
Proving tight security
for Rabin–Williams signatures

Daniel J. Bernstein

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago, Chicago, IL 60607–7045

djb@cr.yp.to

Abstract. This paper proves “tight security in the random-oracle model
relative to factorization” for the lowest-cost signature systems available
today: every hash-generic signature-forging attack can be converted, with
negligible loss of efficiency and effectiveness, into an algorithm to factor
the public key. The most surprising system is the “fixed unstructured
B = 0 Rabin–Williams” system, which has a tight security proof despite
hashing unrandomized messages.
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this paper
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Bellare–Rogaway
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tight security:
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Table 0.1. Proven lower bounds on “security in the random-oracle model” rel-
ative to roots (for RSA) or factorization (for Rabin–Williams).
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Fig. 0.2. Proven reductions among various types of attacks against Rabin–
Williams signatures. SimSign is more difficult for Rabin–Williams than for RSA;
the unstructured case was outlined in 1996 Bellare–Rogaway, but the principal
case was specifically prohibited in 1996 Bellare–Rogaway and requires extra work
performed in this paper. GuessSelection is standard but not tight. MixedSim is
tight; it combines the new simulator with the central idea of 2003 Katz–Wang.
RandSquares is also new in this paper, and also tight; it can be viewed as the
result of eliminating guesses from RandSquare(SimSign(GuessSelection))), or as
the result of eliminating aborts from an overgeneralization of MixedSim.



“K” number of key bits; 0 < pq − 2K < 2K

“D” distribution of secret keys (p, q)
“H” the hash function
“B” number of bits of randomization of hash input
“α” “unstructured”: signer chooses uniform random tweaked

√
;

“principal”: signer finds unique tweaked
√

that is a square etc.;
“|principal|”: if

√
is between (pq + 1)/2 and pq− 1 then negate it

“β” “variable”: signer generates new random bits for each signature;
“fixed”: signer repeats signature if message is repeated

Table 0.3. Summary of security-relevant parameters in the Rabin–Williams
signature system. See Section 2 for definitions.

1 Introduction

Variants of the Rabin–Williams public-key signature system have, since 1980,
held the speed records for signature verification. Are these systems secure?

There are many other signature systems of RSA/Rabin type. One can break
each system by computing roots modulo the signer’s public key pq or by breaking
the system’s hash function H. Are there other attacks?1 This is not an idle
concern: some RSA-type systems have been broken by devastating attacks that
(1) are much faster than known methods to compute roots modulo pq and (2)
work for a large fraction of all functions H, given oracle access to H.

Some systems have been proven immune to such attacks. For example, in the
1993 paper [5] that popularized this line of work (along with the terminology
“secure in the random-oracle model”), Bellare and Rogaway proved the following
security property for the traditional “FDH” form of exponent-e RSA: every H-
generic attack on RSA-FDH can be converted (without serious loss of efficiency)
into an algorithm to compute eth roots modulo pq.

Unfortunately, a closer look reveals that most of these proofs merely limit the
devastation, without actually ruling it out. For example, the Bellare–Rogaway
root-finding algorithm has only a 1/Q chance of success, where Q is the number of

1 Notes on terminology: Twenty years ago, in [14, Section 2.2], Goldwasser, Micali, and
Rivest defined various types of “attacks” against signature systems—in particular,
“adaptive chosen-message attacks,” the “most severe natural attack an enemy can
mount.” The definition has been repeated countless times in the literature, and the
reader is assumed to be familiar with it. This paper follows common practice in
abbreviating “adaptive chosen-message attack” as simply “attack.”

This paper follows [5] in focusing on attacks that work for (a significant fraction
of) all functions H, given access to an oracle computing H. In [5] these attacks are
called attacks “in the random-oracle model.” This paper follows the more concise
terminology of [9, Section 7.1], [22, Section 1.1], [23, Section 4], et al.: these attacks
are “H-generic attacks,” or simply “generic attacks.”



hash values seen by the FDH attack. Coron in [10] introduced a better algorithm
having a 1/S chance of success, where S is the number of signatures seen by the
FDH attack; but S can still be quite large.

Randomized signatures, in which B-bit random strings are prepended to
messages before the messages are signed, allow much tighter proofs if B is large.
For example, every H-generic attack on randomized exponent-e RSA (or Rabin’s
1979 signature system) can be converted into an algorithm to compute eth roots
modulo pq (or to factor pq) with a good chance of success. But generating random
strings takes time, and transmitting the strings consumes bandwidth. Can we
do better?

A 2002 theorem of Coron is widely interpreted as saying that FDH is stuck
at 1/S, i.e., that tight proofs require randomization of hash inputs; see [11]. A
2003 theorem of Katz and Wang allows much shorter random strings for some
RSA variants but breaks down for Rabin–Williams. There are other systems
with tight security proofs, but none of them offer state-of-the-art efficiency.

Contributions. This paper proves tight security for several state-of-the-art vari-
ants of the Rabin–Williams public-key signature system. What’s most surprising
is the “fixed unstructured B = 0” variant, a specific type of FDH that has a
tight security proof despite hashing unrandomized messages. A minor technical
assumption in Coron’s theorem—the assumption of “unique” signatures—turns
out to be a major loophole, producing a tight security proof from a random
choice later in the Rabin–Williams signing process, after all hashing is done.

There are actually two security proofs in this paper. The “B ≥ 1” proof uses
a more general approach, pushing the Katz–Wang idea beyond the well-known
“claw-free permutation pair” setting and carefully handling the “tweaked square
roots” that appear in the Rabin–Williams system. The “unstructured B = 0”
proof relies on a new proof idea that is more specific but also responsible for the
aforementioned surprise. As far as I can tell, the new proof idea is tied to Rabin–
Williams and cannot say anything useful about RSA; within the Rabin–Williams
context, the new proof idea is tied to “unstructured” signers and does not cover
“principal” or “|principal|” signers. The specific case of “fixed unstructured B =
0” Rabin–Williams is nevertheless worth studying because it is a state-of-the-
art signature system of particular interest to implementors; among all high-
speed systems with tight security proofs it is the only one that does not need to
randomize hash inputs.

These proofs owe a heavy debt to the efforts of Koblitz and Menezes in
[17] and [18] to clarify the limits of “provable security.” In particular, in [17,
Section 3.2], in the case of RSA with B = 0, Koblitz and Menezes explicitly
stated an apparently new “RSA1” hard problem (which I call “generic existen-
tial inversion”) and conjectured that it had the same difficulty as the usual hard
problem for RSA (which I call “generic blind inversion”). The simplicity and
clarity of the new hard problem inspired me to consider the analogous problem
for Rabin–Williams. Koblitz and Menezes had commented that Coron’s 1/S re-
duction could be translated to a 1/S reduction between these two hard problems,
and that it was unreasonable to hope for a better reduction in light of Coron’s



2002 theorem; I was quite surprised to discover that the “unstructured” case of
the analogous Rabin–Williams conjecture could in fact be proven.

Acknowledgments. Thanks to Dan Boneh for pointing out [15] to me shortly
after it was posted. Thanks to Tanja Lange and the anonymous referees for many
suggestions regarding exposition.

2 Parameters; keys; verification; signing

This section defines the family of signature systems whose security is analyzed
later in the paper. Standardizing a particular signature system in the family
means standardizing various parameters: K, the number of key bits; D, the
distribution of secret keys; H, the hash function; and B, the number of bits
of randomization of the hash input. The signer’s behavior is further controlled
by two parameters relevant to security: first, a tweaked-square-root distribution
α, either “unstructured” or “principal” or “|principal|”; second, a signature-
repetition parameter β, either “fixed” or “variable.” All of these parameters are
explained in detail below.

Readers wondering “Why are you analyzing these specific systems?” should
read the detailed cost analysis and historical survey in [8]. The short answer is
that, among all the systems that are conjectured to provide a reasonable security
level, these systems were engineered to minimize cost. (Exception: in applica-
tions where signature length is much more important than verification time,
lower costs are achieved by systems of ElGamal–Schnorr–ECDSA type.) This
engineering has not produced the world’s simplest family of signature systems—
this section needs two pages to state all the details of what the signer and verifier
do—but the loss in simplicity is justified by the reduction in cost.

Secret keys and public keys. All users of the system know an integer K ≥ 10.
Typical choices of K include 1024 (not recommended), 1536, and 2048. All users
of the system also know a distribution D (for example, the uniform distribution)
of pairs of prime numbers (p, q) such that p ∈ 3 + 8Z, q ∈ 7 + 8Z, and 2K <
pq < 2K+1. Each signer chooses a random secret key (p, q) from the distribution
D, and computes a corresponding public key pq.

For each algorithm A define PrFactor(A) as the probability that A(pq) ∈
{p, q}, when (p, q) is chosen randomly from the distribution D. This probability
depends explicitly on A and implicitly on the parameters (K, D). No security is
possible when K and D are chosen poorly. If K = 512, for example, then the
attacker can use the number-field sieve to factor arbitrary integers between 2K

and 2K+1 with a moderate amount of effort, and can then freely forge signatures.
As another example, if D has very little randomness and is concentrated on 232

pairs (p, q), the attacker can factor pq by simply trying each of those 232 pairs.
Theoreticians often simplify this picture by assuming that D is the uniform

distribution. However, implementors often choose non-uniform distributions to
save time in key generation. This paper considers arbitrary distributions of pairs
(p, q), and thus arbitrary distributions of public keys pq; for each distribution



D, this paper proves that various hard problems involving public keys from
distribution D are equivalent to factoring public keys from distribution D.

Hashing and verification. All users of the system know an integer B ≥ 0.
Three interesting choices of B are 0, 1, and 128. All users of the system also know
a function H : {B-bit strings} × {messages} →

{
1, 2, . . . , 2K

}
. For example, for

B = 0 and K = 2048, the function H assigns an element of
{
1, 2, . . . , 22048

}
to

each message. There are many popular choices of H, usually built from compo-
nents such as MD5, SHA-1, and SHA-256.

A vector (e, f, s) is a tweaked square root of an integer h modulo a public
key pq if e ∈ {1,−1}; f ∈ {1, 2}; s ∈ {0, 1, . . . , pq − 1}; and efs2 ≡ h (mod pq).
A vector (e, f, r, s) is a signature of a message m under a public key pq if r is
a B-bit string and (e, f, s) is a tweaked square root of H(r, m).

The difficulty of forging signatures depends on H. No security is possible
when the hash function is chosen poorly. For example, if H(r, m) is determined
by MD5(m), then an attacker can find collisions in H by finding collisions in
MD5.

Reader beware: Many authors allow the output range of H to be a function
of the public key, but there cannot actually be any such dependence when H
is a system parameter shared by all users, as it always is in practice. Putting a
shared limit on the output range of H also means slightly changing the notion
of a generic attack, and slightly changing the security proofs. My proofs include
these minor changes.

Unstructured signers, principal signers, |principal| signers. Each mes-
sage m has exactly 2B+2 signatures under pq: there are 2B choices of r, and then
4 choices of tweaked square root (e, f, s) of H(r, m) modulo pq. Which signature
does the signer choose?

A stupid signer could easily expose his secret key to the attacker through this
choice. For example, the signer could leak the ith bit of p in the ith signature as
the bottom bit of r (if B ≥ 1), as the Jacobi symbol of s modulo pq, etc. This
example demonstrates that there is no hope of security if the signing function is
chosen poorly. How do we know that a smarter-sounding signing algorithm does
not have a similar leak?

There are three signature distributions proposed in the literature:

• Unstructured: The signer chooses a uniform random string r, and then a
uniform random tweaked square root of H(r, m), independently of all previ-
ous choices.

• Principal: The signer chooses a uniform random string r independently of
all previous choices, and then chooses the principal tweaked square root of
h = H(r, m). This is the unique tweaked square root (e, f, s) such that e is
1 if h is a square modulo q, otherwise −1; f is 1 if eh is a square modulo p,
otherwise 2; and s is a square modulo pq.

• |Principal|: The signer chooses a uniform random string r independently of
all previous choices, and then chooses the “|principal|” tweaked square root
of H(r, m). If the principal tweaked square root is (e, f, s) then the |principal|



tweaked square root is (e, f,min{s, pq − s}); the point is that min{s, pq − s}
takes a bit less space than s.

One step in this paper’s security proofs—see Section 4—is split into three cases
accordingly. A later step—see Section 6—is affected much more dramatically by
the choice.

This paper is not the first paper to point out the importance of the signature
distribution for Rabin–Williams security proofs. For example, Bellare and Rog-
away in [7, Section 6] wrote “SignPRab . . . returns a random square root . . . We
stress that a random root is chosen; a fixed root won’t do.” In my terminology,
Bellare and Rogaway are requiring unstructured signers and prohibiting prin-
cipal signers, |principal| signers, etc. Sometimes principal signers require extra
work for a security proof (work done in Section 4 of this paper); sometimes they
don’t seem to allow a security proof at all.

Variable signers, fixed signers. What happens if the signer is given the same
message to sign once again? There are two choices in the literature:

• Fixed: Given the same message again, the signer chooses the same signature
again.

• Variable: Given the same message again, the signer generates a fresh sig-
nature, making random choices independently of the previous choices.

The importance of this choice for security proofs was first pointed out by Katz
and Wang in [15]. The conventional wisdom before [15] was that tight security
proofs required a large B; Katz and Wang proved tight security for various types
of fixed signers with B = 1. As a more extreme illustration of the importance of
this choice, consider the fact that “fixed unstructured B = 0” Rabin–Williams
now has a tight security proof, whereas “variable unstructured B = 0” Rabin–
Williams is easily breakable.

For principal and |principal| signatures with B = 0, no randomness is re-
quired, and variable signers are the same as fixed signers.

3 Generic blind inversion

Suppose we are given a public key pq and an integer h′ ∈
{
1, 2, . . . , 2K

}
. How

quickly can we compute a tweaked square root of h′ modulo pq? One approach
is to factor pq; are there better approaches?

More formally: Fix K, D. For each algorithm A define PrInvBlind(A) as the
probability that A(pq, h′) is some (e′, f ′, s′) ∈ {−1, 1}×{1, 2}×{0, 1, . . . , pq − 1}
such that e′f ′(s′)2 ≡ h′ (mod pq), when

• (p, q) is a D-distributed random secret key,
• h′ is a uniform random element of

{
1, 2, . . . , 2K

}
,

and (p, q) is independent of h′. How large can PrInvBlind(A) be, as a function
of the resources consumed by A?



Any fast probability-1 algorithm A for this generic-blind-inversion problem
immediately implies a fast probability-1 algorithm to forge Rabin–Williams sig-
natures, given oracle access to the hash function H. The attacker simply chooses
the message m′ that he wants to sign, chooses any B-bit string r′, computes
h′ = H(r′,m′), and uses A to compute a tweaked square root (e′, f ′, s′) of h′.
Then (e′, f ′, r′, s′) is a signature of m′. Conversely, cryptanalysts trying to forge
Rabin–Williams signatures will naturally consider this simple attack strategy as
a first possibility.

Tight security proof. Unfortunately for the cryptanalyst, this problem is
provably as difficult as factorization of public keys. Any fast high-probability
algorithm A for this problem immediately implies a fast high-probability factor-
ization algorithm RandSquare(A). The proof is completely standard, except for
the details of how the tweaks e, f are handled; readers are encouraged to read
the proof as a warmup for the security proofs in subsequent sections.

Here is the factorization algorithm RandSquare(A):

0. Input n.
1. Generate a uniform random vector (e, f, s) ∈ {−1, 1}×{1, 2}×{0, . . . , n− 1}.
2. Compute h′ = efs2 mod n.
3. Go back to step 1 if h′ /∈

{
1, 2, . . . , 2K

}
.

4. Compute (e′, f ′, s′) = A(n, h′).
5. If gcd{n, s′ − s} /∈ {1, n}, print it and stop.
6. If gcd{n, s′} /∈ {1, n}, print it and stop.

The following theorem states that a large success chance PrInvBlind(A) implies
a similarly large factorization chance PrFactor(RandSquare(A)). The time of
RandSquare(A) is practically identical to the time of A: the difference is a few
easy operations modulo n to generate h, repeated only n/2K < 2 times on
average, plus a few gcd operations.

Theorem 3.1. PrFactor(RandSquare(A)) ≥ (1/2) PrInvBlind(A).

Proof. Let (p, q) be a D-distributed random secret key. The quantity h′ =
efs2 mod pq in step 4 of (RandSquare(A))(pq) is a uniform random element of{
1, 2, . . . , 2K

}
; recall that each choice of h′ is produced by exactly four choices

of e, f, s. Thus the event e′f ′(s′)2 ≡ h′ (mod pq) occurs with probability exactly
PrInvBlind(A). I claim that, given this event, there is conditional probability at
least 1/2 that one of s′, s′ − s has a nontrivial factor in common with pq.

Case 1: gcd{h′, pq} = pq. This is impossible, since 1 ≤ h′ ≤ 2K < pq.

Case 2: gcd{h′, pq} = p. In this case gcd{s′, pq} = p as desired.

Case 3: gcd{h′, pq} = q. In this case gcd{s′, pq} = q as desired.

Case 4: gcd{h′, pq} = 1. I claim that (s′)2 ≡ s2 (mod pq). Notice first that
e′f ′(s′)2 ≡ efs2 (mod pq), and recall that p, q are primes with p ∈ 3+8Z and q ∈
7+8Z. Both possibilities for f , namely 1 and 2, are squares modulo q, so f ′(s′)2

and fs2 are squares modulo q, and both are nonzero since gcd{h′, q} = 1; the



ratio e′/e is therefore a square modulo q and hence cannot be −1. Consequently
e′ = e and f ′(s′)2 ≡ fs2 (mod pq). Both (s′)2 and s2 are squares modulo p,
and both are nonzero since gcd{h′, p} = 1; the ratio f ′/f is therefore a square
modulo p and hence cannot be 2. Hence f ′ = f and (s′)2 ≡ s2 (mod pq).

Recall that there are exactly four choices of e, f, s consistent with h′, and
observe that e′, f ′, s′ is independent of this choice. All four choices have the
same e, f as I just showed, so only two of them have s ≡ s′ or s ≡ −s′. The
other two choices occur with conditional probability 1/2; for those choices, pq
divides (s′)2−s2 without dividing s′−s or s′ +s, so gcd{n, s′ − s} is a nontrivial
factor of pq. ut

4 Generic selective inversion using one signature

Suppose we’re given a public key pq, two integers h, h′ ∈
{
1, 2, . . . , 2K

}
, and

a tweaked square root (e, f, s) of h modulo pq. How quickly can we compute a
tweaked square root of h′ modulo pq? One approach is to factor pq; are there
better approaches?

More formally: Fix α ∈ {unstructured,principal, |principal|}. Also fix K
and D. For each algorithm A define PrInvSelective1(A) as the probability that
A(pq, h, e, f, s, h′) is some (e′, f ′, s′) ∈ {−1, 1} × {1, 2} × {0, 1, . . . , pq − 1} such
that e′f ′(s′)2 ≡ h′ (mod pq), when

• (p, q) is a D-distributed random secret key,
• h is a uniform random element of

{
1, 2, . . . , 2K

}
,

• (e, f, s) is an α-distributed random tweaked square root of h mod pq,
• h′ is a uniform random element of

{
1, 2, . . . , 2K

}
,

and all of these choices are independent. How large can PrInvSelective1(A) be,
as a function of the resources consumed by A?

This generic-selective-inversion problem is a natural step for the cryptanalyst
beyond the generic-blind-inversion problem in Section 3. Any fast probability-
1 algorithm A to solve this problem immediately implies a fast probability-1
algorithm to forge Rabin–Williams signatures, given oracle access to the hash
function H. The forgery algorithm takes h and (e, f, s) from a legitimately signed
message m, chooses a message m′ 6= m, chooses a B-bit string r′, computes h′ =
H(r′,m′), computes (e′, f ′, s′) = A(pq, h, e, f, s, h′), and outputs (e′, f ′, r′, s′) as
a successful forgery of m′.

Similar comments apply to the problems articulated in subsequent sections.
Each problem is a natural problem for the cryptanalyst to consider, providing
more flexibility than the previous problem and potentially making attacks easier.

Tight security proof. Unfortunately for the cryptanalyst, this problem is prov-
ably as difficult as factorization of public keys. Any fast high-probability algo-
rithm A for this problem immediately implies a fast high-probability algorithm
SimSign1(A) for the generic-blind-inversion problem, and therefore implies a fast
high-probability factorization algorithm RandSquare(SimSign1(A)).



The intuition here is that A learns nothing from seeing h, e, f, s. It is well
known how to formalize this intuition: namely, build a simulator that, given
pq, generates (h, e, f, s) with exactly the same distribution as a signer who first
generates h and then uses p, q to generate (e, f, s).

There are three different constructions of the simulator, and thus three dif-
ferent constructions of SimSign1(A), one for each of the three choices of α. Here
is SimSign1(A) for the simplest choice, α = unstructured:

0. Input n and h′.
1. Generate a uniform random vector (e, f, s) ∈ {−1, 1}×{1, 2}×{0, . . . , n− 1}.
2. Compute h = efs2 mod n.
3. Go back to step 1 if h /∈

{
1, 2, . . . , 2K

}
.

4. Print A(n, h, e, f, s, h′).

Here is SimSign1(A) for α ∈ {principal, |principal|}:

0. Input n and h′.
1. Generate a uniform random (e′, f ′, x) ∈ {−1, 1} × {1, 2} × {0, . . . , n− 1}.
2. Compute g = gcd{x, n}.
3. If g = n or g mod 8 = 7, set e = 1; otherwise set e = e′.
4. If g = n or g mod 8 = 3, set f = 1; otherwise set f = f ′.
5. Compute s = x2 mod n.
6. Compute h = efs2 mod n.
7. Go back to step 1 if h /∈

{
1, 2, . . . , 2K

}
.

8. Print A(n, h, e, f, s, h′) if α = principal, else A(n, h, e, f,min{s, n− s}, h′).

The following theorem states that a large success chance PrInvSelective1(A) im-
plies a large success chance PrInvBlind(SimSign1(A)). The time of SimSign1(A)
is practically identical to the time of A: the only difference is a few easy opera-
tions modulo n to generate h, repeated only n/2K < 2 times on average.

Theorem 4.1. PrInvBlind(SimSign1(A)) = PrInvSelective1(A).

The reader may have noticed that my constructions of SimSign1(A), in the
principal and |principal| cases, go to some extra work to handle extremely rare
events such as g = n. The reward for this work is a particularly clean theorem.
The simulators produce exactly the right output distribution, rather than pro-
ducing almost exactly the right output distribution and forcing the user to worry
about the difference.

Proof. Let (p, q) be a D-distributed random secret key. Write n = pq. Let h′

be a uniform random element of
{
1, 2, . . . , 2K

}
, independent of (p, q). Consider

(SimSign1(A))(n, h′).

Unstructured: There are exactly four choices of (e, f, s) for each possible h; so
the distribution of h is uniform, and (e, f, s) is a uniform random tweaked square
root of h. Thus e′f ′(s′)2 ≡ h′ with probability exactly PrInvSelective1(A).



Principal: If e = 1 then h ≡ efs2 = fs2 is a square modulo q since 2 is a
square modulo q. If e = −1 then h ≡ efs2 = −fs2, which I claim is a non-
square modulo q; otherwise q divides s, so q divides x, so g = gcd{x, n} ∈ {n, q},
so g = n or g mod 8 = 7, so e = 1, contradiction. Similarly, if f = 1 then eh ≡ s2

is a square modulo p, and if f = 2 then eh ≡ 2s2, which I claim is a non-square
modulo p; otherwise p divides s, so p divides x, so g = gcd{x, n} ∈ {n, p}, so
g = n or g mod 8 = 3, so f = 1, contradiction. Furthermore, by construction s
is a square modulo n. Therefore (e, f, s) is the principal tweaked square root of
h. The only remaining task is to show that the distribution of h is uniform.

Which choices of (e′, f ′, x) lead to h? Write (e, f, s) for the principal tweaked
square root of h. If gcd{h, n} = 1 then gcd{s, n} = 1 so g = gcd{x, n} = 1; thus
e′ = e, f ′ = f , and x is one of the four square roots of s modulo n. If gcd{h, n} =
p then gcd{s, n} = p so g = gcd{x, n} = p; thus e′ = e, f ′ ∈ {1, 2}, and x is one
of the two square roots of s modulo n. If gcd{h, n} = q then gcd{s, n} = q so g =
gcd{x, n} = q; thus e′ ∈ {−1, 1}, f ′ = f , and x is one of the two square roots of
s modulo n. If gcd{h, n} = n then gcd{s, n} = n so g = gcd{x, n} = n; thus e′ ∈
{−1, 1}, f ∈ {1, 2}, and x = 0. To summarize, each integer h ∈ {0, 1, . . . , n− 1}
is produced by at most four choices of (e′, f ′, x). There are n possibilities for h
and 4n possibilities for (e′, f ′, x), so each integer h ∈ {0, 1, . . . , n− 1} is produced
by exactly four choices of (e′, f ′, x). In particular, each integer h ∈

{
1, 2, . . . , 2K

}
is produced by exactly four choices of (e′, f ′, x).

|Principal|: h is uniform exactly as above, and (e, f, s) is the principal tweaked
square root of h, so (e, f,min{s, n− s}) is the |principal| tweaked square root of
h. ut

5 Generic selective inversion using many signatures

Suppose we’re given a public key pq, integers h1, h2, . . . , hQ, h′ ∈
{
1, 2, . . . , 2K

}
,

and a tweaked square root of each hi modulo pq. How quickly can we compute
a tweaked square root of h′ modulo pq? One approach is to factor pq; are there
better approaches?

More formally: Fix α ∈ {unstructured,principal, |principal|}. Fix K and D.
Fix Q ≥ 0. For each algorithm A define PrInvSelectiveQ(A) as the chance that
A(pq, h1, e1, f1, s1, . . . , hQ, eQ, fQ, sQ, h′) is some (e′, f ′, s′) ∈ {−1, 1} × {1, 2} ×
{0, 1, . . . , pq − 1} satisfying e′f ′(s′)2 ≡ h′ (mod pq), when

• (p, q) is a D-distributed random secret key,
• each hi is a uniform random element of

{
1, 2, . . . , 2K

}
,

• (ei, fi, si) is an α-distributed random tweaked square root of hi mod pq,
• h′ is a uniform random element of

{
1, 2, . . . , 2K

}
,

and all of these choices are independent. How large can PrInvSelectiveQ(A) be,
as a function of the resources consumed by A?

The answer is that this problem is provably as difficult as factorization of
public keys. The construction of SimSignQ is an easy generalization of last sec-
tion’s construction of SimSign1. For example, here is SimSignQ(A) for α =
unstructured:



0. Input n and h′.
1. For each i ∈ {1, 2, . . . , Q}:
2. Generate a uniform random vector (ei, fi, si) in the usual range.
3. Compute hi = eifis

2
i mod n.

4. Go back to step 2 if hi /∈
{
1, 2, . . . , 2K

}
.

5. Print A(n, h1, e1, f1, s1, . . . , hQ, eQ, fQ, sQ, h′).

The remaining constructions work similarly.

Theorem 5.1. PrInvBlind(SimSignQ(A)) = PrInvSelectiveQ(A).

Proof. Exactly as in Section 4. ut

6 Generic existential inversion: the unstructured B = 0
case

Suppose we’re given a public key pq and integers h1, . . . , hQ+1 ∈
{
1, 2, . . . , 2K

}
.

We’re allowed to adaptively select Q distinct i’s and see tweaked square roots
of the corresponding hi’s. Our goal is to compute a tweaked square root of the
other hi. How quickly can we do this?

More formally: Fix α ∈ {unstructured,principal, |principal|}. Fix K and D.
Fix Q ≥ 0. For each algorithm A define PrInvExistentialQ(A) as follows. A is
given pq where (p, q) is a D-distributed random secret key, and uniform random
elements h1, h2, . . . , hQ+1 of

{
1, 2, . . . , 2K

}
, all of these choices being indepen-

dent. A makes Q distinct oracle queries i; in response to each i, A is given an
α-distributed random tweaked square root (ei, fi, si) of hi modulo pq, again in-
dependently of other choices. Now PrInvExistentialQ(A) is the probability that
A outputs some (i, e′, f ′, s′) ∈ {−1, 1} × {1, 2} × {0, 1, . . . , pq − 1} such that
e′f ′(s′)2 ≡ hi (mod pq) and such that i was not one of the oracle queries.

The big difference between this generic-existential-inversion problem and the
generic-selective-inversion problem in Section 5 is that we’re now allowed to
decide which of the hi’s will be easiest to attack. Does this make the problem
easier? Perhaps we gain from the extra flexibility.

This section uses a new idea to show that there is no gain in the case of
unstructured signatures. The reader might guess, after previous sections, that
the proof constructs an algorithm for generic selective inversion or generic blind
inversion; in fact, the proof jumps directly to the factorization problem. I don’t
know any way to get from a generic-existential-inversion algorithm to a generic-
blind-inversion algorithm, in the case B = 0, except via factorization.

The new idea. Let’s start by reviewing the standard proof that the gain is
at most a factor Q + 1. Given a generic-existential-inversion algorithm A, build
a generic-selective-inversion algorithm GuessSelection(A) that handles inputs
(n, h1, e1, f1, s1, . . . , hQ, eQ, fQ, sQ, h′) as follows:

• Choose a uniform random integer π ∈ {1, . . . , Q + 1}.



• Insert h′ at position π in the list h1, . . . , hQ, and relabel the resulting list as
h1, . . . , hQ+1. Also relabel ei, fi, si accordingly.

• Run A(n, h1, . . . , hQ+1), using ei, fi, si to answer query i from A; abort if A
selects i = π for a query rather than for output.

The choice of π is independent of the operation of A before an abort occurs, so
this algorithm GuessSelection(A) aborts with probability exactly Q/(Q + 1). If
GuessSelection(A) does not abort then it runs A with exactly the right input
distribution.

This construction is the heart of the 1993 Bellare–Rogaway loose security
proof. The random choice of π in GuessSelection(A) is a guess for the index i that
A will use for its output; when a correct guess does occur, it makes the generic-
existential-inversion problem equivalent to the generic-selective-inversion prob-
lem, eliminating the extra flexibility of the generic-existential-inversion problem.

Now let’s feed this generic-selective-inversion algorithm GuessSelection(A) to
the reductions in previous sections. Section 5 produces a generic-blind-forgery
algorithm SimSign(GuessSelection(A)): each input hi is replaced by an output
from the appropriate simulator. Section 3 then produces a factorization algo-
rithm RandSquare(SimSign(GuessSelection(A))): the input h′ is replaced by a
random efs2, so that a tweaked square root of h′ reveals a factorization of pq.

Wait a minute! What’s happening to hi is almost the same as what’s hap-
pening to h′. In fact, with the unstructured simulator, what’s happening to hi is
exactly the same as what’s happening to h′! Why did we bother to distinguish
hi from h′ in the first place? The new idea is to exploit unstructured signatures
by treating all of the inputs h1, . . . , hQ+1 the same way, directly producing a
factorization algorithm; there is no need to guess which one is h′, and there is
no need for a detour through GuessSelection(A).

Here is the new, direct, almost ludicrously simple construction of a factoriza-
tion algorithm RandSquares(A) from a generic-existential-inversion algorithm A
for α = unstructured:

0. Input n.
1. For each i ∈ {1, 2, . . . , Q + 1}:
2. Generate a uniform random vector (ei, fi, si) in the usual range.
3. Compute hi = eifis

2
i mod n.

4. Go back to step 2 if hi /∈
{
1, 2, . . . , 2K

}
.

5. Compute (j, e′, f ′, s′) = A(n, h1, . . . , hQ+1), using (ei, fi, si) to answer query
i from A. There is no possibility of aborting here; we have an answer for
every i!

6. If gcd{n, s′ − sj} /∈ {1, n}, print it and stop.
7. If gcd{n, s′} /∈ {1, n}, print it and stop.

The time for RandSquares(A) is the time for A plus the time for the final gcd
computations and, on average, the time for (Q+1)n/2K < 2(Q+1) generations
of hi.

Theorem 6.1. PrFactor(RandSquares(A)) ≥ (1/2) PrInvExistential(A) if α =
unstructured.



Proof. Let (p, q) be a D-distributed random secret key. By construction the
quantities h1, . . . , hQ+1 inside (RandSquares(A))(pq) are independent uniform
random elements of

{
1, 2, . . . , 2K

}
, so the event e′f ′(s′)2 ≡ hj (mod pq) occurs

with probability exactly PrInvExistential(A). Given this event, one of s′, s′ − sj

has a nontrivial factor in common with pq with conditional probability at least
1/2, exactly as in Theorem 3.1. ut

7 Generic existential inversion: the B ≥ 1 case

Fix B ≥ 0. Suppose we’re given a public key pq and (via an oracle) random access
to h1(0), . . . , h1(2B − 1), h2(0), . . . , h2(2B − 1), . . . , hQ+1(0), . . . , hQ+1(2B − 1).
We’re allowed to adaptively select Q distinct i’s; for each selected i we see a
uniform random ri ∈

{
0, 1, . . . , 2B − 1

}
and a tweaked square root of hi(ri).

Our goal is to compute some r and some tweaked square root of hi(r) for the
remaining i. How quickly can we do this?

As usual, the answer depends on the tweaked-square-root distribution α ∈
{unstructured,principal, |principal|}. Section 6 discussed α = unstructured, and
gave a tight security proof for unstructured signers for B = 0; this proof gen-
eralizes immediately to a tight security proof for unstructured signers for all B.
The initial computations of hi(r) might sound overly time-consuming when B
is large, because there are 2B(Q + 1) pairs (i, r); but these computations can be
deferred until they are actually needed.

What about α ∈ {principal, |principal|}? There is a tight security proof
for all B ≥ 1, coming from a different way to build a factorization algorithm
MixedSim(A) out of a generic-existential-inversion algorithm A. This algorithm
MixedSim(A), given n,

• chooses a uniform random ri for each i ∈ {1, 2, . . . , Q + 1};
• uses the α simulator to build ei(ri), fi(ri), si(ri), hi(ri);
• uses the unstructured simulator to build ei(r), fi(r), si(r), hi(r) for r 6= ri;
• runs A, answering query i with ri, ei(ri), fi(ri), si(ri);
• aborts if the output j, r′, e′, f ′, s′ has r′ = rj ; and
• tries gcd{s′, n} and gcd{s′ − sj(r′), n} as factors of n.

This algorithm aborts with probability exactly 1/2B : rj is independent of ev-
erything seen by A and therefore independent of r′. If the algorithm does not
abort then it has conditional probability at least 1/2 of factoring n, exactly as
in Theorem 3.1.

How powerful are claw-free permutation pairs? Readers should recog-
nize the central idea of this construction—choosing a random ri, building hi(ri)
according to the target simulator, and building hi(r) for r 6= ri to solve the
underlying hard problem—as exactly the Katz–Wang idea used to prove [15,
Section 4.1, Theorem 2].

The Katz–Wang theorem is stated for all “claw-free permutation pairs,” fol-
lowing [14] and a suggestion of Dodis and Reyzin. One could directly apply



the Katz–Wang theorem to the exponent-2 claw-free permutation pair defined
by Goldwasser, Micali, and Rivest in [14, Section 6.3], obtaining a tight secu-
rity proof for an alternate system that at first glance appears quite similar to
Rabin–Williams. Unfortunately, a closer look shows that verification in the al-
ternate system is even slower than verification of exponent-3 RSA signatures.
This alternate signature system is therefore of much less practical interest than
the Rabin–Williams system.

Specifically, [14, Section 6.3] considers the permutations x 7→
∣∣x2 mod pq

∣∣
and x 7→

∣∣4x2 mod pq
∣∣ of the set of positive integers having Jacobi symbol 1

modulo pq. (Absolute values and “positive” here refer to integers between 1
and (pq − 1)/2.) One can hash to this set by luck (if B is not very small), as
Rabin did, or by tweaks, as Williams did. The verifier then has to check that
s is a preimage of H(m) under the first permutation: i.e., that s is positive,
that s has Jacobi symbol 1, and that

∣∣s2 mod pq
∣∣ = H(m). Unfortunately, the

Jacobi-symbol computation takes much more time than squaring modulo pq.
Dropping the Jacobi-symbol requirement—in other words, switching back to

Rabin–Williams signatures—speeds up verification but moves outside the world
of permutation pairs; the wider range of accepted inputs means that the verifier’s
squaring map is no longer a permutation. One can recognize claws in the Rabin–
Williams context, but they are claws between a 4-to-1 map and a 1-to-1 map,
with two different algorithms for generating the inputs to the two maps. This is
exactly where my simulators involved extra work.

Can the same idea be pushed to 0 bits of hash randomization? For
B = 0, the MixedSim construction accomplishes nothing. It never uses the un-
structured simulator; it always aborts. The construction needs at least one bit
of hash-input randomization to separate the target simulator from the unstruc-
tured simulator. Eliminating the abort does not produce a security proof: if sj

was produced by (e.g.) the principal simulator then it is not a uniform random
square root of its square and there is no reason to believe that s′ − sj will have
a factor in common with n.

However, for α = unstructured, eliminating the abort does produce a se-
curity proof, and further eliminating the selection of ri produces exactly the
new construction of Section 6. This is another way to see both the limitations
and the power of the new idea in Section 6: the construction refuses to distin-
guish the α simulator from the unstructured simulator, and therefore requires
α = unstructured, but the construction also skips the selection of ri, and there-
fore can handle B = 0.

Tight security for principal B = 0 Rabin–Williams remains an open question.
Switching from unstructured B = 0 signers to principal B = 0 signers breaks
all of my tight security reductions, and presumably breaks any tight black-box
reduction. A tight black-box reduction for principal B = 0 Rabin–Williams
was claimed in [20, Section 6, Theorem 1], but [20, Section 6, Theorem 1, Proof,
equality between “Pr(F successes)” and “ε(k)”] implicitly assumes that attackers
cannot distinguish principal square roots from arbitrary integers modulo pq.



8 Generic attacks

Let’s review three typical examples of attacks on the Rabin–Williams system:

• NFS factorization: The attacker uses the number-field sieve to factor pq into
(p, q). The attacker then chooses a message m′, chooses a B-bit string r′,
computes h′ = H(r′,m′) using an oracle for H, uses (p, q) to compute a
tweaked square root (e′, f ′, s′) of h′, and forges the signature (e′, f ′, r′, s′) of
m′. This attack always succeeds, for all functions H. Fortunately, this attack
is very slow when K is large.

• Signing leaks: The attacker chooses a message m and asks the signer for two
signatures of m. The signer responds with (e1, f1, r1, s1) and (e2, f2, r2, s2).
The attacker computes gcd{s2, n} and gcd{s1 − s2, n}, hoping to factor n
and proceed as in the previous attack. In the case of variable unstructured
B = 0 signers, this attack succeeds with probability ≥ 1/2, for all functions
H: notice that r1 = r2 since B = 0, and therefore that e1f1s

2
1 ≡ e2f2s

2
2;

continue as in Theorem 3.1. Fortunately, this attack does not work for fixed
signers, or for principal or |principal| signers, or for signatures with large B.

• MD5 collisions: The attacker finds distinct messages m,m′ with MD5(m) =
MD5(m′). The attacker asks the signer for a signature of m and then forges
the same signature of m′. This attack works if B = 0 and H is determined
by MD5, a surprisingly common situation in practice. Fortunately, one can
easily change H to stop the attack.

Consider the class of “H-generic attacks” that work for all (or a significant
fraction of all) functions H, given oracle access to H. This class includes many
of the attacks in the literature, although there are also many exceptions; it
does not include the MD5-collisions attack, for example, but it does include the
factorization attack and the signing-leak attack.

How powerful are H-generic attacks against the Rabin–Williams system?
Can they be better than factorization? Define PrAttack(A) as the average, over
all functions H, of the success probability of A using an oracle for H. Can
PrAttack(A) be much larger than the other probabilities considered in this paper,
as a function of the resources consumed by A?

The signing-leak example shows that these attacks can be quite successful:
variable unstructured B = 0 signers are broken by an extremely fast generic
attack. But the picture is different for fixed signers. For fixed signers, generic
attacks that see hash values of Q+1 distinct messages are as difficult as Q-query
generic existential inversion. Given a generic-attack algorithm A, build a generic-
existential-inversion algorithm FixSignatures(A) as follows: FixSignatures(A)
runs A, keeps track of the distinct messages m1,m2, . . . ,mQ+1 that are hashed,
answers a hash query for (r, mi) as hi(r), and answers a signature query for mi

by feeding i to its tweaked-square-root oracle. The distribution of signatures in
this algorithm is identical to the distribution of signatures produced by a legit-
imate fixed signer, so FixSignatures(A)’s chance of success is the same as A’s
chance of success against fixed signers.



This FixSignatures construction is weaved through the Katz–Wang reduction
“generic attack for fixed B = 1 RSA =⇒ blind RSA inversion,” and can similarly
be weaved through separate proofs of “generic attack for fixed unstructured
B ≥ 0 Rabin–Williams =⇒ factorization” and “generic attack for fixed principal
B ≥ 1 Rabin–Williams =⇒ factorization” and so on; but this means repeating
the same construction as part of every reduction. I learned the general principle
“generic attack for fixed =⇒ generic existential inversion” from the illustrative
“RSA1” and “RSA2” examples given by Koblitz and Menezes in [17, Sections
3.2 and 3.4].

In particular, generic attacks against fixed signers are as difficult as factor-
ization whenever generic existential inversion is as difficult as factorization. Note
also that variable signers are indistinguishable from fixed signers if B is large.
The bottom line is that there cannot be any generic attacks better than factoriza-
tion against fixed unstructured B ≥ 0 Rabin–Williams, or against fixed principal
B ≥ 1 Rabin–Williams, or against fixed |principal| B ≥ 1 Rabin–Williams, or
against variable large-B Rabin–Williams.
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