Does ZK-Crypt version 1
flunk a repetition test?

Daniel J. Bernstein *

djb@cr.yp.to

ZK-Crypt version 1 is one of the stream ciphers submitted to eSTREAM,
the ECRYPT Stream Cipher Project.

An October 2005 paper “The distinguishing attack on ZK-Crypt cipher”
claims that the ZK-Crypt output streams are detectably biased: distinguishable
from uniform with 97% reliability after 22% output bits, for example. The ZK-
Crypt authors disputed this attack in February 2006, first at the SASC 2006
workshop and then as part of the documentation of ZK-Crypt version 2.

Two papers at the SASC workshop reported that ZK-Crypt version 1 also
flunks some simple I'V-diffusion tests. It seems clear that ZK-Crypt version 1 is
being withdrawn in favor of version 2. But this does not mean that the dispute
regarding the October 2005 paper should be left unresolved. The community
should properly assign credit for breaking ZK-Crypt version 1, and should be
prepared to properly evaluate subsequent papers along the lines of the October
2005 paper. Did the October 2005 paper break ZK-Crypt version 17

A closer look reveals that the October 2005 paper falls far below normal
standards of scientific verifiability. The authors never define the distinguishing
function that they claim to have found. They present a table claimed to be output
from software implementing the distinguishing function, but they do not provide
the software. They describe a parametrized “book stack test,” but many critical
parameters are unspecified. They rely on an “obvious” statement regarding the
effect of the “book stack test” on uniform random data, but that statement is
false for many parameter choices, as pointed out by the ZK-Crypt authors.

On the other hand, it is clear that the “book stack test” is a reinvention of
a compression method normally called “move to front,” which tries to exploit
irregularities in the distribution of distances between repeated words. One can
see all such irregularities without deciphering the October 2005 paper: simply
draw a graph of the distribution of distances between repeated output words from
ZK-Crypt version 1, and compare it to a graph of the distribution of distances
between repeated output words from a perfect cipher.

I carried out this experiment and, from the graphs, immediately saw the
problem with ZK-Crypt: the output words tend to repeat at smaller distances
than output words from a perfect cipher. The first 10 million 4-byte output words
of ZK-Crypt version 1 almost always (i.e., for almost all keys and IVs) have more
than 12000 repetitions, whereas 10 million independent uniform random 4-byte

* Permanent ID of this document: b6f4ca45a01f114782fe80341e9b60a9. Date of this
document: 2006.03.02. This document is final and may be freely cited.



words almost always do not. In short, ZK-Crypt version 1 flunks a very simple
repetition test.

Here is a program that, given /dev/urandom as input, tries 20 (key,IV)
pairs; for each pair, it prints the number of repetitions in the first 10 million
4-byte output words of ZK-Crypt version 1. The program uses the ZK-Crypt
authors’ zk-crypt.c, which in turn uses ecrypt-config.h, ecrypt-machine.h,
ecrypt-portable.h, ecrypt-sync.h, and ecrypt-zk-crypt.h; I copied all of
these files from version 162 of the eSSTREAM benchmark suite. My first run of
the program printed 12355, 12336, 12261, 12282, 12368, 12235, 12247, 12243,
12121, 12428, 12148, 12293, 12311, 12271, 12125, 12286, 12256, 12198, 12293,
11974.

#include <stdio.h>
#include "zk-crypt.c"

#define WORDS 10000000
unsigned char out[WORDS * 4];
int pos[WORDS] ;

int cmp(const void *first,const void *second)
{

int pl = *(int *) first;

int p2 = *(int *) second;

if (out[4 * pl] > out[4 * p2]) return 1;

if (out[4 * pl] < out[4 * p2]) return -1;

if (out[4 * pl + 1] > out[4 * p2 + 1]) return 1;

if (out[4 * pl + 1] < out[4 * p2 + 1]) return -1;
if (out[4 * pl + 2] > out[4 * p2 + 2]) return 1;

if (out[4 * pl + 2] < out[4 * p2 + 2]) return -1;
if (out[4 * pl + 3] > out[4 * p2 + 3]) return 1;

if (out[4 * pl + 3] < out[4 * p2 + 3]) return -1;
if (pl > p2) return 1;

if (pl < p2) return -1;
return O;

}

void out_fill(void)

{
static ECRYPT_ctx c;
static u8 k[16];
static u8 iv[16];
static u8 in[WORDS * 4];
int i;

for (i = 0;i < 16;++1i) k[i] = getchar();
for (i = 0;i < 16;++i) iv[i] = getchar();



ECRYPT_init();

ECRYPT_keysetup(&c,k,128,128);

ECRYPT_ivsetup(&c,iv);

ECRYPT _encrypt_bytes(&c,in,out,WORDS * 4);
}

main()

{
int i;
long long total;
int loop;

for (loop = 0;loop < 20;++loop) {
out_£ill();
for (i = 0;i < WORDS;++i) pos[i] = 1i;
gsort (pos,WORDS, sizeof (pos[0]),cmp) ;
total = 0;
for (i = 0;i + 1 < WORDS;++i)

if (memcmp(out + pos[i] * 4,out + pos[i+l] * 4,4) == 0)
++total;

printf ("%11d\n",total);
fflush(stdout) ;

}

return O;

}

For comparison, the following program uses /dev/urandom data in place of
ZK-Crypt output words, and carries out the same test. My first run of the
program printed 11614, 11571, 11945, 11556, 11677, 11496, 11656, 11561, 11547,
11650, 11660, 11667, 11609, 11650, 11571, 11615, 11522, 11713, 11549, 11692.

#include <stdio.h>

#define WORDS 10000000
unsigned char out[WORDS * 4];
int pos[WORDS];

int cmp(const void *first,const void *second)
{
int pl = *x(int *) first;
int p2 = *(int *) second;
if (out[4 * pl] > out[4 * p2]) return 1;
if (out[4 * pl] < out[4 * p2]) return -1;
if (out[4 * pl + 1] > out[4 * p2 + 1]) return 1;
if (out[4 * pl + 1] < out[4 * p2 + 1]) return -1;



if (out[4 * pl + 2] > out[4 * p2 + 2]) return 1;
if (out[4 * pl + 2] < out[4 * p2 + 2]) return -1;
if (out[4 * pl + 3] > out[4 * p2 + 3]) return 1;
if (out[4 * pl + 3] < out[4 * p2 + 3]) return -1;

if (pl > p2) return 1;
if (pl < p2) return -1;
return O;

}

void out_fill(void)
{

int i;

for (i = 0;i < WORDS * 4;++i) out[i] = getchar();
}

main()

{
int i;
long long total;
int loop;

for (loop = 0;loop < 20;++loop) {
out_£ill();
for (i = 0;i < WORDS;++i) pos[i] = 1i;
gsort (pos,WORDS, sizeof (pos[0]),cmp) ;
total = 0;
for (i = 0;i + 1 < WORDS;++i)

if (memcmp(out + pos[i] * 4,out + pos[i+l] * 4,4) == 0)
++total;

printf ("%11d\n",total);
fflush(stdout);

}

return O;

}



