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ABSTRACT

The gmail software package is a widely used Internet-mail
transfer agent that has been covered by a security guarantee
since 1997. In this paper, the qmail author reviews the his-
tory and security-relevant architecture of qmail; articulates
partitioning standards that qmail fails to meet; analyzes the
engineering that has allowed qmail to survive this failure;
and draws various conclusions regarding the future of secure
programming.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
bug elimination, code elimination; D.4.6 [Operating Sys-
tems]: Security and Protection; H.4.3 [Information Sys-
tems Applications|: Communications Applications—elec-
tronic mail

General Terms
Security

Keywords

Eliminating bugs, eliminating code, eliminating trusted code

1. INTRODUCTION
1.1 The bug-of-the-month club

Every Internet service provider runs an MTA (a “Mail
Transfer Agent”). The MTA receives mail from local users;
delivers that mail to other sites through SMTP (the Inter-
net’s “Simple Mail Transfer Protocol”); receives mail from
other sites through SMTP; and delivers mail to local users.

I started writing an MTA, qmail, in 1995, because I was
sick of the security holes in Eric Allman’s “Sendmail” soft-
ware. Sendmail was by far the most popular MTA on the
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Internet at the time; see, e.g., [4]. Here’s what I wrote in
the qmail documentation in December 1995:

Every few months CERT announces Yet Another
Security Hole In Sendmail-—something that lets
local or even remote users take complete control
of the machine. I'm sure there are many more
holes waiting to be discovered; Sendmail’s design
means that any minor bug in 41000 lines of code
is a major security risk. Other popular mailers,
such as Smail, and even mailing-list managers,
such as Majordomo, seem just as bad.

Fourteen Sendmail security holes were announced in 1996
and 1997. 1 stopped counting after that, and eventually
I stopped paying attention. Searches indicate that Send-
mail’s most recent emergency security release was version
8.13.6 in March 2006; see [10] (“remote, unauthenticated at-
tacker could execute arbitrary code with the privileges of
the Sendmail process”).

After more than twenty years of Sendmail releases known
to be remotely exploitable, is anyone willing to bet that the
latest Sendmail releases are not remotely exploitable? The
announcement rate of Sendmail security holes has slowed,
but this fact doesn’t help the administrators whose systems
have been broken into through Sendmail security holes.

1.2 The gmalil release

I started serious code-writing for gmail in December 1995.
I had just finished teaching a course on algebraic number
theory and found myself with some spare time. The final
kick to get something done was a promise I had made to a
colleague: namely, that I would run a large mailing list for
him. Sendmail didn’t offer me the easy list administration
that I wanted, and it seemed to take forever to deliver a
message (serially!) to a long list of recipients, never mind
Sendmail’s reliability problems and security problems.

The 7 December 1995 version of qmail had 14903 words
of code, as measured by

cat *.c *.h | cpp -fpreprocessed \
| sed ’s/[_a-zA-Z0-9] [_a-zA-Z0-9]*/x/g’ \
| tr -d ’ \012’ | wc -c

(Other complexity metrics paint similar pictures.) The 21
December 1995 version had 36062 words. The 21 January
1996 version, qmail 0.70, had 74745 words. After watching
this version run on my computer for a few days I released it
to the public, starting the qmail beta test.

On 1 August 1996 I released qmail 0.90, 105044 words,
ending the qmail beta test. On 20 February 1997 I released



gmail 1.00, 117685 words. On 15 June 1998 I released the
current version, gmail 1.03, 124540 words. A slight deriva-
tive created by the community, netqmail 1.05, has 124911
words. I am aware of four bugs in the gmail 1.0 releases.

For comparison: Sendmail 8.7.5, released in March 1996,
had 178375 words; Sendmail 8.8.5, released in January 1997,
had 209955 words; Sendmail 8.9.0, released in May 1998, had
232188 words. The Sendmail release notes report hundreds
of bugs in these releases. There are some user-visible fea-
ture differences between Sendmail and qmail, such as qmail’s
POP support, and Sendmail’s UUCP support, and qmail’s
user-controlled mailing lists, and Sendmail’s “remote root
exploit” feature—just kidding!—but these don’t explain the
complexity gap; most of the code in each package is devoted
to core MTA features needed at typical Internet sites.

Fingerprinting indicates that more than a million of the
Internet’s SMTP servers run either qmail 1.03 or netqmail
1.05. The third-party qmail.org site says

A number of large Internet sites are using
qmail: USA.net’s outgoing email, Address.com,
Rediffmail.com, Colonize.com, Yahoo! mail,
Network Solutions, Verio, MessageLabs
(searching 100M emails/week for malware),
listserv.acsu.buffalo.edu (a big listserv hub,
using gmail since 1996), Ohio State (biggest US
University), Yahoo! Groups, Listbot,
USWest.net (Western US ISP), Telenordia,
gmx.de (German ISP), NetZero (free ISP),
Critical Path (email outsourcing service w/ 15M
mailboxes), PayPal/Confinity, Hypermart.net,
Casema, Pair Networks, Topica, MyNet.com.tr,
FSmail.net, Mycom.com, and vuurwerk.nl.

Several authors have written qmail books: [7], [20], [14], [22].
Comprehensive statistics are hard to collect, but samples
consistently indicate that qmail sends and receives a large
fraction of all of the legitimate email on the Internet.

1.3 The gmail security guarantee

In March 1997, I took the unusual step of publicly offering
$500 to the first person to publish a verifiable security hole
in the latest version of qmail: for example, a way for a user
to exploit qmail to take over another account. My offer still
stands. Nobody has found any security holes in gmail. I
hereby increase the offer to $1000.

Of course, “security hole in qmail” does not include prob-
lems outside of qmail: for example, NFS security problems,
TCP/IP security problems, DNS security problems, bugs in
scripts run from .forward files, and operating-system bugs
generally. It’s silly to blame a problem on gmail if the sys-
tem was already vulnerable before qmail was installed!

It’s not as silly to blame qmail for failing to encrypt and
authenticate mail messages sent through the network; maybe
cryptography should be handled by applications such as
gmail, rather than by TCP/IP. But cryptography is out-
side the scope of the qmail security guarantee.

Denial-of-service attacks are also specifically disallowed:
they are present in every MTA, widely documented, and
very hard to fix without a massive overhaul of several major
protocols. One could argue, and I would agree, that Internet
mail desperately needs this overhaul; but that’s a topic for
another paper.

What the qmail security guarantee does say is that users

can’t exploit qmail to steal or corrupt other users’ data.
If other programs met the same standard, and if our net-
work links were cryptographically protected, then the only
remaining security problems on the Internet would be denial-
of-service attacks.

1.4 Contents of this paper

How was gmail engineered to achieve its unprecedented
level of security? What did gmail do well from a security
perspective, and what could it have done better? How can
we build other software projects with enough confidence to
issue comparable security guarantees?

My views of security have become increasingly ruthless
over the years. I see a huge amount of money and effort be-
ing invested in security, and I have become convinced that
most of that money and effort is being wasted. Most “secu-
rity” efforts are designed to stop yesterday’s attacks but fail
completely to stop tomorrow’s attacks and are of no use in
building invulnerable software. These efforts are a distrac-
tion from work that does have long-term value.

In retrospect, some of qmail’s “security” mechanisms were
half-baked ideas that didn’t actually accomplish anything
and that could have been omitted with no loss of security.
Other mechanisms have been responsible for gmail’s success-
ful security track record. My main goal in this paper is to
explain how this difference could have been recognized in
advance—how software-engineering techniques can be mea-
sured for their long-term security impact.

Section 2 articulates three specific directions of progress
towards invulnerable software systems. The remaining sec-
tions of the paper discuss qmail’s successes and failures in
these three directions.

Much of what I say has been said many times before.
(This isn’t the first paper on software security; it isn’t even
the first paper on gmail security.) I apologize for not having
taken the time to locate original sources.

2. HOW CAN WE MAKE PROGRESS?

A software bug means, by definition, a software feature
violating the user’s requirements. A software security hole
means, by definition, a software feature violating the user’s
security requirements. Every security hole is therefore a bug.

(Advocates of formal specifications, security policies, and
so on will correctly point out that making a complete list of
user requirements is quite difficult—especially in gray areas
that the user hasn’t thought through. This complexity has
an effect on the difficulty of eliminating security holes, as
discussed below. But the difficulty would exist even without
the complexity: today’s software doesn’t even meet the most
basic security requirements that come to mind!)

Suppose that there is, on average, 1 bug in every N words
of code—Dbut that there are 10000N words of code inside the
computer. The unhappy conclusion is that the computer
has about 10000 bugs. Many of those bugs are, presumably,
security holes.

How can we make progress towards having mo security
holes? How can we measure the progress? This section gives
three answers. This section also discusses three ways that
the community has distracted itself from making progress.

2.1 Answer 1: eliminating bugs

The first answer, and surely the most obvious answer, is
to reduce the bug rate.



We can estimate the bug rate of a software-engineering
process by carefully reviewing the resulting code and track-
ing the number of bugs found as a function of the amount of
code reviewed. We can then compare the bug rates of differ-
ent software-engineering processes. We can meta-engineer
processes with lower bug rates.

(Sometimes subtle bugs slip past a code review. How-
ever, experience suggests that the overall bug rate, taking
account of all the user requirements, is only slightly larger
than the not-so-subtle-bug rate. “Given enough eyeballs, all
bugs are shallow,” Eric Raymond commented in [17, Section
4: “Release Early, Release Often”].)

Bug elimination is one of the classic topics of software-
engineering research. It is well known, for example, that
one can drastically reduce the bug rate of a typical software-
engineering process by adding coverage tests. It does not
seem to be as well known that bug rates are affected by
choices in earlier stages of the software-engineering process.
See Section 3 of this paper for further discussion.

2.2 Answer 2: eliminating code

Consider again the computer system with 10000/N words
of code. Suppose that the bug rate is reduced far below 1
bug in every N words of code, but not nearly far enough to
eliminate all the bugs in 10000N words of code. How can
we make progress?

The second answer is to reduce the amount of code in the
computer system. Software-engineering processes vary not
only in the number of bugs in a given volume of code, but
also in the volume of code used to provide the features that
the user wants. Code elimination is another classic topic of
software-engineering research: we can compare the code vol-
umes produced by different software-engineering processes,
and we can meta-engineer processes that do the job with
lower volumes of code. See Section 4 of this paper for fur-
ther discussion.

Rather than separately measuring the bugs-code ratio and
the code-job ratio one could measure the product, the bugs-
job ratio. However, the separate measures seem to highlight
different techniques. Furthermore, the code-job ratio is of
independent interest as a predictor of software-engineering
time, and the bugs-code ratio is of independent interest as
a predictor of debugging time.

2.3 Answer 3: eliminating trusted code

Suppose that, by producing a computer system with less
code, and producing code with fewer bugs, we end up with
a system having fewer than 1000 bugs. Presumably many
of those bugs are still security holes. How can we make
progress?

The third answer is to reduce the amount of trusted code
in the computer system. We can architect computer systems
to place most of the code into untrusted prisons. “Untrusted”
means that code in these prisons—no matter what the code
does, no matter how badly it behaves, no matter how many
bugs it has—cannot violate the user’s security requirements.
We can measure the amount of trusted code in our computer
systems, and we can meta-engineer processes that produce
systems with lower volumes of trusted code.

Of course, general techniques for reducing the amount of
code in a system are also helpful for reducing the amount of
trusted code. But additional techniques allow the amount
of trusted code to be much smaller than the total amount

of code. There is a pleasant synergy between eliminating
trusted code and eliminating bugs: we can afford relatively
expensive techniques to eliminate the bugs in trusted code,
simply because the volume of code is smaller.

Consider, for example, the portion of the sendmail code
responsible for extracting an email address from the header
of a mail message. According to [12], Mark Dowd discovered
in 2003 that this code had a security hole:

Attackers may remotely exploit this vulnerabil-
ity to gain “root” or superuser control of any vul-
nerable Sendmail server. ... This vulnerability
is especially dangerous because the exploit can
be delivered within an email message and the at-
tacker doesn’t need any specific knowledge of the
target to launch a successful attack. ... X-Force
has demonstrated that this vulnerability is ex-
ploitable in real-world conditions on production
Sendmail installations.

Suppose that the same address-extraction code is run under
an interpreter enforcing two simple data-flow rules:

e the only way that the code can see the rest of the
system is by reading this mail message;

e the only way that the code can affect the rest of the
system is by printing one string determined by that
mail message.

The code is then incapable of violating the user’s security re-
quirements. An attacker who supplies a message that seizes
complete control of the code can control the address printed
by the code—but the attacker could have done this anyway
without exploiting any bugs in the code. The attacker is in-
capable of doing anything else. See Section 5.2 for another
example of the same idea.

(T am implicitly assuming that the user’s security require-
ments do not prohibit the creators of a mail message from
controlling the address extracted from the message. But the
requirements may be more complicated. Perhaps the user is
creating a mail message by combining attachments from sev-
eral sources; perhaps the user requires that each attachment
be incapable of affecting other attachments, the header, etc.
The interpreter then has to impose corresponding data-flow
restrictions.)

By reducing the amount of trusted code far enough, and
reducing the bug rate far enough, one can reasonably hope
to produce a system where there are no bugs in the trusted
code, and therefore no security holes. Presumably there are
still bugs in the untrusted code, but those bugs cannot vio-
late the user’s security requirements. Engineering a secure
software system is easier than engineering a bug-free soft-
ware system.

2.4 Distraction 1: chasing attackers

For many people, “security” consists of observing current
attacks and changing something—anything!-—to make those
attacks fail. It is easy to understand the attraction of this
reactive type of work: watching an attack fail, where earlier
it would have succeeded, provides instant gratification for
the defender.

Sometimes the changes fix the specific bugs exploited by
the attacks. The Ubuntu distribution of the Linux operating
system has issued more than 100 emergency security patches
this year, fixing various bugs in a wide range of programs.



Sometimes the changes don’t fix any bugs. “Firewalls”
and “anti-virus systems” and “intrusion-detection systems”
attempt to recognize attacks without patching the software
targeted by the attacks.

Either way, the changes do nothing to fix the software-
engineering deficiencies that led to the security holes being
produced in the first place. If we define success as stopping
yesterday’s attacks, rather than as making progress towards
stopping all possible attacks, then we shouldn’t be surprised
that our systems remain vulnerable to tomorrow’s attacks.

2.5 Distraction 2: minimizing privilege

Many additional “security” efforts are applications of the
“principle of least privilege.” The principle is widely credited
to Saltzer and Schroeder, who stated it as follows in [18]:
“Every program and every user of the system should operate
using the least set of privileges necessary to complete the
job.”

These “security” efforts work as follows. We observe that
program P has no legitimate need to access operating-system
resource R. We then use (and possibly extend) operating-
system controls to prevent P from accessing R. We prevent
an image-displaying program from sending data through the
network; we prevent a DNS-lookup program from reading
disk files; etc. See, for example, [3], [21], [11], [2], [15], [1],
[16], and [23]. Section 5.1 discusses some gmail examples.

I have become convinced that this “principle of least priv-
ilege” is fundamentally wrong. Minimizing privilege might
reduce the damage done by some security holes but almost
never fixes the holes. Minimizing privilege is not the same
as minimizing the amount of trusted code, does not have the
same benefits as minimizing the amount of trusted code, and
does not move us any closer to a secure computer system.

Consider, as an example, [11]’s confinement of Netscape’s
“DNS helper” program, preventing the program from access-
ing the local disk. This confinement did not prevent the
libresolv bug in [8] from being a security hole in Netscape:
an attacker could use the bug to seize control of the “DNS
helper,” modify all subsequent DNS data seen by Netscape,
and steal the user’s web connections. The situation before
[11] was that bugs in the “DNS helper” had the power to vi-
olate the user’s security requirements and therefore needed
to be fixed; the situation after [11] was that bugs in the
“DNS helper” had the power to violate the user’s security
requirements and therefore needed to be fixed.

The defining feature of untrusted code is that it cannot
violate the user’s security requirements. Turning a “DNS
helper” into untrusted code is necessarily more invasive than
merely imposing constraints upon the operating-system re-
sources accessed by the program. The “DNS helper” handles
data from many sources, and each source must be prevented
from modifying other sources’ data.

2.6 Distraction 3: speed, speed, speed

Programmers waste enormous amounts of time
thinking about, or worrying about, the speed of
noncritical parts of their programs, and these at-
tempts at efficiency actually have a strong neg-
ative impact when debugging and maintenance
are considered. We should forget about small ef-
ficiencies, say about 97% of the time; premature
optimization is the root of all evil.

—Knuth in [13, page 268]

The most obvious effect of the pursuit of speed is that
programmers put effort into low-level speedups, attempting
to save time by tweaking small sections of code.

Programmers know when they’re doing this. They see
the increased programming time. They see the increased
bug rate. They are generally quite happy to change their
engineering process to skip almost all of this effort. Knuth’s
commentary seems to be aimed at novice programmers who
don’t understand how to use profiling tools.

Unfortunately, the pursuit of speed has other effects that
are not as blatant and that are not as easy to fix.

Consider the address-extraction example in Section 2.3.
Using an interpreter to impose simple data-flow restrictions
on the address-extraction code would make bugs in the code
irrelevant to security—a huge benefit. However, most pro-
grammers will say “Interpreted code is too slow!” and won’t
even try it.

Starting a new operating-system process could impose
similar restrictions without an interpreter; see Section 5.2.
However, most programmers will say “You can’t possibly
start a new process for each address extraction!” and won’t
even try it.

Anyone attempting to improve programming languages,
program architectures, system architectures, etc. has to over-
come a similar hurdle. Surely some programmer who tries
(or considers) the improvement will encounter (or imagine)
some slowdown in some context, and will then accuse the
improvement of being “too slow”—a marketing disaster.

I don’t like waiting for my computer. I really don’t like
waiting for someone else’s computer. A large part of my re-
search is devoted to improving system performance at vari-
ous levels. (For example, my paper [6] is titled “Curve25519:
new Diffie-Hellman speed records.”) But I find security
much more important than speed. We need invulnerable
software systems, and we need them today, even if they are
ten times slower than our current systems. Tomorrow we
can start working on making them faster.

I predict that, once we all have invulnerable software sys-
tems, we’ll see that security doesn’t actually need much CPU
time. The bulk of CPU time is consumed by a tiny fraction
of our programs, and by a tiny fraction of the code within
those programs; time spent on security verification will be
unnoticeable outside these “hot spots.” A typical hot spot
spends millions of CPU cycles on data from a single source;
modern compiler techniques, in some cases aided by proofs,
will be able to hoist all the security verification out of the
inner loops. The occasional hot spots with tricky security
constraints, such as encryption of network packets, will be
trusted bug-free code.

3. ELIMINATING BUGS

For many years I have been systematically identifying
error-prone programming habits—by reviewing the litera-
ture, analyzing other people’s mistakes, and analyzing my
own mistakes—and redesigning my programming environ-
ment to eliminate those habits.

I had already made some progress in this direction when
I started writing qmail, and I made further progress during
the development of qmail 1.0. This doesn’t mean I’'m happy
with the bug rate of the programming environment I used
for qmail; my error rate has continued to drop in the last
decade, and I see many aspects of the gmail programming
environment as hopelessly obsolete.



Fortunately, my bug rate in the mid-1990s was low enough
that—given the low volume of qmail code, as discussed in
Section 4—there were only a few bugs in gmail 1.0. None
of those bugs were security holes. This is the explanation
for qmail’s exceptional security record. Note that qmail’s
privilege minimization didn’t help at all; see Section 5.1 for
further discussion.

This section discusses several examples of anti-bug meta-
engineering: modifying programming languages, program
structures, etc. to reduce bug rates.

3.1 Enforcing explicit data flow

The standard argument against global variables is that
they can create hidden data flow, often surprising the pro-
grammer.

Consider, for example, the following bug fixed in gmail
0.74: “newfield_datemake would leave newfield_date alone
if it was already initialized, even though gqmail-send calls
newfield_datemake anew for each bounce.”

I originally wrote the newfield_datemake function as part
of the gmail-inject program, which sends exactly one out-
going message and needs to create exactly one Date field,
conveniently stored in a global variable newfield_date. But
then I reused the same function in the gmail-send pro-
gram, which sends many outgoing messages (“bounce mes-
sages,” i.e., non-delivery reports) and needs to create a new
Date field for each outgoing message. I had forgotten that
newfield_datemake didn’t reset an existing newfield_date;
this global variable ended up transmitting information—
specifically, the obsolete Date field—from the previous mes-
sage to the current message.

Hidden data flow is also at the heart of buffer-overflow
bugs. The statement x[i] = m in C might appear at first
glance to modify only the x variable but—if i is out of
range—might actually modify any variable in the program,
including return addresses and memory-allocation control
structures. Similarly, reading x[i] might read any variable
in the program.

Several aspects of qmail’s design make gmail’s internal
data flow easier to see. For example, large portions of qmail
run in separate UNIX processes. The processes are con-
nected through pipelines, often through the filesystem, and
occasionally through other communication mechanisms, but
they do not have direct access to each other’s variables. Be-
cause each process has a relatively small state, it has rela-
tively few opportunities for the programmer to screw up the
data flow. At a lower level, I designed various array-access
functions for which the indices were visibly in range, and I
avoided functions for which this was hard to check.

Nowadays I am much more insistent on programming-
language support for smaller-scale partitioning, sane bounds
checking, automatic updates of “summary” variables (e.g.,
“the number of nonzero elements of this array”), etc. By
“sane bounds checking” I don’t mean what people normally
mean by “bounds checking,” namely raising an exception if
an index is out of range; what I mean is automatic array
extension on writes, and automatic zero-fill on reads. (Out
of memory? See Section 4.2.) Doing the same work by hand
is silly.

3.2 Simplifying integer semantics
Another surprise for the programmer is that y can be
much smaller than x after y = x + 1. This happens if x

is the largest representable integer, typically 23* — 1; y will
then be the smallest representable integer, typically —23.

The closest that qmail has come to a security hole was
a potential overflow (pointed out by Georgi Guninski) of a
32-bit counter that I had failed to check. Fortunately, the
counter’s growth was limited by the available memory, which
in turn was limited by standard configuration; but the same
32-bit increment operation in another context could easily
have caused a disastrous bug.

Similar comments apply to other integer operations. The
operation semantics usually match the mathematical seman-
tics that the programmer intends, but occasionally don’t. If
I want to detect those occasions, I have to go to extra work
to check for overflows. If I want to have sane mathematical
semantics applied on those occasions—extending the integer
range, and failing only if I run out of memory—I have to go
to extra work to use a large-integer library.

Most programming environments are meta-engineered to
make typical software easier to write. They should instead
be meta-engineered to make incorrect software harder to
write. An operation that is not exactly what I normally
want should take more work to express than an operation
that is exactly what I normally want. There are occasions
when I really do want arithmetic modulo 232 (or 25%), but I
am happy to do extra work on those occasions.

In some languages, a + b means exactly what it says: the
sum of a and b. Often these languages are dismissed as being
“too slow” for general use: an inner loop such as

for (i = 0;i < n;++i) c[i] = alil] + blil;

suddenly involves n calls to an expensive high-precision-
integer-arithmetic function such as gmp_add (). But it is not
rocket science for a compiler to generate code that keeps
track of the locations of large integers and that replaces the
gmp_add () operations by machine operations in the typical
case that all integers are small. Perhaps some slowdowns are
more difficult to address, but—as in Section 2.6—we should
first get the code right and then worry about its speed.

3.3 Avoiding parsing

I have discovered that there are two types of command
interfaces in the world of computing: good interfaces and
user interfaces.

The essence of user interfaces is parsing: converting an
unstructured sequence of commands, in a format usually
determined more by psychology than by solid engineering,
into structured data.

When another programmer wants to talk to a user inter-
face, he has to quote: convert his structured data into an
unstructured sequence of commands that the parser will, he
hopes, convert back into the original structured data.

This situation is a recipe for disaster. The parser often
has bugs: it fails to handle some inputs according to the
documented interface. The quoter often has bugs: it pro-
duces outputs that do not have the right meaning. Only on
rare joyous occasions does it happen that the parser and the
quoter both misinterpret the interface in the same way.

I made these comments in the original qmail documenta-
tion, along with two examples of how parsing and quoting
were avoided in qmail’s extremely simple internal file struc-
tures and program-level interfaces. But I didn’t say anything
about how parsing bugs and quoting bugs could be avoided
when external constraints prohibit better interfaces.



Consider, for example, the following bug, fixed in gmail
0.74: “gmail-inject did not check whether USER needed
quoting.” What qmail-inject was doing here was creating
a From line showing the user’s name:

From: "D. J. Bernstein" <djbQ@cr.yp.to>

Normally the user’s account name, in this case djb, can
be inserted verbatim before the @; but the name has to be
quoted in a particular way if it contains unusual characters
such as parentheses. My tests didn’t check specifically for
unusual characters in USER, so they didn’t distinguish ver-
batim insertion from proper encoding.

Consider, as another example, the following format-string
bug in the UNIX logger program:

Presumably logger on your system is doing
syslog(pri,buf)
instead of the correct
syslog(pri,"%s" ,buf)
... It is my guess that this does not constitute a
security hole in logger beyond a denial-of-service
attack, since an attacker would have an awfully
difficult time encoding reachable VM addresses
into printable ASCII characters, but without see-
ing disassembled object code I can’t be sure. Bet-
ter safe than sorry.

Tests that don’t put % into buf won’t notice the difference be-
tween syslog(pri,buf) and syslog(pri,"%s",buf). (The
quote is from [5], four years before format-string bugs were
widely appreciated; see [19, Introduction].)

Verbatim copying of “normal” inputs—with ad-hoc quot-
ing required for “abnormal” inputs—seems to be a universal
feature of user interfaces. One way to catch the resulting
bugs, in situations where the interface cannot be improved,
is to systematically convert each quoting rule into another
test.

3.4 Generalizing from errors to inputs

The following bug was fixed in gmail 0.90: “Failure to
stat .gqmail-owner was not an error.”

If Bob puts several addresses into “bob/.gmail-buddies
then qmail will forward bob-buddies mail to those addresses.
Delivery errors are sent back to the original sender by de-
fault, but Bob can direct errors to a different address by
putting that address into .gmail-buddies-owner.

To check whether .gmail-buddies-owner exists, qmail
uses the UNIX stat() function. If stat() says that the
file exists, qmail directs errors to bob-buddies-owner. If
stat () says that the file doesn’t exist, qmail uses the origi-
nal sender address.

The problem is that stat() can fail temporarily. For ex-
ample, .gmail-buddies-owner could be on a network filesys-
tem that is momentarily unavailable. Before version 0.90,
gmail would treat this error the same way as nonexistence—
which would be wrong if the file actually exists. The only
correct behavior is for gmail to give up and try again later.

My test suite didn’t cover the temporary-failure case. I
had some tests for common cases, and I had some tricky tests
going to extra effort to set up various error cases, but I didn’t
have any tests manufacturing network-filesystem errors.

The volume of error-handling code can be drastically re-
duced, as discussed in Section 4.2, but computer systems

always have some error-handling code. How can we prevent
bugs in code that is rarely exercised?

Testing would have been much easier if I had factored
the code into (1) a purely functional protocol handler that
could talk to anything, not just the filesystem, and (2) a sim-
ple wrapper that plugged stat() into the protocol handler.
Feeding a comprehensive set of test cases to the protocol
handler would then have been quite easy—and would have
immediately caught this bug.

3.5 Can we really measure anti-bug progress?

There is an obvious difficulty in modelling user-interface
research in general, and bug-elimination research in partic-
ular. The goal is to have users, in this case programmers,
make as few mistakes as possible in achieving their desired
effects. How do we model this situation—how do we model
human psychology—except by experiment? How do we even
recognize mistakes without a human’s help?

If someone can write a program to recognize a class of mis-
takes, great—we’ll incorporate that program into the user
interface, eliminating those mistakes—but we still won’t be
able to recognize the remaining mistakes. As a mathemati-
cian I’'m bothered by this lack of formalization; I expect to
be able to define a problem whether or not I can solve it.

Fortunately, research can and does proceed without mod-
els. We can observe humans to measure their programming-
bug rates, even though we don’t know the algorithms that
the humans are using. We can see that some software-
engineering tools are bug-prone, and that others are not,
without having any idea how to mathematically prove it.

4. ELIMINATING CODE

To this very day, idiot software managers mea-
sure ‘programmer productivity’ in terms of ‘lines
of code produced,” whereas the notion of ‘lines of
code spent’ is much more appropriate.
—Dijkstra in [9, page EWD962—4]

This section discusses several examples of code-volume-
minimization meta-engineering: changing programming lan-
guages, program structures, etc. to reduce code volume. As
in Section 3, some of these examples were used in qmail and
contributed to qmail’s low bug count, while other examples
show that it is possible to do much better.

4.1 Identifying common functions

Here is a section of code from Sendmail (line 1924 of
util.c in version 8.8.5):

if (dup2(fdv[1], 1) < 0)

{
syserr("%s: cannot dup2 for stdout", argv([0]);
_exit (EX_OSERR) ;

}

close(fdv[1]);

The dup2() function copies a file descriptor from one lo-
cation to another; this dup2()/close() pattern moves a
file descriptor from one location to another. There are sev-
eral other instances inside Sendmail of essentially the same
dup2() /close() pattern.

This particular pattern occurs only once in gmail, inside
an fd_move() function called from a dozen other locations
in the code:



int fd_move(int to,int from)

{
if (to == from) return O;
if (fd_copy(to,from) == -1) return -1;
close(from);
return O;
}

Most programmers would never bother to create such a small
function. But several words of code are saved whenever one
occurrence of the dup2() /close() pattern is replaced with
one call to £fd_move (); replacing a dozen occurrences saves
considerably more code than were spent writing the function
itself. (The function is also a natural target for tests.)

The same benefit scales to larger systems and to a huge va-
riety of functions; fd_move () is just one example. In many
cases an automated scan for common operation sequences
can suggest helpful new functions, but even without automa-
tion I frequently find myself thinking “Haven’t I seen this
before?” and extracting a new function out of existing code.

4.2 Automatically handling temporary errors

Consider the following excerpt from gmail-local:
if (!stralloc_cats(&dtline,"\n")) temp_nomem();

The stralloc_cats function changes a dynamically resized
string variable dtline to contain the previous contents of
dtline followed by a linefeed. Unfortunately, this concate-
nation can run out of memory. The stralloc_cats function
then returns 0, and gmail-local exits via temp_nomem(),
signalling the rest of the gmail system to try again later.

There are thousands of conditional branches in gmail.
About half of them—TI haven’t tried to count exactly—are
doing nothing other than checking for temporary errors.

In many cases I built functions such as

void outs(s)
char *s;
{
if (substdio_puts(&ssl,s) == -1) _exit(111);
}

to try an operation and exit the program upon temporary er-
ror. However, I didn’t—and don’t—Ilike repeating the same
work for each operation.

I could have pushed these tests into a relatively small num-
ber of bottom-level subroutines for memory allocation, disk
reads, etc., exiting the program upon any temporary error.
However, this strategy is unacceptable for long-running pro-
grams such as gmail-send. Those programs aren’t allowed
to exit unless the system administrator asks them to!

I’ve noticed that many libraries and languages take the
same strategy, rendering them similarly unacceptable for
long-running programs. Maybe specialized types of pro-
grams should use specialized software-engineering environ-
ments, but I don’t view long-running programs as a spe-
cialized case; I question the wisdom of designing software-
engineering environments that are unsuitable for building
those programs.

Fortunately, programming languages can—and in some
cases do—offer more powerful exception-handling facilities,
aborting clearly defined subprograms and in some cases au-
tomatically handling error reports. In those languages I
would be able to write

stralloc_cats(&dtline,"\n")
or simply
dtline += "\n"

without going to extra effort to check for errors. The reduced
code volume would eliminate bugs; for example, the bug
“if ipme_init () returned -1, gmail-remote would continue”
(fixed in qmail 0.92) would not have had a chance to occur.

When I wrote gmail I rejected many languages as being
much more painful than C for the end user to compile and
use. I was inexplicably blind to the possibility of writing
code in a better language and then using an automated
translator to convert the code into C as a distribution lan-
guage. Stroustrup’s cfront, the original compiler from C++
to C, is an inspirational example, although as far as I know
it has never acquired exception-handling support.

4.3 Reusing network tools

UNIX has a general-purpose tool, inetd, that listens for
network connections. When a connection is made, inetd
runs another program to handle the connection. For ex-
ample, inetd can run gmail-smtpd to handle an incoming
SMTP connection. The gmail-smtpd program doesn’t have
to worry about networking, multitasking, etc.; it receives
SMTP commands from one client on its standard input, and
sends the responses to its standard output.

Sendmail includes its own code to listen for network con-
nections. The code is more complicated than inetd, in large
part because it monitors the system’s load average and re-
duces service when there is heavy competition for the CPU.

Why does Sendmail not want to handle mail when the
CPU is busy? The basic problem is that, as soon as Send-
mail accepts a new message, it immediately goes to a lot
of effort to figure out where the message should be deliv-
ered and to try delivering the message. If many messages
show up at the same time then Sendmail tries to deliver all
of them at the same time—usually running out of memory
and failing at most of the deliveries.

Sendmail tries to recognize this situation by checking the
load average. If the CPU is busy, Sendmail inserts new
messages into a queue of not-yet-delivered messages. Send-
mail has a background delivery mechanism that periodically
runs through the queue, trying to deliver each message in
turn. The background delivery mechanism never overloads
the computer; if many messages arrive in the queue at once,
the messages aren’t even noticed until the next queue run,
and are then handled with highly limited parallelism.

The queue-run interval “is typically set to between fifteen
minutes and one hour,” the documentation says; “RFC 1123
section 5.3.1.1 recommends that this be at least 30 minutes.”
System administrators who set a very short queue-run in-
terval, for example 30 seconds, find Sendmail trying each
queued message thousands of times a day.

Why does Sendmail have a foreground delivery mecha-
nism? Why does it not put all incoming messages into
the queue? The answer is that—even when the CPU is
not busy—queued messages are not delivered immediately.
Putting all incoming messages into the queue would mean
waiting for the next queue run before delivery; presumably
users would sometimes see the delays and complain.

With gmail, a small amount of extra code notifies the
background delivery mechanism, gmail-send, when a mes-
sage is placed into the queue. The gmail-send program



instantly tries delivering the message (if it is not busy), and
tries again later if necessary, on a reasonable schedule. Con-
sequently, the motivation for a foreground delivery mech-
anism disappears; qmail has no foreground delivery mech-
anism. Furthermore, the motivation for checking the load
average disappears; qmail is happy to run from inetd.

If I did want to check the load average, I would do so in
a general-purpose tool like inetd, rather than repeating the
code in each application.

4.4 Reusing access controls

I started using UNIX, specifically Ultrix, twenty years ago.
I remember setting up my .forward to run a program that
created a file in /tmp. I remember inspecting thousands of
the resulting files and noticing in amazement that Sendmail
had occasionally run the program under a uid other than
mine.

Sendmail handles a user’s .forward as follows. It first
checks whether the user is allowed to read .forward—maybe
the user has set up . forward as a symbolic link to a secret file
owned by another user. It then extracts delivery instructions
from .forward, and makes a note of them (possibly in a
queue file to be handled later), along with a note of the
user responsible for those instructions—in particular, the
user who specified a program to run. This is a considerable
chunk of code (for example, all of safefile.c, plus several
scattered segments of code copying the notes around), and
it has contained quite a few bugs.

Of course, the operating system already has its own code
to check whether a user is allowed to read a file, and its own
code to keep track of users. Why write the same code again?

When gmail wants to deliver a message to a user, it simply
starts a delivery program, qmail-local, under the right uid.
When gmail-local reads the user’s delivery instructions,
the operating system automatically checks whether the user
is allowed to read the instructions. When gmail-local runs
a program specified by the user, the operating system auto-
matically assigns the right uid to that program.

I paid a small price in CPU time for this code reuse: gmail
starts an extra process for each delivery. But I also avoided
all the extra system calls that Sendmail uses to check permis-
sions. Anyway, until someone shows me a real-world mail-
delivery computer bottlenecked by qmail’s fork() time, I'm
certainly not going to spend extra code to reduce that time.

4.5 Reusing the filesystem

Suppose that the National Security Agency’s SMTP server
receives mail for the efd-friends@nsa.gov mailing list. How
does the MTA find out that it is supposed to accept mail for
nsa.gov? How does the MTA find the delivery instructions
for efd-friends?

Evidently the MTA will look up the names nsa.gov and
efd-friends in a database. Maybe the database isn’t called
a “database”; maybe it’s called an “associative array” or
something else; whatever it’s called, it is capable of giving
back information stored under names such as efd-friends
by the system administrator and the mailing-list manager.

With Sendmail, names such as nsa.gov and various other
configuration options are listed inside a “configuration file”
having a fairly complicated format. Mailing lists such as
efd-friends are listed inside an “aliases file.” Looking up
nsa.gov and efd-friends inside these files requires a con-
siderable amount of parsing code.

Of course, the operating system already has code to store
chunks of data under specified names and to retrieve the
chunks later. The chunks are called “files”; the names are
called “filenames”; the code is called “the filesystem.” Why
write the same code again?

With gmail, the delivery instructions for efd-friends are
the contents of a file named .gmail-efd-friends. Finding
or modifying those instructions is a simple matter of opening
that file. Users already have tools for creating and managing
files; there is no need for gqmail to reinvent those tools.

I should have, similarly, put the nsa.gov configuration
into /var/gmail/control/domains/nsa.gov, producing the
same simplicity of code. I instead did something requiring
slightly more complicated code: nsa.gov is a line in a file
rather than a file in a directory. I was worried about effi-
ciency: most UNIX filesystems use naive linear-time algo-
rithms to access directories, and I didn’t want gmail to slow
down on computers handling thousands of domains. Most
UNIX filesystems also consume something on the scale of a
kilobyte to store a tiny file.

In retrospect, it was stupid of me to spend code—not just
this file-parsing code, but also code to distribute message
files across directories—dealing with a purely hypothetical
performance problem that I had not measured as a bottle-
neck. Furthermore, to the extent that measurements indi-
cated a bottleneck (as they eventually did for the message
files on busy sites), I should have addressed that problem
at its source, fixing the filesystem rather than complicating
every program that uses the filesystem.

5. ELIMINATING TRUSTED CODE
5.1 Accurately measuring the TCB

“Even if all of these programs are completely compro-
mised, so that an intruder has control over the gmaild,
gmails, and gmailr accounts and the mail queue, he still
can’t take over your system,” I wrote in the qmail documen-
tation. “None of the other programs trust the results from
these five.” I continued in the same vein for a while, talk-
ing about privilege minimization as something helpful for
security.

Let’s think about this for a minute. Suppose that there is
a bug in gmail-remote allowing an attacker to take control
of the gmailr account. The attacker can then steal and cor-
rupt the system’s outgoing mail, even if network connections
are completely protected by strong cryptography. This is a
security disaster, and it needs to be fixed. The only way
that qmail avoids this disaster is by avoiding bugs.

Similarly, I shouldn’t have highlighted the small amount
of code in gmail capable of affecting files owned by root.
Almost all of the code in gmail is capable of affecting files
owned by normal users—either on disk or in transit through
the mail system—and is therefore in a position to violate the
users’ security requirements. The only way that this code
avoids security holes is by avoiding bugs.

Programmers writing word processors and music players
generally don’t worry about security. But users expect those
programs to be able to handle files received by email or
downloaded from the web. Some of those files are prepared
by attackers. Often the programs have bugs that can be
exploited by the attackers.

When I taught a “UNIX security holes” course in 2004,
I asked the students to find new security holes for their



homework. I ended up disclosing 44 security holes found
by the students. Most of those were in programs that are
usually—incorrectly—viewed as being outside the system’s
trusted code base.

For example, Ariel Berkman discovered a buffer overflow
in xine-lib, a movie-playing library. Users were at risk when-
ever they played movies downloaded from the web: if the
movies were supplied by an attacker then the attacker could
read and modify the users’ files, watch the programs that
the users were running, etc.

“Secure” operating systems and “virtual machines” say
that their security is enforced by a small base of trusted
code. Unfortunately, a closer look shows that this “secu-
rity” becomes meaningless as soon as one program handles
data from more than one source. The operating system does
nothing to stop one message inside a mail-reading program
from stealing and corrupting other messages handled by the
same program, for example, or to stop one web page in-
side a browser from stealing and corrupting other web pages
handled by the same browser. The mail-reading code and
browsing code are, in fact, part of the trusted code base:
bugs in that code are in a position to violate the user’s se-
curity requirements.

5.2 Isolating single-source transformations

The jpegtopnm program reads a JPEG file, a compressed
image, as input. It uncompresses the image, produces a
bitmap as output, and exits. Right now this program is
trusted: its bugs can compromise security. Let’s see how we
can fix that.

Imagine running the jpegtopnm program in an “extreme
sandbox” that doesn’t let the program do anything other
than read the JPEG file from standard input, write the
bitmap to standard output, and allocate a limited amount of
memory. Existing UNIX tools make this sandbox tolerably
easy for root to create:

e Prohibit new files, new sockets, etc., by setting the
current and maximum RLIMIT_NOFILE limits to 0.

e Prohibit filesystem access: chdir and chroot to an
empty directory.

e Choose a uid dedicated to this process ID. This can
be as simple as adding the process ID to a base uid,
as long as other system-administration tools stay away
from the same uid range.

e Ensure that nothing is running under the uid: fork a
child to run setuid(targetuid), kill(-1,SIGKILL),
and _exit(0), and then check that the child exited
normally.

e Prohibit kill(), ptrace(), etc., by setting gid and uid
to the target uid.

e Prohibit fork(), by setting the current and maximum
RLIMIT_NPROC limits to 0.

e Set the desired limits on memory allocation and other
resource allocation.

e Run the rest of the program.

At this point, unless there are severe operating-system bugs,
the program has no communication channels other than its
initial file descriptors.

Suppose an attacker supplies a rogue JPEG file that ex-
ploits a bug in jpegtopnm and succeeds in seizing complete
control of the program. The attacker can then generate any
output bitmap he wants—but this is what he could have

done without exploiting any bugs. The attacker cannot do
anything else. At this point jpegtopnm is no longer trusted
code; bugs in jpegtopnm are no longer capable of violating
the user’s security requirements.

As in Section 2.3, I am implicitly assuming that the user’s
security requirements allow anyone who influences the JPEG
file to control the resulting bitmap. This is a constraint on
the security requirements, but I think it is a reasonable one;
I have never heard anyone ask for pieces of a JPEG to be
protected from each other. More importantly, I see no rea-
son to believe that variations in the security requirements
cannot be accommodated by analogous variations in the par-
titioning of code into sandboxes.

I am also assuming that the CPU does not leak secret
information from one process to another. This assumption
is debatable. Perhaps access to CPU instructions needs to
be limited, for example with the interpreter discussed in
Section 2.3. See Section 2.6 for comments on performance.

Ariel Berkman, following my suggestions, has reengineered
the standard UNIX xloadimage picture-viewing tool, mod-
ularizing essentially the entire program into a series of filters
such as jpegtopnm. Each filter is easily imprisoned by the
techniques described above, leaving a much smaller amount
of trusted code.

5.3 Delaying multiple-source merges

Consider a mail reader displaying messages from a user’s
mailbox. Single-source transformations—for example, un-
compressing an attached JPEG file—can be imprisoned as
described in Section 5.2. But what about transformations
that combine data from multiple sources?

A displayed list of message subjects combines information
from several messages. Each message is allowed to control
its own entry in the list, but it is not allowed to affect other
entries. Even if the list is created correctly in the first place,
bugs in subsequent transformations of the list can violate
the required separation between list entries.

The situation is quite different if the subjects of separate
messages are kept in separate locations, transformed inde-
pendently, and then merged. The transformations are now
single-source transformations. Delaying the merge reduces
the volume of trusted code.

Stopping cross-site scripting, for example, currently means
paying careful attention in every piece of code that merges
data from multiple sources into one file, and in every piece of
code helping transform that file into a web page. If data from
different sources were instead kept separate, and merged
only at the last moment by the browser, then care would
be required only in the final merging code.

5.4 Do we really need a small TCB?

I failed to place any of the gmail code into untrusted pris-
ons. Bugs anywhere in the code could have been security
holes. The way that qmail survived this failure was by hav-
ing very few bugs, as discussed in Sections 3 and 4.

Perhaps continued reductions of overall code volume and
of bug rate will allow the same survival to scale to much
larger systems. I've heard reports of systems that are be-
lieved to be bug-free despite having half a million lines of
code. There are many more lines of code in my laptop
computer—many more lines of code in a position to vio-
late my security requirements—but it’s conceivable that the
world could eliminate all the bugs in that code.



However, Section 5.2 shows that a large chunk of code can
be eliminated from the TCB at very low cost—surely lower
cost, and higher confidence, than eliminating bugs from the
code. I'm optimistic about the scalability of this example;
I don’t know exactly how small the ultimate TCB will be,
but I’'m looking forward to finding out. Of course, we still
need to eliminate bugs from the code that remains!
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