
Analysis of QUAD

Bo-Yin Yang1, Owen Chia-Hsin Chen2,
Daniel J. Bernstein3, and Jiun-Ming Chen4

1 Academia Sinica and Taiwan Information Security Center
by@moscito.org

2 National Taiwan University
owenhsin@gmail.com

3 University of Illinois at Chicago
djb@cr.yp.to

4 Nat’l Taiwan University and Nat’l Cheng Kung University
jmchen@ntu.edu.tw

Abstract. In a Eurocrypt 2006 article entitled “QUAD: A Practical
Stream Cipher with Provable Security,” Berbain, Gilbert, and Patarin
introduced QUAD, a parametrized family of stream ciphers. The arti-
cle stated that “the security of the novel stream cipher is provably
reducible to the intractability of the MQ problem”; this reduction de-
duces the infeasibility of attacks on QUAD from the hypothesized infeasi-
bility (with an extra looseness factor) of attacks on the well-known hard
problem of solving systems of multivariate quadratic equations over fi-
nite fields. The QUAD talk at Eurocrypt 2006 reported speeds for QUAD
instances with 160-bit state and output block over the fields GF(2),
GF(16), and GF(256).

This paper discusses both theoretical and practical aspects of attack-
ing QUAD and of attacking the underlying hard problem. For example, this
paper shows how to use XL-Wiedemann to break the GF(256) instance
QUAD(256, 20, 20) in approximately 266 Opteron cycles, and to break the
underlying hard problem in approximately 245 cycles. For each of the
QUAD parameters presented at Eurocrypt 2006, this analysis shows the
implications and limitations of the security proofs, pointing out which
QUAD instances are not secure, and which ones will never be proven se-
cure. Empirical data backs up the theoretical conclusions; in particular,
the 245-cycle attack was carried out successfully.

1 Introduction

1.1 Questions

Berbain, Gilbert, and Patarin introduced QUAD at Eurocrypt 2006. Their article
[7] is titled “A Practical Stream Cipher,” but QUAD is not actually a single stream
cipher; it is a parametrized family of stream ciphers. The most important pa-
rameters are the QUAD field size, the number of QUAD variables, and the number
of QUAD outputs per round. We will write QUAD(q, n, r) to mean any instance of
QUAD that has field size q, uses n variables, and produces r outputs per round.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 290–308, 2007.
c© International Association for Cryptologic Research 2007

Analysis of QUAD 291

The speed and security of QUAD are (obviously) functions of the QUAD para-
meters. The Performance section [7, Section 6] of the QUAD paper reported a
speed of 2915 Pentium-IV cycles/byte for the “recommended version of QUAD,”
namely QUAD(2, 160, 160). The section closed with the following intriguing com-
ment: “Though QUAD is significantly slower than AES, which runs at 25 cy-
cles/byte, it is much more efficient than other provably secure pseudo random
generator. Moreover, implementations of QUAD with quadratic system over larger
fields (e.g. GF(16) or GF(256) are much faster and even reach 106 cycles/byte.”

Further performance details were revealed in the QUAD talk at Eurocrypt 2006.
In that talk, the QUAD authors reported the following implementation results:

• QUAD(2, 160, 160): 2930 cycles/byte for 32-bit architecture, 2081 for 64-bit;
• QUAD(16, 40, 40): 990 cycles/byte for 32-bit architecture, 745 for 64-bit;
• QUAD(256, 20, 20): 530 cycles/byte for 32-bit architecture, 417 (confirmed in

[5], correcting the erroneous “106” in [7]) for 64-bit.

We wrote privately to the QUAD authors to ask about parameters. The authors
confirmed in response that the Eurocrypt 2006 speed reports were for “160 bits of
internal state, and 160 bits produced at each round,” i.e., QUAD(q, n, n) with qn =
2160; and that the talk reported the above speeds for q = 2, 16, and 256. Speed
was never reported for the “proven secure” QUAD(2, 256, 256) or QUAD(2, 350, 350).

Which of these QUAD instances are actually secure? What is the security level
under the best known attack? What does the “provable security” of QUAD mean
for these parameter choices? What about other parameter choices?

1.2 Conclusions

This paper discusses both theoretical and practical aspects of solving the non-
linear multivariate systems associated with the security of QUAD. Our analysis
produces the following conclusions regarding the security of QUAD:

• Section 4: For a surprisingly wide range of parameters (which we call “bro-
ken” parameters), a feasible computation distinguishes the QUAD output
stream from uniform; in fact, an attacker can compute QUAD’s secret in-
ternal state from a few output blocks. For example, QUAD(256, 20, 20), one of
the three QUAD instances for which timings were reported in the QUAD talks at
Eurocrypt 2006 and SAC 2006 [5], is breakable in no more than 266 cycles.

• Section 5: For an even wider range of parameters (which we call “unprovable”),
a feasible attack breaks the “hard problem” underlying QUAD. For example, the
“hard problems” underlying QUAD(16, 40, 40) and QUAD(256, 20, 20) are break-
able in approximately 271 and 245 cycles respectively. An “unprovable” in-
stance can never be provably secure. This does not mean that the QUAD instance
is breakable!

• Section 6: For an extremely wide range of parameters (which we call “un-
proven”), including QUAD(256, 20, 20), QUAD(16, 40, 40), QUAD(2, 160, 160), and
QUAD(2, 256, 256), a “loosely feasible” attack breaks the “hard problem” un-
derlying QUAD. “Loosely feasible” means that the attack time is smaller than

292 B.-Y. Yang et al.

280L where L is the looseness factor in QUAD’s “provable security” theorem.
This does not mean that the proof is in error, and it does not mean that the
QUAD instance is breakable!

Our algorithm analysis—in particular, our analysis of XL-Wiedemann—may also
be useful for readers interested in other applications of solving systems of mul-
tivariate equations.

We do not claim that all QUAD parameters are broken, or unprovable, or un-
proven. All of our attacks against QUAD(q, n, n) have cost growing exponentially
with n when q is fixed. The problem for QUAD is that—especially for large q—the
base of the exponential is surprisingly small, so n must be surprisingly large to
achieve proven security against these attacks.

We see ample justification for future investigation of QUAD. The QUAD security
argument is that a feasible attack against QUAD(q, n, n) for moderately large n
would imply an advance in attacks against the MQ problem, the problem of
solving systems of multivariate quadratic equations over finite fields:

Problem MQ: Solve the system P1 = P2 = · · · = Pm = 0, where each Pi is a
quadratic polynomial in x = (x1, . . . , xn). All coefficients and variables are
in the field K = GF(q).

This is a well-known difficult problem [20] and the basis for multivariate-quadratic
public-key cryptosystems [16,27]. However, we are concerned by the choice of
QUAD(2, 160, 160), QUAD(16, 40, 40), and QUAD(256, 20, 20) as the subjects of speed
reports in the QUAD talk at Eurocrypt 2006. QUAD(256, 20, 20) is now broken; no
extension of the security arguments in [7] will ever prove QUAD(16, 40, 40) secure;
and QUAD(2, 160, 160), while apparently unbroken, is currently rather far from be-
ing provably secure. There is no single QUAD stream cipher that simultaneously
provides the advertised levels of speed and provable security. We recommend that
future QUAD evaluations stop describing QUAD as “a stream cipher” and start care-
fully distinguishing between different choices of the QUAD parameters.

1.3 Previous Work

QUAD is a new proposal, but we are certainly not the first to observe difficulties
in the parameter choices for “provably secure” cryptosystems.

Consider, for example, the famous BBS stream generator. Blum, Blum, and
Shub [8] proved that an attack against this generator can be converted into
an integer-factorization algorithm with a polynomially bounded loss of effi-
ciency and effectiveness. Koblitz and Menezes [22, Section 6.1], after compar-
ing the latest refinements in the BBS security theorem, the speeds of existing
factorization algorithms, and the BBS parameter choices in the literature, con-
cluded that common BBS parameter choices destroy the “provable security”
of BBS. The speed comparison between 1024-bit BBS and QUAD(2, 160, 160) in
[7, Section 6] issues the same warning regarding 1024-bit BBS (“far from the
number of bits of the internal state required for proven security”), but does not

Analysis of QUAD 293

highlight the comparable lack of proof for “recommended” QUAD(2, 160, 160). See
[21] and [22] for more discussions of the limits of “provable security.”

Of course, a cryptosystem can be unbroken, and perhaps acceptable to users,
without having a security proof. We are not aware of any feasible attacks on
any proposed BBS parameter choices. The situation for QUAD is qualitatively
different: The QUAD authors reported speeds for QUAD(256, 20, 20). This cipher is
not merely unprovable but has now actually been broken.

The QUAD paper contains some analysis of parameter choices: [7, page 121]
summarizes Bardet’s estimates [2] of equation-solving time for q = 2, and
concludes that there is no “contradiction”—i.e., the QUAD security proof does
not guarantee 80-bit security for 240 output bits against known attacks—for
QUAD(2, n, n) for n < 350. We analyze QUAD in much more depth. We go beyond
q = 2, showing that QUAD(16, 40, 40) is unprovable; we consider not just the cost
of solving the underlying “hard problem” but also the extra cost of attacking
QUAD, showing that QUAD(256, 20, 20) is not merely unprovable but also broken;
and we cover both theoretical and practical attack complexity, for example dis-
cussing the implications of parallelizing communication costs.

1.4 Future Work

We suggest using the same classification of levels of danger for parameter choices
in other “provably secure” systems—systems having security theorems that de-
duce the infeasibility of attacks on the cryptosystem, assuming the loose infea-
sibility of attacks on the underlying “hard problem”:

• Unproven parameter choices (e.g., 2048-bit BBS or QUAD(2, 160, 160) as “rec-
ommended”): Known attacks on the underlying “hard problem” are loosely
feasible. They might not be feasible, but the gap is smaller than the loose-
ness of the security proof. It is unjustified and somewhat misleading to label
these parameters as “provably secure.”

• Unprovable parameter choices (e.g., 512-bit BBS or QUAD(16, 40, 40)): Known
attacks on the underlying “hard problem” are feasible. These parameters
would not be “provably secure” even if the proof were tightened.

• Broken parameter choices (e.g., QUAD(256, 20, 20)): Feasible attacks are known
on the cryptosystem per se. Users must avoid these parameters.

It would be interesting to see a careful comparison of speeds for “provably secure”
systems with parameters that avoid all of these dangers. This is a quite different
task from comparing systems such as 1024-bit BBS and QUAD(2, 160, 160), both
of which are unbroken but have no security proof; the motivation for “provably
secure” systems does not apply to unproven parameter choices.

Our security analysis is essentially independent of the choice of polynomials
in QUAD. [7, page 113, second paragraph] suggests, but neither quantifies nor
justifies, a few “extra precautions” regarding “weak” choices of polynomials.
Are some polynomial choices weaker than others? For example, one can save
stream-generation time by reducing the density of the quadratic polynomials in

294 B.-Y. Yang et al.

QUAD from 1/2 to some small ε; what effect does this have on security? How
much time can we save in our attacks as ε decreases? Exactly how small would
ε have to be before the Raddum-Semaev attack [26] becomes a problem? There
are many obvious directions for future security analysis.

2 The QUAD Family of Stream Ciphers

2.1 Definition of QUAD

To specify a particular QUAD stream cipher one must specify a prime power q;
positive integers n and r; an “output filter” P : GF(q)n → GF(q)r consisting of
r quadratic polynomials P1, P2, . . . , Pr in n variables; and an “update function”
Q : GF(q)n → GF(q)n consisting of n quadratic polynomials Q1, Q2, . . . , Qn in
n variables. These quantities q, n, r,P,Q are not meant to be secret; they can
be published and standardized.

The QUAD cipher expands a secret initial state x0 ∈ GF(q)n into a sequence
of secret states x0,x1,x2,x3, . . . ∈ GF(q)n and a sequence of output vectors
y0,y1,y2,y3, . . . ∈ GF(q)r as follows:

x0 ��

��

x1 = Q(x0) ��

��

x2 = Q(x1) ��

��

x3 = Q(x2) ��

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·

Typically q is a power of 2, allowing each output vector yi ∈ GF(q)r to encrypt
the next r lg q bits of plaintext in a straightforward way.

2.2 Parameter Restrictions

Can users expect QUAD to be secure no matter how the parameters are chosen?
Certainly not. For example, QUAD(2, 20, 20,P,Q) has only 20 bits in its initial
state x0, so the initial state can be discovered from some known plaintext by
a brute-force search. As another example, QUAD(2, 512, 512, 0,Q) is the “all-zero
cipher,” a silly stream cipher that always outputs 0. There are other, less obvious,
attacks; users considering QUAD need to understand which parameters are broken
or potentially so.

The QUAD paper [7, page 114] requires that the public polynomials P1, . . . , Pr

and Q1, . . . , Qn be “chosen randomly.” We see conflicting statements regarding
the distribution of these random variables: [7, page 112] defines “chosen ran-
domly” as a uniform random choice (coefficients “uniformly and independently
drawn”), but [7, page 113] suggests checking for and discarding some choices.
Either way, one can reasonably conjecture that “bad” choices of P and Q have a
negligible chance of occurring. There is no proof of this conjecture, and as men-
tioned in the introduction we would like to know exactly how P and Q affect
security, but that is not the focus of this paper; we consider attacks that work
for most choices of P and Q.

Analysis of QUAD 295

2.3 Example: QUAD(256, 20, 20)

Choose q = 256, n = 20, and r = 20. Also choose 40 quadratic polynomials
P1, . . . , P20, Q1, . . . , Q20 in 20 variables. These choices specify a particular QUAD
stream cipher. The cipher starts with a secret 20-byte state x0 ∈ GF(256)20;
computes another secret 20-byte state x1 = (Q1(x0), . . . , Q20(x0)); computes
another secret 20-byte state x2 = (Q1(x1), . . . , Q20(x1)); and so on. The ci-
pher outputs y0 = (P1(x0), . . . , P20(x0)); y1 = (P1(x1), . . . , P20(x1)); y2 =
(P1(x2), . . . , P20(x2)); and so on.

We specifically warn against using QUAD(256, 20, 20). Given the public polyno-
mials P1, . . . , P20, Q1, . . . , Q20 and the first 40 bytes y0,y1 of the output stream,
our attacks compute the secret 20-byte initial state x0 in approximately 266

cycles. See Section 4.2 for details.

2.4 Nonces

Old-fashioned stream ciphers, such as RC4, compute an output stream starting
from a secret key. Modern stream ciphers, such as the eSTREAM submissions,
compute an output stream starting from a secret key and a nonce, allowing the
same secret key to be used for many separate output streams.

We have presented QUAD as an old-fashioned stream cipher. The QUAD paper
actually presents a modern stream cipher. The modern stream cipher begins with
an “initialization,” converting a secret key and a nonce into a secret initial state
x0. The modern stream cipher then generates output in exactly the way we have
described. Details of the initialization are not relevant to this paper; our attacks
recover x0 no matter how x0 was generated, breaking both the old-fashioned
stream cipher and the modern stream cipher.

Stream ciphers can have “refresh” rules to disrupt the state after some given
number of clocks. We do not concern ourselves with this either: initialization
and refresh are both considered to be perfectly secure hereafter. For reference,
[6] proves one particular setup procedure secure with an extra loss of efficiency.

3 How to Solve Multivariate Systems

Modern methods for system all descend spiritually from Buchberger’s algorithm
of finding Gröbner Bases [9], which is still widespread in symbolic mathematics
packages both commercial and free (e.g., Maple and Singular). We present some
state-of-the-art improvements below, not nearly as well known in general.

3.1 History of Lazard-Faugère Solvers: F4, F5, XL, XL2, FXL

Macaulay generalized Sylvester’s matrix to multivariate polynomials [24]. The
idea is to construct a matrix whose lines contain the multiples of the polynomials
in the original system, the columns representing a basis of monomials up to a
given degree. It was observed by D. Lazard [23] that for a large enough degree,

296 B.-Y. Yang et al.

ordering the columns according to a monomial ordering and performing row
reduction without column pivoting on the matrix is equivalent to Buchberger’s
algorithm. In this correspondence, reductions to 0 correspond to lines that are
linearly dependent upon the previous ones and the leading term of a polynomial
is given by the leftmost nonzero entry in the corresponding line.

Lazard’s idea was rediscovered in 1999 by Courtois, Klimov, Patarin, and
Shamir [12] as XL. Courtois et al proposed several adjuncts [11,13,14] to XL.
One tweak called XL2 merits a mention as an easy to understand precursor to
F4. Another of these proved to be a real improvement to F4/F5 as well as XL.
This is FXL, where F means “fixing” (guessing at) variables.

Some time prior to this, J. -C. Faugère had proposed a much improved
Gröbner bases algorithm called F4 [17]. A later version, F5 [18], made head-
lines [19] when it was used to solve HFE Challenge 1 in 2002. Commercially, F4

is only implemented in the computer algebra system MAGMA [10].

3.2 Algorithm XL (eXtended Linearization) at Degree D

For the rest of this paper, we will denote the monomial xb1
1 xb2

2 · · ·xbn
n by xb,

and its total degree |b| = b1 + · · · + bn. The set of degree-D-or-lower monomials
is denoted T = T (D) = {xb : |b| ≤ D}. |T | is the number of degree ≤ D
monomials and denoted T (D) = T .

Start by multiplying each equation pi, i = 1 · · ·m by all monomials xb ∈
T (D−2). Reduce as a linear system of the equations R(D) = {xbpj(x) = 0 :
1 ≤ j ≤ m, |b| ≤ D − 2}, with the monomials xb ∈ T (D) as independent
variables. Repeat with higher D until we have a solution, a contradiction, or
reduce the system to a univariate equation in some variable. The number of
equations and independent equations are denoted R(D) = R = |R| and I(D) =
I = dim(spanR).

If we accept solutions in arbitrary extensions of K = GF(q), then T =
(
n+D

D

)

regardless of q. However, most crypto applications require solutions in GF(q)
only. The above expression for T then only holds for large q, since we may
identify xq

i with xi and cut substantially the number of monomials we need to
manage. This “Reduced XL” (cf. C. Diem [15]) can lead to extreme savings
compared to “Original XL,” e.g., if q = 2, then T =

∑D
j=0

(
n
j

)
.

Proposition 3.3 ([3,30]). The number of monomials is T = [tD]
(1 − tq)n

(1 − t)n+1

which reduces to
(
n+D

D

)
when q is large. We can then find R = R(D) = mT (D−2).

We note that the XL of [12,13] terminates more or less reliably when T − I ≤
min(D, q − 1), but sparse matrix computation is only possible when T − I ≤ 1
[29]. Further, Lazard-Faugère methods work for equations of any degree [4,30]. If
deg(pi) = d, we will only multiply the equation pi with monomials up to degree
D − d in generating R(D). The principal result is:

Proposition 3.4 ([30, Theorem 7]). If the equations pi, with deg pi := di,
and the relations R(D) has no other dependencies than the obvious

Analysis of QUAD 297

ones generated by pipj = pjpi and pq
i = pi, then

T − I = [tD] G(t) = [tD]
(1 − tq)n

(1 − t)n+1

m∏

j=1

(
1 − tdj

1 − tq dj

)
. (1)

After a certain degree DXL, called the degree of regularity for XL, such that
DXL := min{D : [tD] G(t) ≤ 0} is the smallest D such that Eq. 1 cannot hold if
the system has a solution, because the right hand side of Eq. 1 goes nonpositive.
If the boldfaced condition above holds for as long as possible (which means for
degrees up to DXL), we say that the system is K-semi-regular or q-semi-
regular (cf. [3,30]). Diem proves [15] for char 0 fields, and conjectures for all K
that (i) a generic system (no algebraic relationship betweem the coefficients) is
K-semi-regular and (b) if (pi)i=1···m are not K-semi-regular, I can only decrease
from the Eq. 1 prediction. Most experts [15] believe the conjecture that a random
system behaves like a generic system with probability close to 1.

Corollary 3.5. T −I = [tD]
(
(1 − t)−n−1 ∏m

j=1

(
1 − tdi

))
for generic equations

if D ≤ min(q, D∞
XL), where D∞

XL is the degree of the lowest term with a non-
positive coefficient in G(t) =

(
(1 − t)−n−1 ∏m

j=1

(
1 − tdi

))
.

We would note that (F)XL is a solver and not a true Gröbner basis method as
F4 and F5 is. However, the analysis much parallels that of F4-F5 by Dr. Faugère
et al, hence the categorical name “Lazard-Faugère” solvers.

3.6 XL2, F4 and F5

XL2 [13] is a tweak of XL as follows: Tag each equation with its maximal degree.
Run an elimination on the system with monomials in degree-reverse-lex. In the
remaining (row echelon form) system, multiply by each variable x1, x2 · · · all
remaining equations with the maximum tagged degree and eliminate again. When
we cannot eliminate all remaining monomials of the maximum degree, increment
the operating degree and reallocate more memory.

XL+XL2 can be considered a primitive or inferior matrix form of F4 or F5
[1]. F4 inserts elimination between expansion stages, which compresses the num-
ber of rows that needs to be handled. F5 is a further refinement of F4. The set
of equations is actually generated one by one (or the matrix row by row). In
the process, an algebraic criterion is used to determine, ahead of an elimination
process, whether a row will be reduced to zero or not and only the meaningful
rows are retained. A complication resulting from the tagging is that the elimina-
tion must be done in a strictly ordered way. This corresponds in the matrix form
to no row exchanges in a Gaussian. There are two separate degrees in F4/F5,
an apparent operating degree DF4 and a higher intrinsic degree equal to that of
the equivalent XL system. For the full power of F4 or F5, auxillary algorithms
such as FGLM are needed. See [17,18] for complete details.

298 B.-Y. Yang et al.

Proposition 3.7 ([3]). If the eqs. pi are q-semi-regular, at the operating degree

Dreg := min

{

D : [tD]
(1 − tq)n

(1 − t)n

m∏

i=1

(
1 − tdi

1 − tqdi

)
< 0

}

both F4-F5 will terminate. Note that by specializing to a large field, we find

D∞
reg := min

{

D : [tD] (1 − t)−n
m∏

i=1

(
1 − tdi

)
< 0

}

. (2)

If we compare this formula with Cor. 3.5, we see that the only difference is a
substitution of n for n + 1. In other words, we are effectively running with one
fewer variable in the large field case. This explains why F4-F5 can be much faster
than XL. However, the savings is smaller over small fields like GF(2), and even
for large fields, removing one variable may not be enough of a savings, because
the systems that we aim to solve will spawn millions of monomials (variables).
Eliminating in the usual way means that we will run out of memory before time.

According to the description we received from the MAGMA project and
Dr. Faugère, even though memory management is very critical, elimination is
still relatively straightforward in current implementations of F4-F5, and in the
process we see reasonably dense matrices, not extremely sparse ones. All said,
F4-F5 are still the most sophisticated general system-solving algorithms today.

3.8 Practicalities: XL with Wiedemann, and Ramifications

Table 1 lists our tests in solving generic equations with F4 over GF(256). That
we only have 2GB main memory is not critical to our inability to solve equations
in the realm of 20 byte-sized variable in as many equations, because we also ran
into a SIGMEM (out of memory) error with a 15-variable, 15-equation system
on a 16 GB RAM system.

Table 1. System-solving time (sec): MAGMA 2.12, 2GB RAM, Athlon64x2 2.2GHz

m − n DXL Dreg n = 9 n = 10 n = 11 n = 12 n = 13
0 2m m 6.090 46.770 350.530 3322.630 sigmem
1 m �m+1

2 � 1.240 8.970 53.730 413.780 2538.870
2 �m+1

2 � �m+2−
√

m+2
2 � 0.320 2.230 12.450 88.180 436.600

Conclusion: We will run out of memory using any Lazard-Faugère solver, in-
cluding F4-F5, if our equation-solving is not tailored to sparse matrices. Many
authors used T 2.8 (or T 2.376!) as the cost function. This is why we don’t.

Example 1. If we try to attack QUAD directly using F4-F5, we will be solving
20 variables from 20 quadratic equations and 20 quartic equations over (say

Analysis of QUAD 299

GF(256)). We will run into 6906900 monomials at degree 9 with (eventually) a
fairly dense matrix. This is not feasible.

We must take advantage of the sparsity of Macaulay matrix. Solving the
same system via XL with a Krylov subspace method means that we will run
into 30045105 monomials at degree 10, but with a sparse matrix of only 200 or
so entries per row with 5 bytes per entry. The whole thing can fit in a single
machine with 32GB or (much easier) distributed among a cluster.

Three well-known methods (all utilizing the existence of Krylov subspaces) adapt
well to sparse matrices: Conjugate Gradient, Lanczos, and Wiedemann. There
are two reasons to prefer Wiedemann. While Lanczos and CG usually takes about
N (as opposed to 3N) multiplications by the matrix A, they are restricted to
symmetric matrices. Furthermore, Wiedemann has no worries about the self-
orthogonality issue and is easier to program.

Algorithm: XL (with homogenous Wiedemann)

1. Create the extended Macaulay matrix of the system to a certain degree DXL.
2. Randomly delete some rows then add some columns to form a square system,

Ax = 0 where dim A = βT + (1 − β)R. Usually we can succeed with β = 1.
3. Apply the homogeneous version of Wiedemann’s method to solve for x:

(a) Set k = 0 and g0(z) = 1, and take a random b.
(b) Choose a random uk+1 [usually the (k + 1)-st unit vector].
(c) Find the sequence uk+1A

ib starting from i = 0 and going up to 2N − 1.
(d) Apply gk as a difference operator to this sequence, and run the

Berlekamp-Massey over GF(q) on the result to find the minimal polyno-
mial fk+1.

(e) Set gk+1 := fk+1gk and k := k + 1. If deg(gk) < N and k < n, go to (b).

4. Compute the solutionx using the minpoly f(z)=gk(z) = cmzm+cm−1z
m−1+

· · ·+c�z
�: Take another random b. Start from x = (cmAm−� +cm−1A

m−�−1+
· · · + c�1)b, continuing to multiply by A until we find a solution to Ax = 0.

5. In the event that the random choice in Step 2 went awry and we dropped
an essential equation, or if the system had more than one solution to begin
with, the nullity � will be more than 1, and we will have to repeat the check
below at every point of a linear subspace (q points).

6. Obtain the solution from the last few elements of x and check its correctness.

Proposition 3.9 (cf. [4,30]). The expected running time of XL is roughly
CXL ∼ 3τTm where τ = kT is the total (and k the average) number of terms in
an equation, one multiplication m ≈ (c0 + c1 lg T) cycles, and c0, c1 depend on
the architecture. E.g. on x86, when q = 256, T < 224, each multiplication cost
about 14 cycles on a P4 (3 consecutively dependent loads from L1 cache plus
change). On a K8 or P-M/Core, it takes 11 cycles on the same serial code, but
in x86-64 mode, some loop-unrolling can get it down to about 8.

300 B.-Y. Yang et al.

4 Broken Parameters for QUAD

4.1 Overview: Using Algebraic Attacks Against QUAD

The QUAD paper [7, Section 5] contains the following statement regarding alge-
braic attacks: “QUAD was designed to resist algebraic attack techniques. As a
matter of fact, the key and IV loading and keystream generation mechanisms of
QUAD are based upon the iteration of quadratic systems whose associated equa-
tions are conjectured to be computationally impossible to solve.”

Can we try to solve P(x0) = y0 directly? Yes, but even for q = 256, r = 20,
that takes about 280 cycles [29]. We propose instead to solve the equations
P(x0) = y0 and P(Q(x0)) = y1 for the initial state x0 using (F)XL-Wiedemann.

The attacker is given the quadratic polynomials P and Q, which presumably
are public, and the two initial stream-cipher outputs y0,y1, for example from
a successful guess regarding the initial bytes of plaintext. The unknown state
x0 consists of n variables from GF(q). The equation P(x0) = y0 consists of r
quadratic equations in those n variables. The equation P(Q(x0)) = y1 consists
of r quartic equations in those n variables. The attack solves the combined
quadratic-quartic system to find x0. At this point the attacker can compute the
subsequent stream-cipher output y2,y3,

Note: we can also frame the attack as given any consecutive stream-cipher output
blocks yi, yi+1, compute the state xi and all subsequent state and output blocks.
This means that known-plaintext attacks will be particularly effective.

The cost of this attack is, aside from negligible setup costs, the cost of solving
r quadratic equations and r quartic equations in n variables over GF(q), which
in turn is dominated by solving a large sparse matrix equation. In the rest of this
section we consider the cost of (F)XL-Wiedemann for various choices of (q, n, r).
In particular, we show that the attack is feasible against QUAD(256, 20, 20).

4.2 Example: Breaking QUAD(256, 20, 20)

Proposition 4.3. For q > 10, a q-semiregular system of 20 quadratics and 20
quartics can be solved over GF(q) in no more than 263 GF(q)-multiplications
(for q = 256, about 266 cycles).

Proof. The minimum degree to find a nonpositive coefficient in (1 − t)−21(1 −
t2)20(1− t4)20 is DXL = 10, we have T =

(30
10

)
= 30045015, the number of initial

equations is R = 20 ×
(28

8

)
+ 20 ×

(26
6

)
= 66766700, and the total number of

terms in those equations is τ = 20
(28

8

)(22
2

)
+ 20

(26
6

)(24
4

)
= 63287924700. Hence

the number of multiplications needed is bounded by 3Tτ � 263, or about 266

cycles. If we can cut down to a T × T system (which usually succeeds),
then it takes 3T (τT/R) ∼ 260 multiplications, or about 263 cycles.

In contrast, QUAD(16, 40, 40) is not directly breakable by this attack. Here, the first
non-positive coefficient of (1 − t)−41(1 − t2)40(1 − t4)40 happens at DXL = 14.
So for q > 14, T = 3245372870670. We find solving a q-semiregular system

Analysis of QUAD 301

of 40 quadratics and 40 quartics over GF(q) XL-Wiedemann to take � 295m
(about 2100 cycles). Guessing variables may cut the memory requirement and
aid parallelization but does not decrease the number of multiplications. This
means that QUAD(q, 40, 40) is considerably below a 128-bit security level, but we
know of no attack below the 80-bit security level considered in [7].

Observation: Unless it is possible to run the elimination in F4-F5 with a speed
that matches the sparse matrix solvers, these more sophisticated methods would
be dragged down by the amount of memory and memory operations required.
E.g., against QUAD(256, 20, 20), even though we are operating F5 with a lower
DF5 = 9. TF5 = 6906900, and there is just too much memory needed.

Conjecture: For generic (i.e., most random) P,Q and y0,y1, P(x) = y0 and
P(Q(x)) = y1 is 256-semiregular.

We cannot produce a hard proof, but we include a set of our test results (all
using i386 code on a P4) as Table 2. The timings for n = 6 all the way up to
n = 15 are consistent with our theoretical predictions. Furthermore, the timings
for a QUAD(256, n, n) attack are identical to the timings for n randomly generated
quadratics plus n randomly generated quartics in n variables.

Table 2. Direct XL-Wiedemann attack on QUAD(256, n, n), MS C++ 7; P-D 3.0GHz,
2GB DDR2-533

n 6 7 8 9 10 11 12 13 14 15
D 6 6 7 7 7 7 8 8 8 8

CXL 1.22 4.49 6.08 · 10 2.29 · 102 7.55 · 102 2.30 · 103 5.12 · 104 1.54 · 105 4.39 · 105 1.17 · 106

lgCXL 2.85 · 10−1 2.17 5.92 7.84 9.56 1.12 · 10 1.56 · 10 1.72 · 10 1.87 · 10 2.02 · 10

T 9.24 · 102 1.72 · 103 6.44 · 103 1.14 · 104 1.94 · 104 3.28 · 104 1.26 · 105 2.03 · 105 3.20 · 105 4.90 · 105

aTm 49 65 96 120 147 177 245 288 335 385
clks 28.8 23.5 15.3 14.6 13.6 12.1 13.1 12.9 12.8 12.7

T: #monomials, aTm: average terms in a row, clks: number of clocks per multiplication.

y = 2.2817x - 13.085

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25

number of variables

lg
 (

ti
m

e)

Fig. 1. Logarithmic growth of direct QUAD attack time over GF(256), optimal D

302 B.-Y. Yang et al.

y = 2.0817x - 10.817

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

number of variables

lg
 (

ti
m

e)

Fig. 2. Logarithmic growth of direct QUAD attack time over GF(256), D = 7

����������	�
������

�

�

�

�

�

��

��

��

��

� � � �
 �� ��

�������������������

��
��
��
�	

Fig. 3. Logarithmic growth of direct QUAD attack time over GF(256), D = 8

4.3 Asymptotics for Attacking QUAD(q, n, n) Directly (q large)

DXL = min
{

D : [tD]
1

(1 − t)n+1

(
(1 − t2)(1 − t4)

)n
< 0

}
,

gives the degree D of the eventual XL operation. Here, D = (w + o(1))n, and

w ≈ smallest positive zero w of
∮ (1−z2)n(1−z4)n

(1−z)n+1zwn+1 dz =
∮

dz
z(1−z)

(
(1+z)(1−z4)

zw

)n

(cf. [28]). As usual in such situations, the expression on the RHS can only vanish
when the saddle point equation of this integral has double roots (a “monkey
saddle”), and here the saddle point equation is (w − 5)z4 + z3 − z2 + z − w = 0

Analysis of QUAD 303

which has a double root when w is very close to 0.2 (actually ≈ 0.200157957).
So lg T/n → (1 + w) lg(1 + w) − w lg w ≈ 0.78. Assuming Wiedemann solving
to continue without a problem, this means that the system will be solvable in
21.56n+o(n) × (polynomial in n) asymptotically.

Suppose we use, in addition to the degree-2 and degree-4 equations, the degree-
8 equations P(Q(Q(x0))) = y2. This reduces the final degree to

DXL = min
{

D : [tD]
1

(1 − t)n+1

(
(1 − t2)(1 − t4)(1 − t8)

)n
< 0

}
,

differentiating with respect to z and then finding the root of the discriminant gets
us w ≈ 0.1991777370 which confirms our suspicion that higher-degree equations
provide very little improvement in the cost of the attack for large q.

4.4 Asymptotics for Attacking QUAD(2, n, n) Directly

For q = 2 there is noticeably more benefit from using higher-degree equations
and from guessing variables. We combine n quadratic equations P(x0) = y0, n
quartic equations P(Q(x0)) = y1, and so on through n equations P(Q�(x0)) =
y� of degree 2�. The degree of operation of XL is

DXL � min
{

D : [tD]
(1 + t)n

(1 − t)

(
(1 + t2)(1 + t4) · · · (1 + t2

�

)
)−n

< 0
}

,

where equality holds for 2-semi-regular systems, and which for � → ∞ becomes
DXL = min

{
D : [tD] (1 − t)n−1(1 + t)2n < 0

}
. If we guess at f variables, then

we have DFXL = min
{
D : [tD] (1 − t)n−1(1 + t)2n−f < 0

}
. Let c = f/n. We

would like to find a c for which the running time is smallest.

Proposition 4.5 ([4]). We have the following asymptotics

1. If f/m → α as f, m → ∞, then

Dreg = min
{
D : [tD] (1 − t)f (1 + t)m < 0

}
∼

(
1
2

−
√

α +
α

2

)
m+ o(m1/3).

2. If D/n → w, then lg T/n → −w lg w − (1 − w) lg(1 − w).

Using the above, we see that DFXL ∼
(

1
2

−
√

2 − c +
2 − c

2

)
n, hence for

XL-Wiedemann, as n → ∞, the limiting exponential factor
lg CFXL

n
→

2((2−c) lg(2−c)−(3−c
2 −√

2−c) lg(3−c
2 −√

2−c)−(1−c
2 +

√
2−c) lg(1−c

2 +
√

2−c))+c.

Due to constraints in asymptotic analysis which are too lengthy to discuss here,
this expression is only guaranteed to hold for small c and may not continue to
hold as c goes up. But it is clear that asymptotically, FXL is the correct approach
here. A rough estimate is that the security under the direct attack is 21.02n with
XL, and 20.86n with best FXL.

304 B.-Y. Yang et al.

4.6 Which Field Is Best?

Our analysis suggests that after taking into account all known improvements,
to achieve any particular level of security against known attacks, q = 2 needs
considerably more variables than a large q, the ratio being about 1.56/0.86 ≈
1.81. The QUAD user can try to save time by increasing q and reducing the number
of variables. Our current impression is that q = 256 is not a good choice: the
extra cost of arithmetic in GF(q) offsets the smaller number of variables and
polynomial coefficients to be manipulated. However, q = 16 or q = 4 may be
better. These estimates will have to be updated if faster attacks are discovered.

4.7 The State of System-Solving Cryptanalysis

We have shown that Lazard-Faugère solvers, particularly XL with a sparse ma-
trix solver, can be very useful in attacking generic systems, or at least systems
that have generic or randomly created elements. In some cases such simple ap-
proaches are more useful than the really sophisticated variations.

There is a problem we ran into when trying to organize a medium-scale parallel
cluster to help crack a QUAD instance. It is desirable to partition the matrix
because memory capacity is always a problem. Yet in Block Lanczos and Block
Wiedemann each computer must hold a copy of the entire matrix. If we do
the naive parallelization, then the communications cost goes up squarely as the
cluster size but the efficiency gain only linearly. This will take a good tuning.

5 Unprovable Parameters for QUAD

5.1 Overview: Attacking the Underlying Hard Problem

The QUAD paper [7, page 110] states that the security of QUAD “is provably re-
ducible to the intractability of the MQ problem [15], which consists of finding a
solution (if any) to a multivariate quadratic system of m quadratic equations in n
variables over a finite field GF(q), typically GF(2).” Here m = n+r. The quoted
statement means that there is a proof that assumes that MQ is intractable and
concludes that QUAD is secure.

We emphasize that the intractability of the MQ problem is not a theorem;
it is a hypothesis. For some parameter choices, the hypothesis is plausible. For
other parameter choices, the hypothesis is false. For example, we show in this
section how to break 80 quadratic equations in 40 variables over GF(16).

For parameters where the associated MQ instance is shown to be not “hard,”
any attempt to show provable security starting from the hardness of the MQ
problem becomes hopeless; hence our terminology “unprovable.” Note that un-
provable parameters can be analyzed even before a proof has been claimed or
written down; unprovability is deduced purely from the parameter choices for
the underlying “hard problem.”

Analysis of QUAD 305

5.2 Example: QUAD(256, 20, 20)

We return to QUAD(256, 20, 20) as an illustrative example. What the quoted state-
ment says in this case is that the security of QUAD(256, 20, 20) follows from the
difficulty of solving 40 quadratic equations in 20 variables over GF(256).

Is solving 40 random quadratic equations in 20 variables over GF(256) actually
difficult? No, not at all! We can compute from Prop. 3.5 that DXL = 5 and
T = 53130. The maximum number of terms per equation is k � 231, so on a
P4, CXL ≈ 9 × 1012 � 245. To summarize: XL-Wiedemann takes < 245 cycles,
which is only a few hours on a decent computer.

To verify our estimates, we carried out this computation the same evening that
we began to study the security of QUAD. XL-Wiedemann solved the equations on
schedule. The fairly mature F4 in MAGMA version 2.12 did the same job in
about a quarter of the time, presumably using more memory.

Of course, after establishing the breakability of QUAD(256, 20, 20) in Section 4,
we could apply the contrapositive of the “provable security” of QUAD to deduce
the breakability of the corresponding MQ system. However, this circuitous ap-
proach would be considerably harder to verify than a direct attack on MQ. We
also observe a significant gap between the cost of the MQ attack and the cost
of the QUAD attack. Showing unprovability of a set of QUAD parameters is easier
than showing breakability.

5.3 Example: QUAD(16, 40, 40)

For QUAD(16, 40, 40), we can verify (cf. Prop. 3.5) D = 8, T = 377348994, and
k � 861. Since the storage will come to about 800 GB among a small cluster, we
will assume AMD64 or a similar architecture, and it will take about 8 cycles a
multiplication before tuning, and a total of 3×8×3773489942×861 ≈ 3×1020 �
272 cycles. With a little work, such as unrolling by hand the critical loop, we can
expect to cut this down to 271 on an Opteron.

These attacks are considerably below the specified 280 security level. We con-
clude that QUAD(16, 40, 40) is unprovable.

5.4 Examples: QUAD(2, 160, 160), (2, 256, 256), (2, 350, 350)

For QUAD(2, 160, 160): D = 13 (this time cf. Prop. 3.4), but this time T =
4801989157032669149, and k � 12881 which makes it rather difficult to fit
everything into memory. An optimistic 6-cycles-per-multiplication hypothesis,
ignoring space problems, leads to an estimate of approximately 2140 cycles.

For QUAD(2, 256, 256): D = 19, T = 25707968047799666061215057489 or �
294. CXL ≈ 2205m. For QUAD (2,350,350), D = 24, T � 2123. CXL � 2263m. [In
the astronomical realm, a multiplication may take rather more than 6 cycles.]

6 Proven and Unproven Parameters for QUAD

There are several limitations on what was actually proven in [7]. We focus on
one limitation, namely the lack of tightness in [7, Theorem 4].

306 B.-Y. Yang et al.

The theorem does not claim that a QUAD attack implies an MQ attack with
the same efficiency. It says that a QUAD attack implies an MQ attack with a
bounded loss of efficiency: specifically, if λn bits of output from QUAD(2, n, r)
can be distinguished from uniform with advantage ε in time T , then a random
MQ system of n + r equations in n variables over GF(2) can be solved with
probability 2−3ε/λ in time

T ′ ≤ 27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS,

where TS := time to run one block of QUAD(2, n, r).
How could we conclude the security of QUAD—a lower bound on T , such as

T ≥ 280—from this theorem? A minor point is that the theorem would need to
be extended to all q, not just q = 2, and proven; we will make the (questionable)
assumption that this is done, and that it does not produce worse time bounds.
The major point is that we would need to assume a much larger lower bound on
T ′, compensating for (among other things) a factor of 210n2λ3/ε3. For example,
as in [7] let’s accept ε as large as 0.01, and let’s put L = λn = 240. The extra
factor is then 2150/n. The theorem cannot conclude T ≥ 280 without assuming
that T ′ ≥ 2230/n. Let’s check this against cases studied in Section 5:

• QUAD(256, 20, 20): Unproven. Our (computer-verified) estimate is T ′ ≤ 245.
• QUAD(16, 40, 40): Unproven, we estimate T ′ ≤ 271.
• QUAD(2, 350, 350): Proven, if there are no better MQ attacks. We estimate

T ′ ≈ 2263m. A 280 distinguishing attack would lead to an ≈ 2221m expected-
time solution. Note T ′ ≈ 2222m for QUAD(2, 320, 320), which should suffice.

• QUAD(2, 160, 160): Unproven (T ′ ≤ 2140, [7] specified this as unproven).
• QUAD(2, 256, 256): Proven for the parameters [7] L = 222, ε = 0.01, if there

are no better MQ attacks. We estimate T ′ ≈ 2205m where we need 2168m.

Why did [7] overestimate n? The N2.376 formula discounts an expected big coef-
ficient, compensating for our improvement to N2+ε and then some.

The bottom line is that all three QUAD parameter choices used for speed re-
ports in the QUAD talk at Eurocrypt 2006 are unproven, although the gap in the
QUAD(2, 160, 160) case might be closed by a tighter security proof.

Acknowledgement

The authors would all like to thank the TWISC project (Taiwan Information
Security Center, NSC95-2218-E-001-001) for sponsoring a series of lectures on
cryptology at its Nat’l Taiwan U. of Sci. and Tech. location (NSC95-2218-E-011-
015) in 2006, the discussions following which led to this work. BY would like to
thank the Taiwan’s National Science Council for support under project 95-2115-
M-001-021 and indirectly via TWISC. JMC was partially supported by TWISC
at NCKU (NSC94-3114-P-006-001-Y). Date of this document: 2007.04.18.

Analysis of QUAD 307

References

1. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner Basis algorithms. In: AsiaCrypt [25], pp. 338–353.

2. Bardet, M.: Étude des systèmes algébriques surdétermininés. Applications aux
codes correcteurs et á la cryptographie. PhD thesis, Université Paris VI (2004)

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004)

4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.)
MEGA 2005 Sardinia, Italy (2005)

5. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate
quadratic systems. In: Workshop record distributed at 13th Annual Workshop on
Selected Areas in Cryptography (August 2006)

6. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In: Work-
shop record distributed at 14th Annual Workshop on Fast Software Encryption
(March 2007)

7. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006)

8. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators, pp. 61–78. Plenum Press, New York (1983)

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck
(1965)

10. Computational Algebra Group, University of Sydney. The MAGMA Computa-
tional Algebra System for Algebra, Number Theory and Geometry, http://magma.
maths.usyd.edu.au/magma/

11. Courtois, N.: Algebraic attacks over GF (2k), application to HFE challenge 2 and
Sflash-v2. In: Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
201–217. Springer, Heidelberg (2004)

12. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000),
http://www.minrank.org/xlfull.pdf

13. Courtois, N.T., Patarin, J.: About the xl algorithm over gf(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

14. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

15. Diem, C.: The xl-algorithm and a conjecture from commutative algebra. In Asia-
Crypt [25], pp. 323–337

16. Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. Ad-
vances in Information Security. Springer, Heidelberg (2006)

17. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

18. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://www.minrank.org/xlfull.pdf

308 B.-Y. Yang et al.

19. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equations (HFE)
using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–
60. Springer, Heidelberg (2003)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the The-
ory of NP-Completeness. In: W.H. Freeman and Company (1979) ISBN 0-7167-
1044-7 or 0-7167-1045-5.

21. Koblitz, N., Menezes, A.: Another look at “provable security”. Cryptology ePrint
Archive, Report 2004/152 (2004), http://eprint.iacr.org/

22. Koblitz, N., Menezes, A.: Another look at ”provable security”. ii. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer, Hei-
delberg (2006)

23. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

24. Macaulay, F.S.: The algebraic theory of modular systems. Cambridge Mathematical
Library, vol. xxxi. Cambridge University Press, Cambridge (1916)

25. Lee, P.J. (ed.): ASIACRYPT 2004. LNCS, vol. 3329, pp. 3–540. Springer, Heidel-
berg (2004)

26. Raddum, H., Semaev, I.: New technique for solving sparse equation systems. Cryp-
tology ePrint Archive, Report 2006/475 (2006), http://eprint.iacr.org/

27. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of
multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, 64
pages (May 12 th 2005), http://eprint.iacr.org/2005/077/

28. Wong, R.: Asymptotic approximations of integrals, vol. 34 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, (2001) Corrected reprint of the 1989 original

29. Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-
s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

30. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288.
Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2005/077/

	Analysis of $QUAD$
	Introduction
	Questions
	Conclusions
	Previous Work
	Future Work

	The $QUAD$ Family of Stream Ciphers
	Definition of $QUAD$
	Parameter Restrictions
	Example: $QUAD$ (256,20,20)
	Nonces

	How to Solve Multivariate Systems
	History of Lazard-Faugère Solvers: F_4, F_5, XL, XL2, FXL
	Algorithm XL (eXtended Linearization) at Degree D
	XL2, $\mathbf{F_4}$ and $\mathbf{F_5}$
	Practicalities: XL with Wiedemann, and Ramifications

	Broken Parameters for $QUAD$
	Overview: Using Algebraic Attacks Against $QUAD$
	Example: Breaking $QUAD$ (256,20,20)
	Asymptotics for Attacking $QUAD(q,n, n)$ Directly (q large)
	Asymptotics for Attacking $QUAD(2,n,n)$ Directly
	Which Field Is Best?
	The State of System-Solving Cryptanalysis

	Unprovable Parameters for $QUAD$
	Overview: Attacking the Underlying Hard Problem
	Example: $QUAD$ (256,20,20)
	Example: $QUAD$ (16,40,40)
	Examples: $QUAD$ (2,160,160), (2,256,256), (2,350,350)

	Proven and Unproven Parameters for $QUAD$

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

