu-darmstadt.de/3651
https://eprint.iacr.org/2017/965
https://doi.org/10.17487/RFC8391
https://doi.org/10.17487/RFC8391
https://rfc-editor.org/rfc/rfc8391.txt
https://eprint.iacr.org/2017/966
https://eprint.iacr.org/2015/1256
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://doi.org/10.13154/tosc.v2016.i2.1-29
https://eprint.iacr.org/2016/098
https://doi.org/10.17487/RFC8554
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.13154/tosc.v2018.i3.163-181

The SPHINCS+ Signature Framework

A SECURITY MODELS AND DEFINITIONS

In the following we discuss post-quantum security and the quantum-
accessible random oracle model (QROM). Afterwards we recall
the definitions of post-quantum existential unforgeability under
adaptive chosen-message attacks (pq-eu-cma) and post-quantum-
secure pseudorandom functions (pq-prf).

Post-quantum security and the QROM. In this work we are
concerned with the post-quantum security of the cryptographic
schemes presented. In this setting, we assume that all honest parties
use conventional hardware (often referred to as being ‘classical’).
Malicious parties, i.e., all adversaries, are generally assumed to
have access to a large-scale quantum computer (often referred to as
being ‘quantum’). In consequence, all oracles that model an honest
user and take an input unknown to the adversary are restricted to
conventional queries. The only exception to this in a post-quantum
setting are oracles that represent idealized, unkeyed primitives like
random oracles (RO)2 that do not take any input unknown to the
adversary. These oracles model functions that in reality could be
implemented by any the adversary locally on its quantum computer
as – in contrast to the oracles discussed above – the adversary
controls all inputs as well as a description of the function (in case
of ROs, the description would be the publicly available code of the
hash function used to instantiate it). Consequently, adversaries (and
reductions) have to be granted quantum access to these oracles.
Formally, this means that for the case of an RO F , executions of the
unitaries describing the adversary are interleaved with executions
of an oracle unitary

Of :
∑
x ,y

αx ,y |x⟩|y⟩ →
∑
x ,y

αx ,y |x⟩|y ⊕ f (x)⟩ ,

i.e., the adversary is described by a sequence of unitariesU0, . . . ,Uq
and executed as

UqOf Uq−1Of . . .Of U0 |0⟩ .

For more details on the QROM see the original paper [13]. In addi-
tion to introducing the QROM, the authors of [13] also showed that
history-free ROM reductions imply a reduction in the QROM. The
observation made there is that if the reduction finishes all possibly
necessary manipulations of the RO before the adversary is executed,
the RO can efficiently be simulated.

Post-quantum EU-CMA security. The standard security notion
for digital signature schemes is existential unforgeability under
adaptive chosen-message attacks (EU-CMA) [28]. The notion is
defined using the following experiment for signature scheme SIG.
In the experiment, the adversary A is given access to a signing
oracle Sign(sk, ·) which is initialized with the target secret key. The
q queries to Sign(sk, ·) are denoted {Mi }

qs
1 . Following the reasoning

above, even quantum adversaries are limited to classical queries to
this oracle as it simulates an honest and hence classical user.
Experiment ExpEU-CMA

SIG (A)

(sk, pk) ← kg()
(M⋆,σ⋆) ← Asign(sk, ·)(pk)
Return 1 iff vf(pk,M⋆,σ⋆) = 1 and M⋆ < {Mi }

qs
1 .

2On a meta-level, another exception would be cryptographic primitives used to simu-
late idealized primitives in a reduction but that is not relevant for the work at hand.

Definition 24 (pq-eu-cma). Let SIG be a digital signature scheme.
We define the success probability of an adversary A against the
EU-CMA security of SIG as the probability that the above experi-
ment outputs 1:

Succeu-cma
SIG (A) = Pr

[
ExpEU-CMA

SIG (A) = 1
]
.

We define the pq-eu-cma insecurity of a signature scheme SIG
against qs -query, time-ξ adversaries as the maximum advantage of
any possibly quantum adversary that runs in time ξ and makes no
more then qs queries to its signing oracle:

InSecpq-eu-cma (SIG; ξ ,qs) = max
A

{
Succeu-cma

SIG (A)
}
.

Post-quantum PRF security. In the following we give the defini-
tion for PRF security of a keyed function F : K × {0, 1}α → {0, 1}n .
In the definition of the PRF distinguishing advantage the adversary
A gets (classical) oracle access to either FK for a uniformly random
key K ∈ K or to a function G drawn from the uniform distribution
over the set G(α,n) of all functions with domain {0, 1}α and range
{0, 1}n . The goal of A is to distinguish both cases.

Definition 25 (pq-prf). Let F be defined as above. We define the
PRF distinguishing advantage of an adversary A as

Advprf
F (A) =

���� Pr
K←RK

[
AFK = 1

]
− Pr

G←R G(m,n)

[
AG = 1

] ���� .
We define the pq-prf insecurity of a keyed function F against

q-query, time-ξ adversaries as the maximum advantage of any
possibly quantum adversary that runs in time ξ and makes no more
then q queries to its oracle:

InSecpq-prf (F; ξ ,q) = max
A

{
Advprf

F (A)
}
.

B SM-TCR AND COLLISION RESISTANCE FOR

TWEAKABLE HASH FUNCTIONS

The notion of sm-tcr is a collision-finding notion hence we give a
comparison to collision resistance (cr) in the following. For this we
briefly introduce collision resistance for tweakable hash functions,
argue that it implies sm-tcr and afterwards show that sm-tcr is
strictly weaker than cr under the assumption that a certain kind of
sm-tcr hash functions exist.

Definition 26 (pq-cr). Let Th be a tweakable hash function as
defined above. We define the success probability of an adversary
A against cr as
Succcr

Th (A) = Pr [P ←R P, ((T1,M1) , (T2,M2)) ← A(P) :
Th(P,T1,M1) =Th(P,T2,M2) ∧ (T1,M1) , (T2,M2)] .

We define the pq-cr insecurity of a tweakable hash function
Th against time-ξ adversaries as the maximum advantage of any
possibly quantum adversary that runs in time ξ :

InSecpq-cr (Th; ξ) = max
A

{
Succcr

Th (A)
}
.

We first argue that collision resistance implies sm-tcr.

Theorem 27. LetTh be a tweakable hash function. Then for any p,
the success probability of any time-ξ (quantum) adversaryA against

sm-tcr ofTh is bounded by

Succsm-tcrTh,p (A) ≤ InSecpq-cr (Th; ξ) .
15

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Proof. Towards a contradiction, assume there exists a time-ξ
adversary A that succeeds in breaking sm-tcr of Th with proba-
bility greater InSecpq-cr (Th; ξ). We build an oracle machineMA
against cr of Th as follows. Given a public parameter P ,MA runs
A1 and simulates the Th oracle using P . When A1 is done,MA
runs A2. When A2 outputs a colliding M under P , for some tweak
Tj and message Mj ,MA outputs

((
Tj ,M

)
,
(
Tj ,Mj

))
. This is a valid

collision for Th, hence,MA succeeds whenever A succeeds. As
MA can perfectly simulate the oracle toA, the adversary succeeds
with the same probability as in the original sm-tcr game. More-
over,MA runs in essentially the same time as A. Hence,MA
finds a collision with probability greater InSecpq-cr (Th; ξ) which
contradicts the definition of InSecpq-cr (Th; ξ). □

For the other direction we give a result that shows a separation
between cr and sm-tcr for tweakable hash functions which are
key-one-way for distinct tweaks (kow) as defined next.

Definition 28 (pq-kow). Let Th be a tweakable hash function
as defined above. We define the advantage of any adversary A
against kow of Th. The definition is parameterized by the number
of queries q for which it must hold that q ≤ |T |. In the definition,
A is allowed to make q queries to an oracle Th(P, ·, ·). The query
set Q and predicate DIST({Ti }

q
i=1), are defined as in Definition 2.

Succkow
Th,q (A) = Pr

[
P ←R P, P

′ ← ATh(P , ·, ·)() :

DIST({Ti }
q
i=1) ∧ P = P ′

]
.

We define the pq-kow insecurity of a tweakable hash function
Th against q-query, time-ξ adversaries as the maximum advantage
of any possibly quantum adversary that runs in time ξ and makes
no more than q queries to its oracle:

InSecpq-kow (Th; ξ ,q) = max
A

{
Succkow

Th,q (A)
}
.

Using this we can show the following result:

Theorem 29. Let Th be a tweakable hash function. Consider the

tweakable hash function Th′ defined using an additional bit B in the

message as

Th′(P,T ,B∥M) =
{

0∥Th(P,T ,M) , ifM = P
B∥Th(P,T ,M) , otherwise.

Then the algorithm that on input P selects an arbitrary tweak T ∈ T
and outputs ((T , 0∥P), (T , 1∥P)) is a constant time, success-probability-

1 collision finder.

In addition, the success probability of any (quantum) adversary

A against sm-tcr of Th′ that runs in time ξ and makes at most p
queries to its oracle is bounded by

Succsm-tcrTh′,p (A) ≤ InSecpq-sm-tcr (Th; ξ ,p)+p·InSecpq-kow (Th; ξ ,p) .

Proof. The statement about the collision finder is true by con-
struction. It remains to show the second statement of the theorem.
Take any sm-tcr adversary A against Th′. Now consider the fol-
lowing oracle machinesMA and BA .

The oracle machineMA uses A to attack kow of Th. For this
it answers A1’s oracle queries by first stripping off the bit B, then
forwarding the query to its oracle and prepending B to the response.
Eventually,MA samples an index i ←R [1,p] uniformly at random.

When A1 is done,MA outputs Mi , where Mi is the message part
(without the first bit B) of the ith oracle query.

The oracle machine BA uses A to attack sm-tcr of Th. For
this, BA runs A1 and answers A1’s oracle queries the same way
MA does. Then it runs A2. When A2 outputs a sm-tcr solution
(j,B∥M), BA outputs (j,M).

Now we break down the case that A succeeds into two mutu-
ally exclusive cases. In the first case, the M part of at least one of
A1’s oracle queries is P . In the second case, the M part of none of
A1’s oracle queries is P . In the first case,MA outputs P with a
probability of at least 1/p. Note that although the simulation might
not be perfect in case the query was 1∥P , this does not alterMA ’s
success probability.

In the second case, BA outputs a valid sm-tcr solution for Th
with probability 1. For this note that conditioned on the second case
A1 makes no query where the M part is P . Consequently, BA ’s
Th oracle behaves identical to the Th′ oracle in the real game. Now
consider the colliding tweak-message pairs (Tj ,Bj ∥Mj), (Tj ,B∥M)
referenced by the sm-tcr solution (j,B∥M) returned by A. For the
very same reason as above, we have that Mj , P . In consequence,
we know that Bj = B as by construction the values would not
collide otherwise. Therefore, (Tj ,Mj), (Tj ,M) has to collide under
Th(P, ·, ·) and so (j,B∥M) is a valid sm-tcr solution for Th.

In sum, the success probability ofA is bound by Succsm-tcr
Th

(
BA

)
+

p · Succkow
Th

(
MA

)
, which concludes the proof. □

This shows that if tweakable hash functions exist that are pq-kow
and pq-sm-tcr, then pq-sm-tcr is a strictly weaker assumption
then pq-cr.

C HARDNESS OF PQ-MM-SPR AND

PQ-DM-SPR

In Definition 8 we defined dm-spr and explained the difference
with mm-spr. In Section 5 we discuss that the query complexity
of generic attacks against these two notions is the same. In the
following we formally prove this.

The following result on the hardness of mm-spr is shown in [33]:3

Lemma 30 ([33]). For any q-query quantum adversaryA, it holds

that

Succmm-spr
Hn

(A) ≤ 8(2q + 1)2/2n .

The proof follows a framework that starts with an average case
search problem. The problem makes use of the following distribu-
tion Dλ over boolean functions.

Definition 31 ([33]). Let F def
= { f : {0, 1}m → {0, 1}} be the col-

lection of all boolean functions on {0, 1}m . Let λ ∈ [0, 1] and ε > 0.
Define a family of distributions Dλ on F such that f ←R Dλ
satisfies

f : x 7→
{

1 with prob. λ,
0 with prob. 1 − λ

for any x ∈ {0, 1}m .
3The bound stated in [33] actually was 16(q + 1)2/2n . This missed that the factor 2
overhead in queries also gets squared.

16

The SPHINCS+ Signature Framework

Using this distribution we can define the average case search
problem Avg-Searchλ as the problem that given oracle access to
f ← Dλ , finds an x such that f (x) = 1. For any q-query quantum
algorithm A

SuccAvg-Searchλ (A) := Pr
f←Dλ

[f (x) = 1 : x ← Af (·)] .

For this average case search problem the authors give a quantum
query bound.

Lemma 32 ([33]). For any quantum algorithmA with q queries it

holds that SuccAvg-Searchλ (A) ≤ 8λ(q + 1)2.

The reduction then generates the mm-spr challenge as described
in Figure 4.

Given: f ← Dλ : [p] × {0, 1}α → {0, 1}, λ = 1/2n .
(1) For i = 1, . . . ,p, sample xi ← {0, 1}α and yi ←
{0, 1}n independently and uniformly at random. De-
note S = {xi }

p
1 .

(2) For i = 1, . . . ,p, let дi : {0, 1}α → {0, 1}n\{yi } be
a random function. We construct H̃i : {0, 1}α →
{0, 1}n as follows: for any x ∈ {0, 1}α

x 7→


yi if x = xi
yi if x , xi ∧ f (i∥x) = 1
дi (x) otherwise.

Output: mm-spr instance (S, {H̃i }
p
i=1). Namely an adversary

is given xi and oracle access to H̃i , and the goal is to find
(i∗, x∗) such that x∗ , xi∗ and H̃i∗ (x

∗) = H̃i∗ (xi∗) = yi∗ .

Figure 4: Reducing Avg-Search to mm-spr.

We will now show that the same bound applies for dm-spr:

Theorem 33. For any q-query quantum adversary A, it holds

that

Succdm-spr
H,p (A) ≤ 8(2q + 1)2/2n .

The proof of Theorem 33 is a straightforward combination of
Lemma 32 and the following Lemma.

Lemma 34. LetHn as defined above be a family of random func-

tions. Any quantum adversary A that solves dm-spr making q quan-

tum queries to Hn can be used to construct a quantum adversary

B that makes 2q queries to its oracle and solves Avg-Search 1
2n

with

success probability

Succ
Avg-Search 1

2n (B) ≥ Succdm-spr
H,p (A) .

Proof. In general the proof follows exactly the same reasoning,
as the mm-spr proof. For dm-spr things are in general slightly more
complicated when considering a random function family. The rea-
son is that we have to give both A2 and A1 oracle access to the
function family to select the target functions.

Hence, B has to simulate the full function family. Although we
are interested in query complexity, we decided to give a reductionB
that simulates the function family efficiently. The random functions
e0, e1, and д can be efficiently simulated using 2q-wise independent
hash functions as discussed in [33].

The reduction B generates function (family) H̃ as shown in
Figure 5. Then it runs A1 with H̃ as oracle.

Given: f ← Dλ : K × {0, 1}α → {0, 1}, λ = 1
2n .

(1) Let e0 : K → {0, 1}α and e1 : K → {0, 1}n be two
random functions.

(2) Let д = {дK : {0, 1}α → {0, 1}n\{e1(K)} | K ∈ K}
be a family of random functions. We construct H̃K :
{0, 1}α → {0, 1}n as follows: for any X ∈ {0, 1}α

x 7→


e1(K) if X = e0(K)
e1(K) if X , e0(K) ∧ f (K ∥X) = 1
дK (X) otherwise.

Output: Function family H̃ , e0, e1.

Figure 5: Reducing Avg-Search to dm-spr.

When A1 returns the target key set {Ki }
q
1 , B completes the

dm-spr challenge adding e0(Ki) to each Ki . Then B runs A2 on
input {Ki , e0(Ki)}

q
1 , again giving oracle access to H̃ . When A2

returns (j, x ′), B outputs Kj ∥x
′.

Per construction, f (Kj ∥X
′) = 1 whenever (j,X ′) is a valid

dm-spr solution. Moreover, the combined distribution of H̃ and
{Ki , e0(Ki)}

q
1 is exactly that of a dm-spr challenge. Hence, B suc-

ceeds exactly with A’s success probability in the dm-spr game. B
makes twice the number of oracle queries as it has to uncompute
the oracle results after use. □

D PROOF OF Theorem 11

Recall Construction 7:

Construction 7. Given a hash function H : {0, 1}2n+α →
{0, 1}n , we constructTh with P = T = {0, 1}n as

Th(P,T ,M) = H(P ∥T ∥M) .

We now give the proof for Theorem 11:

Theorem 11. Let H be a hash function as in Construction 7, mod-

eled as quantum-accessible random oracle, andTh the tweakable hash

function constructed by Construction 7. Then the success probability of

any (quantum) adversary A making at most q-queries to H, against
sm-tcr ofTh is bounded by

Succsm-tcrTh,p (A) ≤ 8(2q + 1)2/2n,

when A1 is not given access to the random oracle.

The proof of Theorem 11 is a straightforward combination of
Lemma 32 and the following Lemma.

Lemma 35. Let Th be the tweakable hash function as given by

Construction 7. Any quantum adversaryA that solves sm-tcr making

q quantum queries toTh can be used to construct a quantum adversary

B that makes 2q queries to its oracle and solves Avg-Search 1
2n

with

success probability

Succ
Avg-Search 1

2n (B) ≥ Succsm-tcrTh,p (A) .

17

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Proof. The proof follows exactly the same outline, as the previ-
ous proofs. For sm-tcr things are more complicated as we have an
initial challenge generation phase, interacting with A1.

However, the interaction with A1 is straight forward. For every
query (Mi ,Ti),B samples a random output MDi and stores the tuple
(Mi ,Ti ,MDi) in a list. When A1 did all its p queries, B samples a
random P ←R P and generates T̃h as shown in Figure 6.

Given: f ← Dλ : [p] × {0, 1}α → {0, 1}, λ = 1
2n , P ∈ P,

{(Mi ,Ti ,MDi)}
p
1 .

(1) For i = 1, . . . ,p, let дi : {0, 1}α → {0, 1}n\{MDi }

be a random function. Let h : P × T × {0, 1}α →
{0, 1}n be another random function. We construct
T̃h : P × T × {0, 1}α → {0, 1}n as follows. On input
(P∗,T ∗,M∗) ∈ P × T × {0, 1}α

(a) If T ∗ = Ti ∧ P
∗ = P

(P∗,T ∗,M∗) 7→


MDi if M∗ = Mi
MDi if M∗ , Mi ∧ f (i∥M) = 1
дi (M) otherwise.

(b) If T ∗ , Ti ∨ P
∗ , P

(P∗,T ∗,M∗) 7→ h(P∗,T ∗,M∗)

Output: Function family T̃h.

Figure 6: Reducing Avg-Search to sm-tcr.

□

The construction essentially assigns a manipulated random func-
tion to every combination of P with a tweak used by A1 and a
uniformly random function to any other combination of public-
parameters and tweak. The manipulated random functions are
manipulated in essentially the same way as in Figure 4. When T̃h
is generated, B runs A2 on input ({(Ti ,Mi)}

p
i=1 , P), giving oracle

access to T̃h. When A2 returns (j,M), B outputs j∥M .
Per construction, f (j∥M) = 1 whenever (j,M) is a valid sm-tcr

solution. The distribution of T̃h and ({(Ti ,Mi)}
p
i=1 , P) is exactly

that of a sm-tcr challenge. Hence, B succeeds exactly with A’s
success probability in the sm-tcr game. B makes twice the number
of oracle queries as it has to uncompute the oracle results after use.

E PROOFS OF CLAIMS IN SECTION 4.2

Claim 19.���SuccGAME.1 (A) − SuccGAME.0 (A)
��� ≤ InSecpq-prf (PRF; ξ ,q1) .

Proof. For any forger A, the difference in success probability
between playing in GAME.0 and GAME.1 is bounded by the PRF in-
security of PRF, InSecpq-prf (PRF; ξ ,q1), where q1 < 2h+1(kt+len)
is the number of PRF outputs used for one SPHINCS+ keypair. Oth-
erwise, we could use A to break the prf security of PRF with a
success probability greater InSecpq-prf (PRF; ξ ,q1). For this, we re-
place PRF in GAME.0 by the oracle provided by the PRF game and
output 1 whenever A succeeds. The two cases to be distinguished
in the PRF game differ by the function implemented by the pro-
vided oracle. In one case, the oracle is the real function PRF keyed

with a random secret key. For A, replacing PRF with this oracle
is identical to GAME.0. In the other case, the oracle is a truly ran-
dom function. Replacing PRF with this oracle is exactly GAME.1.
Given that the addresses used to generate the secret key values of
WOTS+ and FORS are all distinct by construction, the outputs of
a random function on these addresses leads to independent, uni-
formly distributed random values. Consequently, the difference of
the probabilities that the reduction outputs one in either of the two
cases is exactly the difference of the success probabilities of A in
the two games. □

Claim 20.���SuccGAME.2 (A) − SuccGAME.1 (A)
��� ≤ InSecpq-prf

(
PRFmsg; ξ ,qs

)
.

Proof. The difference in success probability of any adversary
A playing the two games must be bounded by the PRF insecurity of
PRFmsg, InSecpq-prf (

PRFmsg; ξ ,qs
)
, where qs denotes the number

of signing queries made by A. Otherwise, we can construct an
oracle machineMA which uses A to break the PRF security of
PRFmsg. For thisMA just replaces all calls to PRFmsg by calls to the
oracle given in the PRF game and outputs 1 whenever A succeeds.
If the oracle implements PRFmsg for a random key, this is identical
to GAME.1. If PRFmsg is a random function, this is identical to
GAME.2. □

Claim 21.���SuccGAME.3 (A) − SuccGAME.2 (A)
��� ≤ InSecpq-itsr

(
Hmsg; ξ ,qs

)
.

Proof. The only source for a difference in success probability
between these two games are the success cases which got excluded
in GAME.3. These success cases are exactly the cases where A
breaks the itsr security of Hmsg. Hence, we can build a reduction
MA which uses A to break itsr and it will succeed exactly with
the difference in success probabilities between these two games.
The reductionMA makes use of the itsr challenge function fam-
ily to instantiate a SPHINCS+ key pair. Then, for every signature
query Mi by A, it uses its oracle O to obtain Ki ,G(Ki ,Mi) in-
stead of computing this itself. Otherwise, signatures are computed
using the regular SPHINCS+ algorithms. Note that here we are
using the itsr notation; in SPHINCS+ the function key K is called
the randomizer and denoted R. The resulting signatures follow
the correct distribution as the function keys K are uniformly ran-
dom in both cases and the signatures are otherwise computed ex-
actly the same as in GAME.2. When A outputs a forgery (M, SIG),
MA extracts the function key K from SIG and outputs (K,M).
The reductionMA makes one oracle query per signature query
by A, so at most qs oracle queries in total. By construction we
got

��SuccGAME.3 (A) − SuccGAME.2 (A)
�� = Succitsr

H,qs

(
MA

)
and

so the claim follows. □

Claim 22.���SuccGAME.4 (A) − SuccGAME.3 (A)
��� ≤ InSecpq-sm-tcr (Th; ξ ,q2) .

Proof. Similar to above, the only source for a difference in suc-
cess probability between these two games are the success cases
which got excluded in GAME.4. All these success cases are cases
where A breaks the sm-tcr security of Th. Hence, we can build a

18

The SPHINCS+ Signature Framework

reductionMA that breaks sm-tcr of Th. The reductionMA builds
the whole SPHINCS+ structure of a key pair (the key pair plus the
whole hypertree including all FORS and WOTS key pairs) during set-
up using the sm-tcr oracle for Th and stores all computed values.
Thereby it defines all inputs to Th as targets. In total,MA makes
q2 =

(∑d−1
i=0 2ih/d (2h/d (w · len + 1) + 2h/d − 1

)
+ 2hk(2t − 1) <

2h+2(w · len + 2kt) queries to its oracle.
WhenMA is done, it obtains the public parameters from the

challenger and puts these into the public key together with the gen-
erated root. Then it runs A with this public key as input.MA can
answer all signature queries and perfectly simulates the EU-CMA
game for SPHINCS+.

WhenA returns a forgery,MA runs verification and compares
all computed values to the values it computed during set-up. If
MA finds a second preimage it outputs it together with its query
index (indicating when it was sent to the sm-tcr oracle). We get��SuccGAME.4 (A) − SuccGAME.3 (A)

�� = Succsm-tcr
Th,q2

(
MA

)
which

implies the claim. □

Claim 23.

SuccGAME.4 (A) ≤ 3 · InSecpq-sm-tcr (F; ξ ,q3)

+ InSecpq-sm-dspr (F; ξ ,q3) .

Proof. In GAME.4 we excluded all cases but those where A
gives us a preimage under F of a value it learned from one of
the queries. The argument is essentially the same as in previous
proofs like the original SPHINCS proof [9]: As we already excluded
the itsr case, the FORS signature in a forgery must include the
preimage of a FORS leaf node that was not previously revealed
to it – which is a preimage under F. However, the leaf might be
different from the leaf that was used by the signer (or the reduction
below), in which case it would not match the statement. By a pigeon-
hole argument it can be reasoned that this either means that the
signature leads to a second-preimage for Th or one of the root
values that can be derived from the forgery differs from the one the
signer used. The former case is exactly the case that got excluded in
GAME.4. The latter implies a WOTS+ forgery which in turn either
implies that the forgery leads to a second preimage under F for
a value A learned from a signature query, or a preimage under
F for a value A learned from a signature query as shown in [29].
The former again is what got excluded in GAME.4 and the latter is
exactly the case we are interested in.

Now we can apply the technique from [10] to show that we can
use A to either break sm-tcr or sm-dspr of F. We consider two
reductions. ReductionMAsm-tcr targets sm-tcr of F. It essentially
works like the reduction in the last proof. It uses the sm-tcr oracle
for F to generate the whole structure of a SPHINCS+ key pair.
For this it first computes all outputs of F, then obtains the public
parameters and afterwards uses those to do the Th computations.
As above,MAsm-tcr then runsA. Note that it can answer all signing
queries and the generated public key, as well as the generated
signatures follow the right distribution. The reduction MAsm-tcr
makes q3 =

(∑d−1
i=0 2ih/d (2h/dw · len)

)
+2hkt < 2h+1(kt +w ·len)

queries to its oracle.

WhenA outputs a valid forgery,MAsm-tcr extracts the preimage
under F which must exist according to the argument above. Let
this preimage be x ′. Now,MAsm-tcr also used a value x to compute
the image that F got inverted on. Let j be the index of the query
with message x .MAsm-tcr outputs the pair (j, x ′). If A fails,MA
outputs a random entry (j, x j) from its challenge list.

The second reductionMAsm-dspr aims at breaking sm-dspr. Up
to the point where the forgery is obtained,MAsm-dspr does exactly
the same asMAsm-tcr. Given the forgery,MAsm-dspr compares the
given preimage x ′ to the value x that it used to compute the image
that F got inverted on. Let j again be the index of the query that
was used to compute the inverted image. If the two values are the
same, i.e., if A returned the preimage thatMAsm-dspr already knew,
it returns (0, j). In any other case (including the case that A fails),
MAsm-dspr returns (1, j).

Now the proof proceeds essentially as in [10]. We split the uni-
verse of possible events into mutually exclusive events across two
dimensions: the number of preimages of FP ,Tj (x), and whether A
succeeds or fails in forging a signature and thereby in finding a
preimage. Specifically, define

Si
def
=

[���F−1
P ,Tj (FP ,Tj (x))

��� = i ∧ FP ,Tj (x ′) = FP ,Tj (x j)
]
,

as the event that there are exactly i preimages and thatA succeeds,
and define

Fi
def
=

[���F−1
P ,Tj (FP ,Tj (x j))

��� = i ∧ (
FP ,Tj (x

′) , FP ,Tj (x)
)]

as the event that there are exactly i preimages and that A fails.
Note that there are only finitely many i for which the events Si and
Fi can occur.

Define si and fi as the probabilities of Si and Fi respectively. The
probability space here includes the random choices of P , and any
random choices made inside A.
A’s success probability. By definition, SuccGAME.4 (A) is the
probability that x ′ is a preimage of FP ,Tj (x); i.e., that FP ,Tj (x ′) =
FP ,Tj (x). This event is the union of the events Si , so the combined
probability is SuccGAME.4 (A) =

∑
i si .

sm-dspr success probability. By definitionMAsm-dspr outputs the
pair (j,b), where b = (x ′ , x) or 1 if A fails.

Define succ as in the definition of Advsm-dspr
F,q3

(
MAsm-dspr

)
. Then

succ is the probability thatMAsm-dspr is correct, i.e., b = SPP ,Tj (x).
There are four cases:
• If the event S1 occurs, then there is exactly 1 preimage of
FP ,Tj (x), so SPP ,Tj (x) = 0 by definition of SP. Also, A suc-
ceeds: i.e., x ′ is a preimage of FP ,Tj (x), forcing x ′ = x . Hence
b = 0 = SPP ,Tj (x).
• If the event F1 occurs, then again SPP ,Tj (x) = 0, but now A

fails: i.e., A did not return a valid forgery in the sense of
GAME.4. In this case b = 1 , SPP ,Tj (x).
• If the event Si occurs for i > 1, then SPP ,Tj (x) = 1 and
A succeeds. Hence x ′ is a preimage of FP ,Tj (x), so x ′ = x

with conditional probability exactly 1
i as x is information

theoretically hidden fromA within a set of i elements. Hence
b = 1 = SPP ,Tj (x) with conditional probability exactly i−1

i .
19

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

• If the event Fi occurs for i > 1, then SPP ,Tj (x) = 1 and A
fails. Failure means thatMAsm-dspr outputsb = 1 = SPP ,Tj (x).
SoMAsm-dspr is correct.

To summarize, succ = s1 +
∑
i>1

i−1
i si +

∑
i>1 fi .

sm-dspr advantage. Define triv as we did before, in the definition
of Advsm-dspr

F,q3

(
MAsm-dspr

)
. Then we get Advsm-dspr

F,q3

(
MAsm-dspr

)
=

max {0, succ − triv}.
The analysis of triv is the same as the analysis of succ above,

except that we compare SPP ,Tj (x) to 1 instead of comparing it to b.
We have 1 = SPP ,Tj (x) exactly for the events Si and Fi with i > 1.
Hence triv =

∑
i>1 si +

∑
i>1 fi . Subtract to see that

Advsm-dspr
F,q3

(
MAsm-dspr

)
= max {0, succ − triv}

≥ succ − triv = s1 −
∑
i>1

1
i
si .

sm-tcr success probability. By definitionMAsm-tcr outputs (j, x ′).
The sm-tcr success probability Succsm-tcr

Th,q3

(
MAsm-tcr

)
is the prob-

ability that x ′ is a second preimage of x under FP ,Tj , i.e., that
FP ,Tj (x

′) = FP ,Tj (x) while x ′ , x .
Assume that event Si occurs with i > 1. Then x ′ is a preimage

of FP ,Tj (x). Furthermore, A did not learn x from a previous query,
so x is not known to A except via FP ,Tj (x). There are i preimages,
so x ′ = x with conditional probability exactly 1

i . HenceMAsm-tcr
succeeds with conditional probability i−1

i .
To summarize, Succsm-tcr

Th,q3

(
MAsm-tcr

)
≥

∑
i>1

i−1
i si .

Combining the probabilities. We conclude:

Advsm-dspr
F,q3

(
MAsm-dspr

)
+ 3Succsm-tcr

Th,q3

(
MAsm-tcr

)
≥ s1 −

∑
i>1

1
i
si + 3

∑
i>1

i − 1
i

si = s1 +
∑
i>1

3i − 4
i

si

≥ s1 +
∑
i>1

si = SuccGAME.4 (A) .

□

F INSTANTIATIONS OF HASH FUNCTIONS

In this section we define different signature schemes, which are
obtained by instantiating the cryptographic function families of
SPHINCS+ with SHA-256, SHAKE256, and Haraka. To instantiate
the tweakable hash functions, we present two different construc-
tions. Leading to a total of six instantiations. For the ‘robust’ in-
stances, we first generate pseudorandom bitmasks which are then
XORed with the input message. The masked messages are denoted
as M⊕ . For the ‘simple’ instances, we take an approach inspired by
the LMS proposal for stateful hash-based signatures [36], and omit
the bitmasks. We make this difference explicit in the instances de-
fined below. The ‘simple’ instances are faster as they omit the calls
to PRF to generate bitmasks. When combined with compressed ad-
dresses in the SHA-256 case this can lead to an estimated reduction
of the number of compression function calls by a factor of almost 4.
In return, this comes at the cost of a security argument that entirely
relies on the random oracle model.

Recall that n andm are the security parameter and the message
digest length, in bits.

F.1 SPHINCS+-SHAKE256

For SPHINCS+-SHAKE256 we define

Hmsg(R, PK.seed, PK.root,M) =

SHAKE256(R| |PK.seed| |PK.root| |M,m),
PRF(SEED,ADRS) =

SHAKE256(SEED| |ADRS,n),
PRFmsg(SK.prf, OptRand,M) =

SHAKE256(SK.prf| |OptRand| |M,n).

(1)

For the robust variant, we further define the tweakable hash
functions as

F(PK.seed,ADRS,M1) =

SHAKE256(PK.seed| |ADRS| |M⊕1 ,n),
H(PK.seed,ADRS,M1 | |M2) =

SHAKE256(PK.seed| |ADRS| |M⊕1 | |M
⊕
2 ,n),

Thℓ(PK.seed,ADRS,M) =

SHAKE256(PK.seed| |ADRS| |M⊕,n),

(2)

For the simple variant, we instead define the tweakable hash
functions as

F(PK.seed,ADRS,M1) =

SHAKE256(PK.seed| |ADRS| |M1,n),

H(PK.seed,ADRS,M1 | |M2) =

SHAKE256(PK.seed| |ADRS| |M1 | |M2,n),

Thℓ(PK.seed,ADRS,M) =

SHAKE256(PK.seed| |ADRS| |M,n),

(3)

Generating the Masks. SHAKE256 can be used as an XOF which
allows us to generate the bitmasks for arbitrary length messages
directly. For a message M with l bits we compute

M⊕ = M ⊕ SHAKE256(PK.seed| |ADRS, l).

F.2 SPHINCS+-SHA-256

In a similar way we define the functions for SPHINCS+-SHA-256
as

Hmsg(R, PK.seed, PK.root,M) =

MGF1-SHA-256(SHA-256(R| |PK.seed| |PK.root| |M),m),
PRF(SEED,ADRS) =

SHA-256(SEED| |ADRSc),
PRFmsg(SK.prf, OptRand,M) =

HMAC-SHA-256(SK.prf, OptRand| |M).

(4)

20

The SPHINCS+ Signature Framework

For the robust variant, we further define the tweakable hash
functions as
F(PK.seed,ADRS,M1) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M⊕1),
H(PK.seed,ADRS,M1 | |M2) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M⊕1 | |M
⊕
2),

Thℓ(PK.seed,ADRS,M) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M⊕),
(5)

For the simple variant, we instead define the tweakable hash
functions as
F(PK.seed,ADRS,M1) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M1),

H(PK.seed,ADRS,M1 | |M2) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M1 | |M2),

Thℓ(PK.seed,ADRS,M) =

SHA-256(PK.seed| |toByte(0, 64 − n/8)| |ADRSc | |M),

(6)

Here, we use MGF1 as defined in RFC 2437 and HMAC as defined
in FIPS-198-1. Note that MGF1 takes as the last input the output
length in bytes.

Generating the Masks. SHA-256 can be turned into a XOF using
MGF1 which allows us to generate the bitmasks for arbitrary length
messages directly. For a message M with l bytes we compute

M⊕ = M ⊕ MGF1-SHA-256(PK.seed| |ADRSc , l).

Padding PK.seed. Each of the instances of the tweakable hash
function take PK.seed as its first input, which is constant for a
given key pair – and, thus, across a single signature. This leads to
a lot of redundant computation. To remedy this, we pad PK.seed
to the length of a full 64-byte SHA-256 input block. Because of the
Merkle-Damgård construction that underlies SHA-256, this allows
for reuse of the intermediate SHA-256 state after the initial call to
the compression function which improves performance.

CompressingADRS.. To ensure that we require the minimal num-
ber of calls to the SHA-256 compression function, we use a com-
pressed ADRS for each of these instances. Where possible, this
allows for the SHA2 padding to fit within the last input block.
Rather than storing the layer address and type field in a full 4-byte
word each, we only include the least-significant byte of each. Simi-
larly, we only include the least-significant 8 bytes of the 12-byte tree
address. This reduces the address from 32 to 22 bytes. We denote
such compressed addresses as ADRSc .

Shorter Outputs. If a parameter set requires an output length
n < 256 bits for F, H, PRF, and PRFmsg we take the first n bits of
the output and discard the remaining.

F.3 SPHINCS+-Haraka

Our third instantiation is based on the Haraka short-input hash
function. Haraka is not a NIST-approved hash function, and since
it is new it needs further analysis. We specify SPHINCS+-Haraka

as third signature scheme to demonstrate the possible speed-up by
using a dedicated short-input hash function.

As the Haraka family only supports input sizes of 256 and 512
bits we extend it with a sponge-based construction based on the
512-bit permutation π . The sponge has a rate of 256-bit respectively
a capacity of 256-bit and the number of rounds used in π is 5.
The padding scheme is the same as defined in FIPS PUB 202 for
SHAKE256.

We denote this sponge as HarakaS(M,d), where M is the padded
message and d is the length of the message digest in bits. A 256-bit
message block Mi is absorbed into the state S by

Absorb(M, S) : S = π (S ⊕ (M | |toByte(0, 32))). (7)

The d-bit hash output h is computed by squeezing blocks of r bits

Squeeze(S) : h = h | |Trunc256(S)

S = π (S).
(8)

For a more efficient construction we generate the round con-
stants of Haraka using PK.seed.4 As PK.seed is the same for all
hash function calls for a given key pair we expand PK.seed using
HarakaS and use the result for the round constants in all instanti-
ations of Haraka used in SPHINCS+. In total there are 40 128-bit
round constants defined by

RC0, . . . ,RC39 = HarakaS(PK.seed, 5120). (9)

This only has to be done once for each key pair for all subse-
quent calls to Haraka hence the costs for this are amortized. We
denote Haraka with the round constants derived from PK.seed
as HarakaPK.seed. We can now define all functions we need for
SPHINCS+-Haraka as

Hmsg(R, PK.seed, PK.root,M) =

HarakaSPK.seed(R| |PK.root| |M,m),
PRF(SEED,ADRS) =

Haraka256SEED(ADRS),
PRFmsg(SK.prf, OptRand,M) =

HarakaSPK.seed(SK.prf| |OptRand| |M,n).

(10)

For the robust variant, we further define the tweakable hash
functions as

F(PK.seed,ADRS,M1) =

Haraka512PK.seed(ADRS| |M⊕1),
H(PK.seed,ADRS,M1 | |M2) =

HarakaSPK.seed(ADRS| |M⊕1 | |M
⊕
2 ,n),

Thℓ(PK.seed,ADRS,M) =

HarakaSPK.seed(ADRS| |M⊕,n),

(11)

4This is similar to the ideas used for the MDx-MAC construction [41].
21

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

For the simple variant, we instead define the tweakable hash
functions as

F(PK.seed,ADRS,M1) =

Haraka512PK.seed(ADRS| |M1),

H(PK.seed,ADRS,M1 | |M2) =

HarakaSPK.seed(ADRS| |M1 | |M2,n),

Thℓ(PK.seed,ADRS,M) =

HarakaSPK.seed(ADRS| |M,n),

(12)

For F we pad M1 and M⊕1 with zero if n < 256. Note that H and
Hmsg will always have a different ADRS and we therefore do not
need any further domain separation.

Generating the Masks. The mask for the message used in F is
generated by computing

M⊕1 = M1 ⊕ Haraka256PK.seed(ADRS) (13)
For all other purposes the masks are generated using HarakaS.

For a message M with l bytes we compute
M⊕ = M ⊕ HarakaSPK.seed(ADRS, l).

Shorter Outputs. If a parameter set requires an output length
n < 256 bits for F and PRF, we take the first n bits of the output
and discard the remaining.

Security Restrictions. Note that our instantiation using Haraka
employs the sponge construction with a capacity of 256-bits. Hence,
in contrast to SPHINCS+-SHA-256 and SPHINCS+-SHAKE256, the
SPHINCS+-Haraka instances reach NIST security level 2 for 32- and
24-byte outputs and security level 1 for 16-byte outputs.

G PARAMETER-SPACE EXPLORATION

The Python script that we use for parameter-space exploration is
given in Listing 1.

H PERFORMANCE OF THE NIST

INSTANTIATIONS

For an overview of the performance of all SPHINCS+ instantiations
submitted to NIST see Table 4. For details of the parameters of these
instances, please refer to [4].

22

The SPHINCS+ Signature Framework

Listing 1 Parameter-exploration script
Set variables in the following three lines
tsec = 192 # Pr[one attacker hash call works] <= 1/2^tsec
maxsigs = 2^64 # at most 2^72
maxsigbytes = 64000 # Don't print parameters if signature size is larger
Don't edit below this line

Generic caching layer to save time

import collections
class memoized(object):

def __init__(self,func):
self.func = func
self.cache = {}
self.__name__ = 'memoized:' + func.__name__

def __call__(self,*args):
if not isinstance(args,collections.Hashable):
return self.func(*args)

if not args in self.cache:
self.cache[args] = self.func(*args)

return self.cache[args]

SPHINCS+ analysis

F = RealIntervalField(tsec+100)
sigmalimit = F(2^(-tsec))
donelimit = 1-sigmalimit/2^20
hashbytes = tsec/8 # length of hashes in bytes

Pr[exactly r sigs hit the leaf targeted by this forgery attempt]
@memoized
def qhitprob(leaves,qs,r):

p = 1/F(leaves)
return binomial(qs,r)*p^r*(1-p)^(qs-r)

Pr[FORS forgery given that exactly r sigs hit the leaf] = (1-(1-1/F(2^b))^r)^k
@memoized
def forgeryprob(b,r,k):

if k == 1: return 1-(1-1/F(2^b))^r
return forgeryprob(b,r,1)*forgeryprob(b,r,k-1)

Number of WOTS chains
@memoized
def wotschains(m,w):

la = ceil(m / log(w,2))
return la + floor(log(la*(w-1), 2) / log(w,2)) + 1

s = log(maxsigs,2)
for h in range(s-8,s+20): # Iterate over total tree height

leaves = 2^h
for b in range(3,24): # Iterate over height of FORS trees

for k in range(1,64): # Iterate over number of FORS trees
sigma = 0
r = 1
done = qhitprob(leaves,maxsigs,0)
while done < donelimit:

t = qhitprob(leaves,maxsigs,r)
sigma += t*forgeryprob(b,r,k)
if sigma > sigmalimit: break
done += t
r += 1

sigma += min(0,1-done)
if sigma > sigmalimit: continue
sec = ceil(log(sigma,2))
for d in range(4,h): # Iterate over number of sub-trees

if h % d == 0 and h <= 64+(h/d):
for w in [16,256]: # Try different Winternitz parameters

wots = wotschains(8*hashbytes,w)
sigsize = ((b+1)*k+h+wots*d+1)*hashbytes
speed = k*2^(b+1) + d*(2^(h/d)*(wots*w+1)) # Rough speed estimate based on #hashes
if sigsize < maxsigbytes:

print h,d,b,k,w, # SPHINCS+ parameters
print sec, # FORS forgery probability
print sigsize, # Sig size in bytes
print speed # Signing speed estimate (based on #hashes)

23

Bernstein, Hülsing, Kölbl, Niederhagen, Rijneveld, Schwabe

Table 4: Performance of optimized software for all SPHINCS+ signature instantiations proposed

to NIST. As required by the NIST PQC project, all parameter sets support up to 264
signatures

under the same key. All cycle counts are the median of 100 runs on a 3.5GHz Intel Xeon E3-1275

V3 (Haswell). Software is compiledwith gcc-5.4 -O3 -march=native -fomit-frame-pointer -flto.
The “sec” column specifies the security level as defined in Section 4.A.5 of [40].

Scheme Cycles Bytes

sec keypair sign verify sig pk sk

SPHINCS+-SHAKE256-128s-simple L1 128 154 676 2 041 365 350 3 951 142 8 080 32 64
SPHINCS+-SHAKE256-128s-robust L1 250 818 474 3 701 426 810 7 615 270 8 080 32 64
SPHINCS+-SHAKE256-128f-simple L1 4 018 144 131 989 768 9 557 542 16 976 32 64
SPHINCS+-SHAKE256-128f-robust L1 7 851 034 245 065 142 18 993 432 16 976 32 64
SPHINCS+-SHAKE256-192s-simple L3 194 000 638 4 378 342 330 5 923 106 17 064 48 96
SPHINCS+-SHAKE256-192s-robust L3 374 059 710 7 584 715 214 11 398 728 17 064 48 96
SPHINCS+-SHAKE256-192f-simple L3 6, 079, 376 173 513 530 15 523 074 35 664 48 96
SPHINCS+-SHAKE256-192f-robust L3 11 695 144 326 736 564 29 729 294 35 664 48 96
SPHINCS+-SHAKE256-256s-simple L5 253 651 290 3 086 754 562 7 783 684 29 792 64 128
SPHINCS+-SHAKE256-256s-robust L5 480 242 128 5 551 086 830 15 116 818 29 792 64 128
SPHINCS+-SHAKE256-256f-simple L5 15 875 308 373 185 700 15 397 090 49 216 64 128
SPHINCS+-SHAKE256-256f-robust L5 30 041 464 682 683 022 30 727 218 49 216 64 128
SPHINCS+-SHA-256-128s-simple L1 49 078 104 835 272 076 2 348 916 8 080 32 64
SPHINCS+-SHA-256-128s-robust L1 94 988 100 1 624 566 118 4 700 588 8 080 32 64
SPHINCS+-SHA-256-128f-simple L1 1 602 368 51 805 308 5 676 578 16 976 32 64
SPHINCS+-SHA-256-128f-robust L1 2 978 018 96 974 576 11 401 188 16 976 32 64
SPHINCS+-SHA-256-192s-simple L3 69 860 954 1 737 629 602 3 662 790 17 064 48 96
SPHINCS+-SHA-256-192s-robust L3 134 664 612 3 024 929 742 7 784 118 17 064 48 96
SPHINCS+-SHA-256-192f-simple L3 2 116 010 66 380 214 9 611 814 35 664 48 96
SPHINCS+-SHA-256-192f-robust L3 4 390 738 133 192 018 19 219 918 35 664 48 96
SPHINCS+-SHA-256-256s-simple L5 85 946 882 1 121 074 298 4 903 926 29 792 64 128
SPHINCS+-SHA-256-256s-robust L5 350 260 762 4 064 645 574 13 790 402 29 792 64 128
SPHINCS+-SHA-256-256f-simple L5 5 298 662 133 374 038 9 408 596 49 216 64 128
SPHINCS+-SHA-256-256f-robust L5 21 672 826 495 051 104 26 825 462 49 216 64 128
SPHINCS+-Haraka-128s-simple L1 19 984 598 383 658 068 545 352 8 080 32 64
SPHINCS+-Haraka-128s-robust L1 25 340 702 526 821 772 829 266 8 080 32 64
SPHINCS+-Haraka-128f-simple L1 643 370 22 936 196 1 188 352 16 976 32 64
SPHINCS+-Haraka-128f-robust L1 809 006 30 719 668 1 890 584 16 976 32 64
SPHINCS+-Haraka-192s-simple L2 29 838 170 830 939 210 764 448 17 064 48 96
SPHINCS+-Haraka-192s-robust L2 39 650 538 1 312 001 676 1 451 896 17 064 48 96
SPHINCS+-Haraka-192f-simple L2 956 708 27 551 500 1 906 088 35 664 48 96
SPHINCS+-Haraka-192f-simple L2 1 260 024 38 911 468 3 482 634 35 664 48 96
SPHINCS+-Haraka-256s-simple L2 40 094 962 572 899 448 1 091 290 29 792 64 128
SPHINCS+-Haraka-256s-robust L2 51 961 586 807 399 570 1 799 156 29 792 64 128
SPHINCS+-Haraka-256f-simple L2 2 528 384 65 363 906 2 037 918 49 216 64 128
SPHINCS+-Haraka-256f-robust L2 3 268 332 90 442 914 3 351 188 49 216 64 128

24

	Abstract
	1 Introduction
	2 Tweakable Hash Functions
	2.1 Functional definition.
	2.2 Security notions.
	2.3 Generic constructions

	3 The SPHINCS+ framework
	3.1 Cryptographic (Hash) Function Families
	3.2 WOTS+
	3.3 The hypertree
	3.4 FORS
	3.5 SPHINCS+
	3.6 Theoretical Performance Estimates

	4 Security Evaluation
	4.1 (Post-quantum) interleaved target subset resilience.
	4.2 Security reduction

	5 Security Level / Security Against Generic Attacks
	6 Parameter selection and SPHINCS+ instances
	7 Performance and comparison
	Acknowledgments
	References
	A Security models and definitions
	B SM-TCR and collision resistance for tweakable hash functions
	C Hardness of PQ-MM-SPR and PQ-DM-SPR
	D Proof of Theorem 11
	E Proofs of claims in Section 4.2
	F Instantiations of Hash Functions
	F.1 SPHINCS+-SHAKE256
	F.2 SPHINCS+-SHA-256
	F.3 SPHINCS+-Haraka

	G Parameter-space exploration
	H Performance of the NIST instantiations

