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Abstract. Finding a short element g of a number field, given the ideal
generated by g, is a classic problem in computational algebraic number
theory. Solving this problem recovers the private key in cryptosystems in-
troduced by Gentry, Smart–Vercauteren, Gentry–Halevi, Garg–Gentry–
Halevi, et al. Work over the last few years has shown that for some
number fields this problem has a surprisingly low post-quantum security
level. This paper shows, and experimentally verifies, that for some num-
ber fields this problem has a surprisingly low pre-quantum security level.
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1 Introduction

Gentry’s breakthrough ideal-lattice-based homomorphic encryption system at
STOC 2009 [37] was shown several years later to be breakable by a fast quan-
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tum algorithm if the underlying number field4 is chosen as a cyclotomic field
(with “small h+”, a condition very frequently satisfied). Cyclotomic fields were
considered in Gentry’s paper (“As an example, f(x) = xn ± 1”), in a faster
cryptosystem from Smart–Vercauteren [55], and in an even faster cryptosystem
from Gentry–Halevi [39]. Cyclotomic fields were used in all of the experiments
reported in [55] and [39]. Cyclotomic fields are also used much more broadly in
the literature on lattice-based cryptography, although many cryptosystems are
stated for more general number fields.

The secret key in the systems of Gentry, Smart–Vercauteren, and Gentry–
Halevi is a short element g of the ring of integers O of the number field. The
public key is the ideal gO generated by g. The attack has two stages:

– Find some generator of gO, using an algorithm of Biasse and Song [15],
building upon a unit-group algorithm of Eisenträger, Hallgren, Kitaev, and
Song [31]. This is the stage that uses quantum computation. The best known
pre-quantum attacks (see, e.g., [11]) reuse ideas from NFS, the number-field
sieve for integer factorization, and take time exponential in N c+o(1) for a real
number c with 0 < c < 1 where N is the field degree. If N is chosen as an
appropriate power of the target security level then the pre-quantum attacks
take time exponential in the target security level, but the Biasse–Song attack
takes time polynomial in the target security level.

– Reduce this generator to a short generator, using an algorithm introduced
by Campbell, Groves, and Shepherd [22, page 4]: “A simple generating set
for the cyclotomic units is of course known. The image of O× under the
logarithm map forms a lattice. The determinant of this lattice turns out to
be much bigger than the typical log-length of a private key α [i.e., g], so it
is easy to recover the causally short private key given any generator of αO
e.g. via the LLL lattice reduction algorithm.”5 This is the stage that relies
on the field being cyclotomic.

A quantum algorithm for the first stage was stated in [22] before [15], but the
effectiveness of this algorithm was disputed by Biasse and Song (see [14]) and was
not defended by the authors of [22]. The algorithm in [22, page 4] quoted above
for the second stage does not rely on quantum computers, and its effectiveness
is easily checked by experiment.

It is natural to ask whether quantum computers play an essential role in this
polynomial-time attack. It is also natural to ask whether the problem of finding
g given gO is weak for all number fields, or whether there is something that
makes cyclotomic fields particularly weak.

4 We assume some familiarity with algebraic number theory, although we also review
some background as appropriate.

5 Beware that the analysis in [22, page 4] is incomplete: the analysis correctly states
that the secret key is short, but fails to state that the textbook basis for the cy-
clotomic units is a very good basis; LLL would not be able to find the secret key
starting from a bad basis. A detailed analysis of the basis appeared in a followup
paper [28] by Cramer, Ducas, Peikert, and Regev.
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1.1 Why focus on the problem of finding g given gO?

There are many other lattice-based cryptosystems that are not broken by the
Biasse–Song–Campbell–Groves–Shepherd attack. For example, the attack does
not break a more complicated homomorphic encryption system introduced in
Gentry’s thesis [36,38]; it does not break the classic NTRU system [40]; and
it does not break the BCNS [17] and New Hope [4] systems. But the simple
problem of finding g given gO remains of interest for several reasons.

First, given the tremendous interest in Gentry’s breakthrough paper, the
scientific record should make clear whether Gentry’s original cryptosystem is
completely broken, or is merely broken for some special number fields.

Second, despite burgeoning interest in post-quantum cryptography, most
cryptographic systems today are chosen for their pre-quantum security levels.
Fast quantum attacks have certainly not eliminated the interest in RSA and
ECC, and also do not end the security analysis of Gentry’s system.

Third, the problem of finding a generator of a principal ideal has a long his-
tory of being considered hard. There is a list of five “main computational tasks
of algebraic number theory” in [25, page 214], and the problem of finding a gen-
erator is the fifth on the list. Smart and Vercauteren describe their key-recovery
problem as an “instance of a classical and well studied problem in algorithmic
number theory”, point to the Buchmann–Maurer–Möller cryptosystem [18] a
decade earlier relying on the hardness of this problem, and summarize various
slow solutions. The solutions scale poorly even if the output is allowed to be a
long generator of an ideal that actually has a short generator.

Fourth, this problem has been reused in various attempts to build secure
multilinear maps, starting with the Garg–Gentry–Halevi construction [35]. We
do not mean to overstate the security or applicability of multilinear maps (see,
e.g., [24,27]), but there is a clear pattern of this problem appearing in the design
of advanced cryptosystems. Future designers need to understand whether this
problem should simply be discarded, or whether it can be a plausible foundation
for security.

Fifth, even when cryptosystems rely on more complicated problems, it is
natural for cryptanalysts to begin by studying the security of simpler problems.
Successful attacks on complicated problems are usually outgrowths of successful
attacks on simpler problems. As explained in Appendix B, the Biasse–Song–
Campbell–Groves–Shepherd attack has already been reused to attack a more
complicated problem.

1.2 Contributions of this paper

We introduce a pre-quantum algorithm that, for a large class of number fields,
computes a short g given gO. Plausible heuristic assumptions imply that, for a
wide range of number fields in this class, this algorithm (1) has success proba-
bility converging rapidly to 100% as the field degree increases and (2) takes time
quasipolynomial in the field degree.
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One advantage of building pre-quantum algorithms is that the algorithms
can be tested experimentally. We have implemented our algorithm within the
Sage computer-algebra system; the resulting measurements are consistent with
our analysis of the performance of the algorithm.

The number fields that we target are multiquadratics, such as the degree-
256 number field Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19), or more generally any
Q(
√
d1,
√
d2, . . . ,

√
dn). Sometimes we impose extra constraints for the sake of

simplicity: for example, in a few steps we require d1, . . . , dn to be coprime and
squarefree, and in several steps we require them to be positive.

A preliminary step in the attack (see Section 5.1) is to compute a full-rank
subgroup of “the unit group of” the number field (which by convention in alge-
braic number theory means the unit group of the ring of integers of the field):
namely, the subgroup generated by the units of all real quadratic subfields. We
dub this subgroup the set of “multiquadratic units” by analogy to the standard
terminology “cyclotomic units”, with the caveat that “multiquadratic units”
(like “cyclotomic units”) are not guaranteed to be all units.

The degree-256 example above has exactly 255 real quadratic subfields

Q(
√

2),Q(
√

3),Q(
√

6), . . . ,Q(
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19).

Each of these has a unit group quickly computable by standard techniques. For
example, the units of Q(

√
2) are ±(1 +

√
2)Z, and the units of the last field are

±(69158780182494876719 + 22205900901368228
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)Z.
This preliminary step generally becomes slower as d1, . . . , dn grow, but it

takes time quasipolynomial in the field degree N , assuming that d1, . . . , dn are
quasipolynomial in N .

In the next step (the rest of Section 5) we go far beyond the multiquadratic
units: we quickly compute the entire unit group of the multiquadratic field. This
is important because the gap between the multiquadratic units and all units
would interfere, potentially quite heavily, with the success probability of our al-
gorithm, the same way that a “large h+” (a large gap between cyclotomic units
and all units) would interfere with the success probability of the cyclotomic
attacks. Note that computing the unit group is another of the five “main com-
putational tasks of algebraic number theory” listed in [25]; furthermore, starting
from these unit groups one can efficiently compute “class groups” as explained
in, e.g., [43], solving yet another of these computational tasks. There is an earlier
algorithm by Wada [60] to compute the unit group of a multiquadratic field, but
that algorithm takes exponential time.

We then go even further (Section 6), quickly computing a generator of the
input ideal. The generator algorithm uses techniques similar to, but not the
same as, the unit-group algorithm. The unit-group computation starts from unit
groups computed recursively in three subfields, while the generator computation
starts from generators computed recursively in those subfields and from the unit
group of the top field.

There is a very easy way to extract short generators when d1, . . . , dn are large
enough, between roughly N and any quasipolynomial bound. This condition is
satisfied by a wide range of fields of each degree.
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We do more work to extend the applicability of our attack to allow smaller
d1, . . . , dn, using LLL to shorten units and indirectly generators. Analysis of
this extension is difficult, but experiments suggest that the success probability
converges to 1 even when d1, . . . , dn are chosen to be as small as the first n
primes starting from n2.

There are many obvious opportunities for precomputation in our algorithm,
and in particular the unit group can be reused for attacking many targets gO
in the same field. We separately measure the cost of computing the unit group
and the cost of subsequently finding a generator.

1.3 Why focus on multiquadratics?

Automorphisms and subfields play critical roles in several strategies to attack
discrete logarithms. These strategies complicate security analysis, and in many
cases they have turned into successful attacks. For example, small-characteristic
multiplicative-group discrete logarithms are broken in quasipolynomial time;
there are ongoing disputes regarding a strategy to attack small-characteristic
ECC; and very recently pairing-based cryptography has suffered a significant
drop in security level, because of new optimizations in attacks exploiting sub-
fields of the target field. See, e.g., [6], [33], and [41].

Do automorphisms and subfields also damage the security of lattice-based
cryptography? We chose multiquadratics as an interesting test case because they
have a huge number of subfields, presumably amplifying and clarifying any im-
pact that subfields might have upon security.

A degree-2n multiquadratic field is Galois: i.e., it has 2n automorphisms, the
maximum possible for a degree-2n number field. The Galois group, the group
of automorphisms, is isomorphic to (Z/2)n. The number of subfields of the field
is the number of subgroups of (Z/2)n, i.e., the number of subspaces of an n-
dimensional vector space over F2. The number of k-dimensional subspaces is the
2-binomial coefficient(

n

k

)
2

=
(2n − 1)(2n−1 − 1) · · · (21 − 1)

(2k − 1)(2k−1 − 1) · · · (21 − 1)(2n−k − 1)(2n−k−1 − 1) · · · (21 − 1)
,

which is approximately 2n
2/4 for k ≈ n/2. This turns out to be overkill from the

perspective of our attack: as illustrated in Figures 5.1 and 5.2, the number of
subfields we use ends up essentially linear in 2n.

1.4 Priority dates

We made preliminary announcements of two corners of this work in February
2014 [9] and April 2015 [10, last slide], in both cases focusing on the problem of
reducing a generator to a short generator, and in both cases using the idea of
first computing relative norms of the short generator in all proper subfields of
the original field. The first announcement was that this idea would benefit from
having a “large number of subfields of small relative degree”, and in particular
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would take “slightly subexponential” time for cyclotomic fields whose conduc-
tor “has enough small prime factors”. The second announcement highlighted
multiquadratics as a more extreme case in which each reduction step “becomes
trivial”, although this used a superpolynomial number of subfields (we now use
an essentially linear number of subfields), presumed that the unit group was al-
ready known (we now compute the unit group), and did nothing to suggest that
the problem of finding a generator in the first place was easy (we now compute
a generator).

Peikert posted slides in July 2015 [51] that also highlighted multiquadratics
and that asked about the gap between multiquadratic units and all units. By
computing all units we make this question easy to answer experimentally, and
we also avoid having to answer it.

2 Multiquadratic fields

A multiquadratic field is, by definition, a field that can be written in the form
Q(
√
r1, . . . ,

√
rm) where (r1, . . . , rm) is a finite sequence of rational numbers. The

notation Q(
√
r1, . . . ,

√
rm) means the smallest subfield of C, the field of complex

numbers, that contains
√
r1, . . . ,

√
rm.

When we write
√
r for a nonnegative real number r, we mean specifically

the nonnegative square root of r. When we write
√
r for a negative real number

r, we mean specifically i
√
−r, where i is the standard square root of −1 in

C; for example,
√
−2 means i

√
2. These choices do not affect the definition of

Q(
√
r1, . . . ,

√
rm), but many other calculations rely on each

√
r having a definite

value.

Theorem 2.1. Let n be a nonnegative integer. Let d1, . . . , dn be integers such
that, for each nonempty subset J ⊆ {1, . . . , n}, the product

∏
j∈J dj is not a

square. Then the 2n complex numbers
∏
j∈J

√
dj for all subsets J ⊆ {1, . . . , n}

form a basis for the multiquadratic field Q(
√
d1, . . . ,

√
dn) as a Q-vector space.

Furthermore, for each j ∈ {1, . . . , n} there is a unique field automorphism
of Q(

√
d1, . . . ,

√
dn) that preserves

√
d1, . . . ,

√
dn except for mapping

√
dj to

−
√
dj.

Consequently Q(
√
d1, . . . ,

√
dn) is a degree-2n number field.

Proof. Q(
√
d1, . . . ,

√
dn) is a multiquadratic field by definition.

For n = 0 the basis statement is easy: the only number is 1 (from J = {}),
and Q(

√
d1, . . . ,

√
dn) = Q. The automorphism statement is vacuous. Assume

from now on that n ≥ 1, and induct on n.
The inductive hypothesis states that the 2n−1 complex numbers

∏
j∈J

√
dj

for all subsets J ⊆ {1, . . . , n− 1} form a basis for K = Q(
√
d1, . . . ,

√
dn−1)

as a Q-vector space; and, for each j ∈ {1, . . . , n− 1}, there is a unique field
automorphism σj of K that preserves

√
d1, . . . ,

√
dn−1 except for mapping

√
dj

to −
√
dj .
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Note that an element x =
∑
J xJ

∏
j∈J

√
dj ∈ K satisfies σk(x) = x if and

only if xJ = 0 whenever k ∈ J . Similarly, x satisfies σk(x) = −x if and only
if xJ = 0 whenever k /∈ J . Hence a nonzero x satisfies the n − 1 conditions
σ1(x), . . . , σn−1(x) ∈ {x,−x} if and only if there is exactly one subset J for
which xJ 6= 0: namely, the set J of indices k for which σk(x) = −x.

Define L as the K-vector space
{
a+ b

√
dn : a, b ∈ K

}
. Note that the field

Q(
√
d1, . . . ,

√
dn) contains K and

√
dn, so it contains L.

Suppose that L = K. Then
√
dn ∈ K; i.e., x2 = dn for some x ∈ K. Hence

σk(x)2 = σk(dn) = dn for each k. The only square roots of dn are x and −x,
so each σk(x) must be x or −x, so x has the form xJ

∏
j∈J

√
dj for a single

set J . Hence x2J
∏
j∈J dj = dn, so

∏
j∈J∪{n} dj is a square, contradicting the

non-squareness hypothesis.
Hence the K-dimension of L is at least 2. But (1,

√
dn) generates L over K;

so it must be a K-basis of L. Furthermore, L is a field: for multiplication observe
that (a + b

√
dn)(a′ + b′

√
dn) = (aa′ + bb′dn) + (ab′ + ba′)

√
dn, and for division

observe that any nonzero a + b
√
dn has nonzero D = a2 − b2dn and reciprocal

a/D − (b/D)
√
dn.

By construction L contains Q(
√
d1, . . . ,

√
dn−1) and

√
dn, so it also contains

Q(
√
d1, . . . ,

√
dn). Thus Q(

√
d1, . . . ,

√
dn) = L. Multiplying 1,

√
dn by the above

Q-basis of K produces the claimed Q-basis of L.
For each j ∈ {1, . . . , n− 1}, the map a + b

√
dn 7→ σj(a) + σj(b)

√
dn is a

field automorphism of L that preserves
√
d1, . . . ,

√
dn except for mapping

√
dj

to −
√
dj ; and a+ b

√
dn 7→ a− b

√
dn is a field automorphism of L that preserves√

d1, . . . ,
√
dn−1 while mapping

√
dn to −

√
dn. Finally, uniqueness follows from

the fact that specifying how a field automorphism acts on
√
d1, . . . ,

√
dn also

specifies how it acts on each basis element
∏
j∈J

√
dj . ut

Theorem 2.2. Every multiquadratic field can be expressed in the form of The-
orem 2.1 with each dj squarefree.

Proof. We show by induction on m that any field Q(
√
r1, . . . ,

√
rm) with rational

r1, . . . , rm can be expressed as Q(
√
d1, . . . ,

√
dn) for some admissible d1, . . . , dn,

i.e., some squarefree d1, . . . , dn meeting the hypotheses of Theorem 2.1. For m =
0 simply take n = 0.

For m ≥ 1, write K = Q(
√
r1, . . . ,

√
rm−1). The inductive hypothesis states

that K can be expressed as Q(
√
d1, . . . ,

√
dn) for some admissible d1, . . . , dn. All

that remains is to prove the same for K(
√
rm).

If rm = 0 then K(
√
rm) = K and we are done. Otherwise write rm as N/D

for nonzero integers N,D, and then write ND as s2dn+1 for a squarefree integer
dn+1. Now

√
rm =

√
ND/D = s

√
dn+1/D, so K(

√
rm) = K(

√
dn+1).

If
∏
j∈J dj is non-square for all J ⊆ {1, . . . , n+ 1} then we are done. Oth-

erwise
∏
j∈J dj is square for some J ⊆ {1, . . . , n+ 1}. The admissibility of

d1, . . . , dn forces n + 1 ∈ J , in turn forcing dn+1 to be a square divided by
some of d1, . . . , dn, so

√
dn+1 is an integer divided by an element of K, so

K(
√
dn+1) = K and again we are done. ut
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3 Fast arithmetic in multiquadratic fields

There are well-known polynomial-time algorithms that perform basic arithmetic
operations (addition, subtraction, multiplication, division, and square root) on
elements of number fields represented in a standard way. See, e.g., [25]. These
algorithms are readily available in the easy-to-use Sage [30] computer-algebra
system, which adds many mathematical libraries to Python.

However, we care about performance in more detail than “polynomial time”,
for three reasons:

– Even though a polynomial-time or quasipolynomial-time attack is usually a
security problem, it is not necessarily a security problem. Assessing concrete
security levels requires more precise analysis and optimization of attacks.

– More precise analyses help algorithm designers compare predicted perfor-
mance to the performance observed in experiments, reducing the chance of
error.

– Optimizations allow larger-scale experiments, providing more data for com-
parison, further reducing the chance of error.

This section analyzes the cost of basic arithmetic in multiquadratic fields.
We assume that the reader is already familiar with fast arithmetic in Z: basic
arithmetic operations on B-bit numbers in Z take time essentially B, where
“essentially” suppresses lower-order factors such as logB.

For general multiquadratics there are two important cost parameters: N =
2n, the degree of the multiquadratic field; and B, the number of bits in the largest
integer used. Each algorithm discussed here has time bounded by essentiallyNeB
for some algorithm-specific exponent e. Our primary goal is to minimize e.

3.1 Representation of fields and field elements

We represent a multiquadratic field as a sequence of integers d1, . . . , dn such
that

∏
j∈J dj is non-square for each nonempty subset J ⊆ {1, . . . , n}. Then

Q(
√
d1, . . . ,

√
dn) is a field of degree N = 2n, with automorphisms that negate

any desired
√
dj ; see Theorem 2.1.

We represent an element of the field Q(
√
d1, . . . ,

√
dn) as a fraction, specif-

ically an element of Z[
√
d1, . . . ,

√
dn] divided by a positive integer. The ring

Z[
√
d1, . . . ,

√
dn] consists of Z-linear combinations of the 2n products

∏
j∈J

√
dj

for subsets J ⊆ {1, . . . , n}. We represent an element of Z[
√
d1, . . . ,

√
dn] as a

vector of coefficients for J = {}, J = {1}, J = {2}, J = {1, 2}, etc. In other
words, we represent an element of the ring Z[x1, . . . , xn]/(x21 − d1, . . . , x2n − dn)
as a vector of coefficients of 1, x1, x2, x1x2, etc.; this ring is isomorphic to
Z[
√
d1, . . . ,

√
dn] under the isomorphism that maps each xj to

√
dj .

Addition and subtraction in Z[
√
d1, . . . ,

√
dn] are performed coefficientwise

and take time O(NB) if each integer has O(B) bits. More complicated operations
such as multiplication are the topics of subsequent subsections.
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Operations in the field Q(
√
d1, . . . ,

√
dn) decompose easily into operations in

Z[
√
d1, . . . ,

√
dn] and fast operations on integer denominators. Reducing a frac-

tion to lowest terms means dividing all coefficients and the denominator by their
gcd; this also takes time bounded by essentially NB by standard algorithms.

An alternative, assuming d1, . . . , dn ∈ 1 + 4Z, is to replace Z[
√
d1, . . . ,

√
dn]

with the larger ring Z[(1 +
√
d1)/2, . . . , (1 +

√
dn)/2], which has a similar advan-

tage of allowing each square root to be handled separately. As a special case, for
squarefree coprime d1, . . . , dn ∈ 1 + 4Z, this larger ring is the ring of integers of
Q(
√
d1, . . . ,

√
dn), avoiding denominators in some computations. However, de-

nominators do not noticeably slow down our computations, and focusing on
Z[
√
d1, . . . ,

√
dn] lets us handle much more general d1, . . . , dn.

3.2 Finding good primes

The Z[
√
d1, . . . ,

√
dn] multiplication algorithm in Section 3.3 relies on precom-

puting a sufficiently large pool of primes q such that each of d1, . . . , dn is a
nonzero square modulo q. Variants of the same problem appear elsewhere in the
paper: for example, arranging for d1 to be a non-square modulo q while d2, . . . , dn
are nonzero squares modulo q.

The goal of Algorithm 3.1, GoodPrime, is to find one such prime. The inputs
µ1, . . . , µn ∈ {−1, 1} select non-squareness or nonzero squareness for d1, . . . , dn
respectively. Nonempty subsequences of d1, . . . , dn are not allowed to have square
products, so there cannot be any dependencies between these squareness condi-
tions.

GoodPrime simply tries a uniform random λ-bit integer q, where λ is an algo-
rithm parameter, and then tries again if q is not a prime or the desired squareness
does not hold. An integer q in this range has probability approximately 1/(λ ln 2)
of being prime. The probability of satisfying n squareness conditions converges
to 1/N as λ increases, so it is reasonable to estimate that GoodPrime will have to
try Nλ ln 2 choices of q on average. Each choice requires a primality test taking
time λO(1), and at most n Legendre-symbol computations, each of which takes
time λO(1) assuming that each dj has λO(1) bits.

Beware that if λ is chosen too small then the algorithm can run forever: for
example, λ = n is likely to fail. If GoodPrime is being asked to generate P
different primes then, to ensure a reasonable chance of success, one must take
2λ−1/(λ ln 2) somewhat larger than NP .

Inside a quasipolynomial-time algorithm, P is quasipolynomial in N ; i.e.,
logP ∈ nO(1). This is compatible with taking λ ∈ nO(1), so the time for each call
to GoodPrime is essentially N ; recall that “essentially” disregards logarithmic
factors such as n.

An alternative approach, for the application in Section 3.3 with µ = (1, . . . , 1),
is to search q in the arithmetic progression of integers congruent to 1 modulo all
of 4d1, . . . , 4dn. This has two advantages: first, it reduces the estimated number
of q’s from Nλ ln 2 to just λ ln 2; second, it saves time in handling each q. The
point here is that d1, . . . , dn are guaranteed to be square modulo q by quadratic
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Algorithm 3.1: GoodPrime(d, µ)

Input: An integer sequence d = (d1, . . . , dn) such that
∏
j∈J dj is non-square for

each nonempty subset J ⊆ {1, . . . , n}; and a sequence µ = (µ1, . . . , µn)
where each µj ∈ {−1, 1}. As a side input, an integer parameter λ ≥ 3.

Output: A λ-bit prime number q such that, for each j, the integer dj is a
nonzero square modulo q if µj = 1, and is a non-square modulo q if
µj = −1.

1 Choose a uniform random element q ∈
{

2λ−1, 2λ−1 + 1, . . . , 2λ − 1
}

.
2 If q is not prime, go back to Step 1.
3 for j ∈ {1, . . . , n} do
4 If the Legendre symbol of dj modulo q is not µj , go back to Step 1.

5 return q

reciprocity, so the Legendre-symbol tests can be skipped for each q, and the only
question is whether q is prime.

A disadvantage of this alternative approach is that it needs larger λ: specifi-
cally, to generate P different primes, one must take 2λ−1/(λ ln 2) somewhat larger
than 4d1 · · · dnP (assuming d1, . . . , dn are coprime). This is still compatible with
taking λ ∈ nO(1), since we assume that each dj is quasipolynomial.

Yet another approach is to instead allow any appropriate remainder for q
modulo 4d1, any appropriate remainder for q modulo 4d2, etc. There are standard
techniques to merge the lists of appropriate remainders (see, e.g., [8]), skipping
quickly past many useless choices of q.

3.3 Multiplication

One reason for interest in cyclotomics is that polynomial multiplication can be
carried out efficiently by fast Fourier transforms (FFTs). A classic FFT requires
the base ring to contain appropriate roots of unity: one nice case is multiplying
in Fq[x]/(xN + 1) where q is an odd prime, N = 2n, and Fq has an Nth root of
−1. One can multiply in Z[x]/(xN + 1) in time essentially NB by multiplying in
Fq[x]/(xN + 1) for enough such primes q, if each output coefficient is guaranteed
to be below 2B .

Multiquadratic rings Z[
√
d1, . . . ,

√
dn] support analogous fast-multiplication

strategies. FFTs on cyclic groups are replaced by simpler FFTs on (Z/2)n, i.e.,
Hadamard–Walsh transforms, twisted by

√
d1, . . . ,

√
dn. The base ring is required

to contain 1/2 and to contain invertible square roots of d1, . . . , dn. To find ap-
propriate base fields Fq we use the GoodPrime subroutine from Section 3.2. This
section presents the details.

Twisted Hadamard–Walsh transforms over appropriate finite fields. Given f, g ∈
Fq[x1, . . . , xn]/(x21− d1, . . . , x2n− dn), we compute h = fg as follows. We assume
here that q is an odd prime with nO(1) bits, and that all of d1, . . . , dn are nonzero
squares in Fq.
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Precompute square roots s1, . . . , sn of d1, . . . , dn respectively in Fq, along
with their reciprocals 1/s1, . . . , 1/sn. This takes negligible time, namely nO(1),
by standard algorithms.

Define two homomorphisms ϕ+, ϕ− from Fq[x1, . . . , xn]/(x21−d1, . . . , x2n−dn)
to R = Fq[x1, . . . , xn−1]/(x21 − d1, . . . , x2n−1 − dn−1) as follows: ϕ+(f0 + xnf1) =
f0 + snf1 and ϕ−(f0 + xnf1) = f0 − snf1 for any f0, f1 ∈ R. Note that adding
these two outputs and dividing by 2 produces f0, while subtracting these two
outputs and dividing by 2sn produces f1; i.e., one can efficiently recover f given
ϕ+(f) and ϕ−(f).

Compute ϕ+(f), ϕ−(f), ϕ+(g), ϕ−(g). Compute ϕ+(h) = ϕ+(f)ϕ+(g) and
ϕ−(h) = ϕ−(f)ϕ−(g), using the same method recursively to multiply in R.
Recover h from ϕ+(h) and ϕ−(h).

This handles a size-N multiplication using two size-(N/2) multiplications and
O(N) simple coefficient operations in Fq: additions, subtractions, multiplications
by sn and 1/sn, and multiplications by 1/2 (which are easily merged across levels
of recursion into final multiplications by 1/N). In total a size-N multiplication
uses O(Nn) operations in Fq, including N base-case multiplications in Fq.

Reducing Z to Fq. We multiply f, g ∈ Z[x1, . . . , xn]/(x21 − d1, . . . , x2n − dn) as
follows.

Use Theorem 3.1 to find B so that each coefficient of h = fg has abso-
lute value at most 2B−1 − 1. Repeatedly call GoodPrime to find dB/(λ− 1)e
distinct odd primes q where all of d1, . . . , dn are nonzero squares. Note that∏
q q = 2

∑
q log2 q ≥ 2

∑
q(λ−1) ≥ 2B , so each coefficient of h is determined by its

remainder modulo
∏
q q.

The average number of GoodPrime calls will be approximately dB/(λ− 1)e if
the parameter λ is chosen properly in Section 3.2: the outputs q from GoodPrime
will almost never repeat. Each call takes time essentially N , for a total time
essentially NB. We cache each q for reuse in subsequent multiplications.

Reduce each coefficient of f and g modulo all of the q’s. For each q multi-
ply f mod q by g mod q as indicated above, obtaining h mod q. Use the Chinese
remainder theorem to compute the coefficients of h by interpolation. All of this
takes time essentially NB by standard fast-arithmetic algorithms such as re-
mainder trees.

An alternative strategy, which we used in our first implementation, is as fol-
lows. Merge all the primes q into a single modulus, their product

∏
q q. Similarly

merge the square roots of each dj modulo all the primes q into a square root of
dj modulo

∏
q q. Then apply the twisted Hadamard–Walsh transform, replacing

Fq with Z/
∏
q q. This again takes time essentially NB. This has the advantage

of working with a smaller number of larger integers; Sage has considerable over-
head for each integer operation, and this overhead becomes much less noticeable
as the integers grow. However, our primary concern is scalability, and a closer
look at asymptotic performance shows that working separately with each q gains
a logarithmic factor. Our current software merges batches of 8 primes, gaining
the same logarithmic factor with lower overhead.
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Theorem 3.1. Let n be a nonnegative integer. Let d1, . . . , dn be integers. Let
f, g be elements of Z[x1, . . . , xn]/(x21 − d1, . . . , x

2
n − dn), and define h = fg.

Write f as
∑
J⊆{1,...,n} fJ

∏
j∈J xj and g as

∑
J⊆{1,...,n} gJ

∏
j∈J xj. Assume

that |fJ | ≤ F and |gJ | ≤ G for all J . Define H = FG(1 + |d1|) · · · (1 + |dn|).
Then h =

∑
J⊆{1,...,n} hJ

∏
j∈J xj with |hJ | ≤ H.

With slightly more effort one can compute a “balanced” bound involving
fJ
∏
j∈J

√
|dj | etc., but we have not noticed this producing significant speedups.

Proof. The coefficient hJ is exactly
∑
S fSgJ⊕S

∏
j∈S−J dj , where J ⊕ S means

(J∪S)−(J∩S). This sum is bounded in absolute value by
∑
S FG

∏
j∈S−J |dj | ≤

FG
∑
S

∏
j∈S |dj | = H. ut

3.4 Norm computation

Fix a multiquadratic field L = Q(
√
d1, . . . ,

√
dn) as in Theorem 2.1, and fix

µ = (µ1, . . . , µn) ∈ {−1, 1}n. Write σ for the unique automorphism of L that
maps each

√
dj to µj

√
dj . This is the product, over all j with µj = −1, of the√

dj 7→ −
√
dj automorphisms from Theorem 2.1.

Assume that (µ1, . . . , µn) 6= (1, . . . , 1), i.e., that σ 6= 1; this forces n ≥ 1.
Define K as the subfield of L fixed by σ, i.e., the set of all x ∈ L with σ(x) = x.
Then K is a multiquadratic field of degree 2n−1. Explicitly:

K = Q(
√
d1, . . . ,

√
dn−1) if µ = (1, . . . , 1,−1), (1a)

K = Q(
√
d1, . . . ,

√
dn−2,

√
dn−1dn) if µ = (1, . . . , 1,−1,−1), (1b)

K = Q(
√
d1, . . . ,

√
dn−3,

√
dn−2dn−1,

√
dn−1dn) if µ = (1, . . . , 1,−1,−1,−1),

etc. Permuting indices in the (1, . . . , 1,−1) example covers all choices of µ with
exactly one −1; permuting indices in the (1, . . . , 1,−1,−1) example covers all
choices of µ with exactly two −1s; etc.

Define NL:K(f) as fσ(f) for each f ∈ L. Then NL:K(f) ∈ K. This is the
“relative norm of f from L to K”. The NL:K(f) notation is usable as L and µ
vary, since L and K together determine σ.

This section analyzes the cost of computing NL:K(f), focusing in particular
on two cases used later. The primary case is K = Q(

√
d1, . . . ,

√
dn−1). The

secondary case is K = Q(
√
d1, . . . ,

√
dn−2,

√
dn−1dn).

As before we represent an element of Q(
√
d1, . . . ,

√
dn) as an element of

Z[
√
d1, . . . ,

√
dn] divided by a positive integer. The norm is the norm of the

numerator divided by the norm of the denominator, and the norm of the de-
nominator is simply the square of the denominator. The remaining problem is
to compute fσ(f) for f ∈ Z[

√
d1, . . . ,

√
dn].

Primary case: Write f as f0 + f1
√
dn where f0, f1 ∈ Z[

√
d1, . . . ,

√
dn−1].

Then σ(f) = f0− f1
√
dn, and fσ(f) = f20 − f21 dn. We compute f20 , compute f21 ,

multiply by dn, and subtract. This is faster (by a constant factor) than general
multiplication in Z[

√
d1, . . . ,

√
dn]. We actually save more time by merging the
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inverse transforms involved in the computations of f20 and f21 : transform f0,
square, transform f1, square, multiply by dn, subtract, inverse transform. The
norm computation takes time essentially NB.

Secondary case: Write f as f0 + f1
√
dn−1 + f2

√
dn + f3

√
dn−1

√
dn. Then

σ(f) = f0 − f1
√
dn−1 − f2

√
dn + f3

√
dn−1

√
dn, and

fσ(f) = (f0 + f3
√
dn−1

√
dn)2 − f21 dn−1 − f22 dn − 2f1f2

√
dn−1

√
dn.

This is visibly in Z[
√
d1, . . . ,

√
dn−2,

√
dn−1dn], since

√
dn−1

√
dn = ±

√
dn−1dn;

the ± here is −1 if both dn−1 and dn are negative. There are again various
constant-factor speedups, such as computing 2f1f2 as (f1 + f2)2 − f21 − f22 . The
norm computation again takes time essentially NB.

As an application of the primary case: Write Kj = Q(
√
d1, . . . ,

√
dj). Then

NK1:K0
(NK2:K1

(· · · (NKn:Kn−1
(f)) · · · )) is the “absolute norm of f” in Q, written

NL:Q(f), equal to the product of τ(f) across all automorphisms τ of L. There
are n relative-norm steps here, and each step takes time essentially NB, since
at each step the number of bits per coefficient approximately doubles while the
number of coefficients is halved. Overall computing an absolute norm takes time
essentially NB; again recall that “essentially” suppresses logarithmic factors
such as n.

The literature contains various methods to compute absolute norms without
using chains of subfields. All of the non-subfield methods that we investigated
turned out to be slower than computing a sequence of relative norms. Gentry–
Halevi [39] implicitly use a chain of subfields in an analogous way in the power-
of-2 cyclotomic case.

3.5 Exact division

This section analyzes the cost of reconstructing f ∈ Z[
√
d1, . . . ,

√
dn] given a

nonzero g ∈ Z[
√
d1, . . . ,

√
dn] and given h = fg.

Recall that Section 3.3 computed h from fg (modulo q, or modulo
∏
q q) by

computing ϕ±(f) and ϕ±(g), multiplying recursively in a half-size ring to obtain
ϕ±(h), and then reconstructing h.

To divide h by g, simply run this process in reverse: compute ϕ±(h) and
ϕ±(g), divide recursively in a half-size ring to obtain ϕ±(f), and then reconstruct
f . This takes time essentially NB, just like the algorithm of Section 3.3.

This approach raises two issues not present in Section 3.3. First, the base-
case divisions will fail if they involve divisions by 0. By hypothesis g 6= 0, but
g is then transformed into N elements of Fq, and any of these elements could
be 0. This is equivalent to saying that g might be contained in some prime
ideal of Z[

√
d1, . . . ,

√
dn] lying over q. This cannot happen unless q divides the

absolute norm of g. The absolute norm is nonzero, and computing a bound on
the size of the absolute norm easily produces a bound on the number of λ-bit
primes dividing the norm. This bound is essentially NB, so if λ is chosen to be
reasonably large then there is negligible chance of failure, and in case of failure
one can simply try again with a different prime q.
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The second issue is that the size of the coefficients of f is not obvious in
advance: multiplying f by g can produce considerable cancellation, meaning
that f is actually much larger than one would guess from comparing the sizes
of coefficients of g and h. Given the context of how division is used in our
higher-level algorithms (e.g., obtaining units with bounded logarithms) we could
compute a-priori bounds on f , but these bounds would usually be quite loose.

One way to find the actual size of f is as follows. Start with a small guess
for the size. If the resulting f does not satisfy h = fg, then double the number
of primes and try again. This takes time essentially NB.

We use the following slightly more complicated approach. Compute floating-
point approximations to the complex embeddings of h and g, sufficiently precise
to distinguish all embeddings of g from 0. Divide to obtain approximations to
the complex embeddings of f . Interpolate approximations to the coefficients of
f . Use interval arithmetic to convert the approximations into proven bounds on
the coefficients of f .

This approach has several advantages. First, the user is allowed to call the
function even without knowing that g divides h. The final check that h = fg
raises a prompt exception rather than restarting and eventually running out of
memory.

Second, if the user does know that g divides h, then the final check that
h = fg is skipped. Dividing fg by g can be even more efficient than multiplying
f by g, since there is less output.

Third, this approach generalizes immediately from computing h/g to comput-
ing a product he11 h

e2
2 h

e3
3 · · · for any e1, e2, e3, · · · ∈ Z, or computing a sequence of

such products. These products of powers appear in the higher-level algorithms
later in this paper, and experiments show that intermediate quantities such as
he11 h

e2
2 often have relatively large coefficients, while the inputs and the final

product are relatively small.

3.6 Twisted square roots

This section analyzes the cost of a subroutine used in Section 3.7: namely, figuring
out which of the N rational numbers

h,
h

d1
,
h

d2
,
h

d1d2
, . . . ,

h

d1d2 · · · dn

are integer squares. The inputs here are h, d1, . . . , dn ∈ Z. As usual we assume
that

∏
j∈J dj is non-square for each nonempty subset J ⊆ {1, . . . , n}.

There is no difficulty for h = 0, so we assume h 6= 0. Then at most one of the
above N rational numbers is a square: for example, if h/(d1d2) and h/(d1d3d4)
were both squares, then d2d3d4 would also be square, contradiction.

Algorithm 3.2, TwistedSquareRoot, quickly identifies the square and returns
its square root, or raises an exception if there are no squares. TwistedSquareRoot
uses GoodPrime to find an odd prime q such that d1 is a non-square modulo
q while d2, . . . , dn are nonzero squares modulo q. If q turns out to divide h
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Algorithm 3.2: TwistedSquareRoot(d, h)

Input: An integer sequence d = (d1, . . . , dn) such that
∏
j∈J dj is non-square

for each nonempty subset J ⊆ {1, . . . , n}; and an integer h.
Output: An integer g and a set S ⊆ {1, . . . , n} such that h = g2

∏
j∈S dj ; or an

exception if no such pair (g, S) exists.
1 if h = 0 then
2 return (0, {}).
3 for j ∈ {1, . . . , n} do
4 µ← (1, . . . , 1,−1, 1, . . . , 1) where the −1 is in the jth position.
5 qj ← GoodPrime(d, µ).

6 If h mod qj = 0 for any j, go back to step 3.
7 S ← {j ∈ {1, . . . , n} : the Legendre symbol of h modulo qj is −1}.
8 Raise an exception if h/

∏
j∈S dj is not an integer square.

9 return (
√
h/
∏
j∈S dj , S).

then TwistedSquareRoot starts over with another q. If h = g2
∏
j∈S dj then

h must be a non-square modulo q if 1 ∈ S, and a square modulo q if 1 /∈ S.
TwistedSquareRoot computes the Legendre symbol of h modulo q to see whether
1 ∈ S, and similarly uses other q’s to detect the other elements of S.

The GoodPrime computations take time essentially N , assuming as usual
that λ is chosen large enough. A remainder tree computes h mod q1, . . . , h mod
qn in time essentially B. The Legendre-symbol computations take time essen-
tially 1. Standard methods compute the final square root in time essentially B.
Overall TwistedSquareRoot takes time essentially N + B: i.e., essentially N or
essentially B, whichever is larger.

3.7 Square-root computation

This section analyzes the cost of computing square roots in Z[
√
d1, . . . ,

√
dn]:

i.e., recovering, up to sign, an element f ∈ Z[
√
d1, . . . ,

√
dn] given h = f2. “Up

to sign” means that the output is ±f .
As motivation for the algorithm in this section, we review a standard method

of computing square roots in the ring Z[
√
−1] of Gaussian integers: recovering, up

to sign, f = f0+f1
√
−1 given f2 = h0+h1

√
−1. First compute the norm h20+h21

and its nonnegative real square root s = f20 + f21 . Then note that h0 = f20 − f21 ;
compute ±f0 as the nonnegative real square root of (h0 + s)/2 = f20 . Then note
that h1 = 2f0f1; compute ±f1 as h1/(±2f0). (This fails if f0 = 0; we handle
this case separately.) Finally ±f = (±f0) + (±f1)i.

The same method might seem to generalize immediately to computing f =
f0 + f1

√
d for any f0, f1, d ∈ Z with non-square d, given f2 = h0 + h1

√
d; and

beyond this to square roots in arbitrary multiquadratics. First compute the norm
h20−h21d and its square root s = f20 −f21 d. Then compute ±f0 as the square root
of (h0 + s)/2, and compute ±f1 as h1/(±2f0).
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Algorithm 3.3: SquareRoot(d,m, h)

Input: An integer sequence d = (d1, . . . , dn) such that
∏
j∈J dj is non-square

for each nonempty subset J ⊆ {1, . . . , n}; an integer m ∈ {0, 1, . . . , n};
and an element h ∈ Z[

√
d1, . . . ,

√
dm] such that h = f2∏

j∈R dj for some

f ∈ Z[
√
d1, . . . ,

√
dm] and some R ⊆ {m+ 1, . . . , n}.

Output: Some (g, S) such that g ∈ Z[
√
d1, . . . ,

√
dm]; S ⊆ {m+ 1, . . . , n};

h = g2
∏
j∈S dj ; and S = {} if g = 0.

1 if h = 0 then
2 return (0, {}).
3 if m = 0 then
4 return TwistedSquareRoot(d, h).

5 Write h as h0 + h1

√
dm with h0, h1 ∈ Z[

√
d1, . . . ,

√
dm−1].

6 (s, S0)← SquareRoot((d1, . . . , dm−1),m− 1, h2
0 − h2

1dm).
7 if s = h0 then
8 (t, S)← SquareRoot(d,m− 1, h0).

9 else
10 (t, S)← SquareRoot(d,m− 1, (h0 − s)/2).

11 π ←
∏
j∈S−{m} dj .

12 u← (h1/(2π))/t.
13 if m ∈ S then
14 return (u+ t

√
dm, S − {m}).

15 return (t+ u
√
dm, S).

What goes wrong here is that computing “the” square root s of h20 − h21d
might actually produce −(f20 − f21 d) instead of f20 − f21 d. This problem did not
occur in the Gaussian case: taking s as the nonnegative square root forced s to
equal f20 + f21 . The same trick does not work for d > 0.

If in fact s = −(f20 − f21 d) then (h0 + s)/2 = f21 d. At this point we feed
(h0 + s)/2 to a generalized square-root function that produces ±f0 given f20 ,
and produces ±f1 given f21 d, also reporting which of these cases occurred. Using
the same idea recursively, starting from Z[

√
d1, . . . ,

√
dn], produces more and

more potential combinations of d’s, eventually leading to the identifying-squares
problem solved efficiently in Section 3.6.

Algorithm 3.3, SquareRoot, handles all levels of this recursion. This algo-
rithm splits a size-N problem, with coefficients below 2B , into two size-(N/2)
problems, each with coefficients below about 22B . Each split and recombination
takes time bounded by essentially NB, so the total time is bounded by essen-
tially N2B. Actually, the performance of SquareRoot is somewhat better than
this, bounded by essentially N log2 3B, since the second recursive call uses only
B-bit coefficients.

Theorem 3.2. Let m,n be integers with 0 ≤ m ≤ n. Let d1, . . . , dn be integers
such that

∏
j∈J dj is non-square for each nonempty subset J ⊆ {1, . . . , n}. Let

f be an element of Z[
√
d1, . . . ,

√
dm]. Let R be a subset of {m+ 1, . . . , n}. De-
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fine d = (d1, . . . , dn) and h = f2
∏
j∈R dj. Then SquareRoot(d,m, h) = (g, S)

for some g ∈ Z[
√
d1, . . . ,

√
dm] and some S ⊆ {m+ 1, . . . , n} such that h =

g2
∏
j∈S dj. Furthermore, S = {} if g = 0.

Proof. If h = 0 then (g, S) = (0, {}); see Step 2 of SquareRoot. Hence g ∈
Z[
√
d1, . . . ,

√
dm], S ⊆ {m+ 1, . . . , n}, and h = 0 = g2

∏
j∈S dj .

Assume from now on that h 6= 0. Induct on m.
If m = 0 then by hypothesis h = f2

∏
j∈R dj for some f ∈ Z and some R ⊆

{1, . . . , n}. Consequently, in Step 4 of SquareRoot, the TwistedSquareRoot(d, h)
call returns some g ∈ Z and some S ⊆ {1, . . . , n} such that h = g2

∏
j∈S dj . By

assumption h 6= 0, so g 6= 0, vacuously satisfying the conclusion that S = {} if
g = 0.

Assume from now on that m ≥ 1. Write f as f0 + f1
√
dm, and write h as

h0 + h1
√
dm, where f0, f1, h0, h1 ∈ Z[

√
d1, . . . ,

√
dm−1].

Define φ =
∏
j∈R dj . By hypothesis h = f2φ = (f0 + f1

√
dm)2φ; i.e., h0 =

(f20 + f21 dm)φ and h1 = 2f0f1φ.
Note that h20 − h21dm = (f20 − f21 dm)2φ2. By the inductive hypothesis, s =

±(f20 − f21 dm)φ and S0 = {} in Step 6. At this point the analysis splits into four
cases, depending on whether ± = + and on whether s = h0.

Case 1: ± = + and s = h0. Then f1 = 0 so h0 = f20φ. Note that f0 6= 0 since
h 6= 0. Now Step 8 produces t = ±f0 and S = R, and u = 0 since h1 = 0, so the
algorithm outputs (t, S) = (±f,R) as desired.

Case 2: ± = − and s = h0. Then f0 = 0 so h0 = f21 dmφ. Note that f1 6= 0.
Now Step 8 produces t = ±f1 and S = R ∪ {m}, and u = 0 since h1 = 0, so the
algorithm outputs (t

√
dm, S − {m}) = (±f,R) as desired.

Case 3: ± = + and s 6= h0. Then 0 6= (h0 − s)/2 = f21 dmφ. Now Step 10
produces t = ±f1 and S = R ∪ {m}, Step 11 produces π = φ, Step 12 produces
u = ±f0, and the algorithm outputs (u+ t

√
dm, S − {m}) = (±f,R) as desired.

Case 4: ± = − and s 6= h0. Then 0 6= (h0 − s)/2 = f20φ; Step 10 produces
t = ±f0 and S = R; Step 11 produces π = φ; Step 12 produces u = ±f1; and
the algorithm outputs (t+ u

√
dm, S) = (±f,R) as desired. ut

Theorem 3.3. Let n be a nonnegative integer. Let d1, . . . , dn be integers such
that

∏
j∈J dj is non-square for each nonempty subset J ⊆ {1, . . . , n}. Let f be an

element of Z[
√
d1, . . . ,

√
dn]. Then SquareRoot((d1, . . . , dn), n, f2) = (±f, {}).

Proof. Define m = n, d = (d1, . . . , dn), R = {}, and h = f2 = f2
∏
j∈R dj .

All the hypotheses of Theorem 3.2 are satisfied, so SquareRoot(d,m, h) = (g, S)
for some g ∈ Z[

√
d1, . . . ,

√
dm] and some S ⊆ {m+ 1, . . . , n} such that h =

g2
∏
j∈S dj . Evidently S = {}, so h = g2, so g = ±f . ut

History and alternatives. The idea of computing square roots recursively in
multiquadratics is not new. Wada [60] introduced an exponential-time algorithm
to compute unit groups of multiquadratic fields, as mentioned earlier; one of
Wada’s subroutines was a recursive square-root algorithm. However, Wada’s
algorithm was much slower and more complicated than SquareRoot, using many
more recursive calls and many more cases. See [60, pages 202–204].
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We also explored various square-root methods described in [21] and in more
recent NFS literature. Computing square roots in all complex embeddings (to
high enough precision) takes exponential time 2Θ(N), since each square root has
its own choice of ±. Computing square roots modulo many different prime ideals
produces the same problem. Thomé’s multi-prime method in [56] uses a subset-
sum computation, again taking exponential time; see [56, Table 1]. Computing
square roots modulo a large power of an inert prime would avoid this problem,
but there are no inert primes for multiquadratics beyond degree 2 (as explained
in more detail in Appendix A). We did try computing square roots modulo large
powers of a first-degree prime ideal generated by q,

√
d1− s1, . . . ,

√
dn− sn, and

this takes essentially linear time to find the image of ±f in Z/qe, but the fastest
method that we found to reconstruct the coefficients of ±f uses LLL and takes
more than quadratic time.

A caveat regarding denominators of square roots. Consider the problem of com-
puting a square root in the field Q(

√
d1, . . . ,

√
dn). It might seem sufficient

to multiply the denominator into the numerator and then compute a square
root in Z[

√
d1, . . . ,

√
dn]. However, an element f ∈ Q(

√
d1, . . . ,

√
dn) can have

f2 ∈ Z[
√
d1, . . . ,

√
dn] without f ∈ Z[

√
d1, . . . ,

√
dn]: consider, for example,

f = (
√

2 +
√

6)/2.
A workaround is to compute δf ∈ Z[

√
d1, . . . ,

√
dn] as the square root of

δ2f2 ∈ Z[
√
d1, . . . ,

√
dn]. Here δ 6= 0 is chosen in advance to guarantee that

δO ⊆ Z[
√
d1, . . . ,

√
dn], where O is the ring of integers of Q(

√
d1, . . . ,

√
dn). For

coprime squarefree d1, . . . , dn one can take δ = N . For comparison, [21] takes
δ = F ′(x) to handle the same problem for arbitrary monogenic rings Z[x]/F (x).

We write the output of this computation, using SquareRoot as a subroutine,
as
√
f2, without further comment on the sign.

4 Recognizing squares

This section explains how to recognize squares in a multiquadratic field L =
Q(
√
d1, . . . ,

√
dn). The method does not merely check whether a single element

u ∈ L is a square: given nonzero u1, . . . , ur ∈ L, the method rapidly identifies
the set of exponent vectors (e1, . . . , er) ∈ Zr such that ue11 · · ·uerr is a square.

The method here was introduced by Adleman [2] as a speedup to NFS. The
idea is to apply a group homomorphism χ from L× to {−1, 1}, or more gen-
erally from T to {−1, 1}, where T is a subgroup of L× containing u1, . . . , ur.
Then χ reveals a linear constraint, hopefully nontrivial, on (e1, . . . , er) modulo
2. Combining enough constraints reveals the space of (e1, . . . , er) mod 2.

One choice of χ is the sign of a real embedding of L, but this is a limited
collection of χ (and empty if L is complex). Adleman suggested instead taking
χ as a quadratic character defined by a prime ideal. There is an inexhaustible
supply of prime ideals, and thus of these quadratic characters.

Section 3.6 used this idea for L = Q, but only for small r (namely r = n),
where one can afford to try 2r primes. This section handles arbitrary multi-
quadratics and allows much larger r.
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4.1 Computing quadratic characters

Let q be an odd prime number modulo which all the di are nonzero squares.
For each i, let si be a square root of di modulo q. The map Z[x1, . . . , xn]→ Fq
defined by xi 7→ si and reducing coefficients modulo q induces a homomorphism
Z[x1, . . . , xn]/(x21 − d1, . . . , x

2
n − dn) → Fq, or equivalently a homomorphism

ϕ : Z[
√
d1, . . . ,

√
dn]→ Fq.

Let P be the kernel of ϕ. Then P is a degree-1 prime ideal of Z[
√
d1, . . . ,

√
dn]

above q, i.e., a prime ideal of prime norm q. Write OL for the ring of integers of
L; then P extends to a unique degree-1 prime ideal of OL. The map ϕ extends
to the set Rϕ of all u ∈ L having nonnegative valuation at this prime ideal.
For each u ∈ Rϕ define χ(u) ∈ {−1, 0, 1} as the Legendre symbol of ϕ(u) ∈ Fq.
Then χ(uu′) = χ(u)χ(u′), since ϕ(uu′) = ϕ(u)ϕ(u′) and the Legendre symbol is
multiplicative. In particular, χ(u2) ∈ {0, 1}.

More explicitly: Given a polynomial u ∈ Z[x1, . . . , xn]/(x21− d1, . . . , x2n− dn)
represented as coefficients of 1, x1, x2, x1x2, etc., first take all coefficients modulo
q to obtain u mod q ∈ Fq[x1, . . . , xn]/(x21 − d1, . . . , x

2
n − dn). Then substitute

xn 7→ sn: i.e., write u mod q as u0 +u1xn, where u0, u1 ∈ Fq[x1, . . . , xn−1]/(x21−
d1, . . . , x

2
n−1−dn−1), and compute u0+u1sn. Inside this result substitute xn−1 7→

sn−1 similarly, and so on through x1 7→ s1, obtaining ϕ(u) ∈ Fq. Finally compute
the Legendre symbol modulo q to obtain χ(u).

As in Section 3, assume that each coefficient of u has at most B bits, and
choose q (using the GoodPrime function from Section 3.2) to have nO(1) bits.
Then the entire computation of χ(u) takes time essentially NB, mostly to re-
duce coefficients modulo q. The substitutions xj 7→ sj involve a total of O(N)
operations in Fq, and the final Legendre-symbol computation takes negligible
time.

More generally, any element of L is represented as u/h for a positive integer
denominator h. Assume that q is coprime to h; this is true with overwhelming
probability when q is chosen randomly. (It is also guaranteed to be true for any
u/h ∈ OL represented in lowest terms, since q is coprime to 2d1 · · · dn.) Then
ϕ(u/h) is simply ϕ(u)/h, and computing the Legendre symbol produces χ(u/h).

4.2 Recognizing squares using many quadratic characters

Let χ1, . . . , χm be quadratic characters. Define T as the subset of L on which
all χi are defined and nonzero. Then T is a subgroup of L×, the intersection of
the unit groups of the rings Rϕ defined above. Define a group homomorphism
X : T → (Z/2)m as u 7→ (log−1 χ1, . . . , log−1 χm).

Given nonzero u1, . . . , ur ∈ L, choose m somewhat larger than r, and then
choose χ1, . . . , χm randomly using GoodPrime. Almost certainly u1, . . . , ur ∈ T ;
if any χi(uj) turns out to be undefined or zero, simply switch to another prime.

Define U as the subgroup of T generated by u1, . . . , ur. If a product π =
ue11 · · ·uerr is a square in L then its square root is in T so X(π) = 0, i.e., e1X(u1)+
· · · + erX(ur) = 0. Conversely, if X(π) = 0 and m is somewhat larger than r
then almost certainly π is a square in L, as we now explain.
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The group U/(U ∩ L2) is an F2-vector space of dimension at most r, so its
dual group Hom(U/(U ∩ L2),Z/2) is also an F2-vector space of dimension at
most r. As in [21, Section 8], we heuristically model log−1 χ1, . . . , log−1 χm as
independent uniform random elements of this dual; then they span the dual with
probability at least 1 − 1/2m−r by [21, Lemma 8.2]. If they do span the dual,
then any π ∈ U with X(π) = 0 must have π ∈ U ∩ L2.

The main argument for this heuristic is the fact that, asymptotically, prime
ideals are uniformly distributed across the dual. Restricting to degree-1 prime
ideals does not affect this heuristic: prime ideals are counted by norm, so asymp-
totically 100% of all prime ideals have degree 1. Beware that taking more than
one prime ideal over a single prime number q would not justify the same heuristic.

Computing X(u1), . . . , X(ur) involves mr ≈ r2 quadratic-character compu-
tations, each taking time essentially NB. We do better by using remainder trees
to merge the reductions of B-bit coefficients mod q across all r choices of q; this
reduces the total time from essentially r2NB to essentially rN(r +B).

We write EnoughCharacters(L, (v1, . . . , vs)) for a list of m randomly chosen
characters that are defined and nonzero on v1, . . . , vs. In higher-level algorithms
in this paper, the group 〈v1, . . . , vs〉 can always be expressed as 〈u1, . . . , ur〉
with r ≤ N + 1, and we choose m as N + 64, although asymptotically one
should replace 64 by, e.g.,

√
N . The total time to compute X(u1), . . . , X(ur)

is essentially N2(N + B). The same heuristic states that these characters have

probability at most 1/263 (or asymptotically at most 1/2
√
N−1) of viewing some

non-square ue11 · · ·uerr as a square. Our experiments have not encountered any
failing square-root computations.

5 Computing units

This section presents a fast algorithm to compute the unit group O×L of a mul-
tiquadratic field L. For simplicity we assume that L is real, i.e., that L ⊆ R.
Note that a multiquadratic field is real if and only if it is totally real, i.e., every
complex embedding L → C has image in R. For L = Q(

√
d1, . . . ,

√
dn) this is

equivalent to saying that each dj is nonnegative.
Like Wada [60], we recursively compute unit groups for three subfields Kσ,

Kτ , Kστ , and then use the equation u2 = NL:Kσ (u)NL:Kτ (u)/σ(NL:Kστ (u)) to
glue these groups together into a group U between O×L and (O×L )2. At this point
Wada resorts to brute-force search to identify the squares in U , generalizing an
approach taken by Kubota in [42] for degree-4 multiquadratics (“biquadratics”).
We reduce exponential time to polynomial time by using quadratic characters
as explained in Section 4.

5.1 Fundamental units of quadratic fields

A quadratic field is, by definition, a degree-2 multiquadratic field; i.e., a field
of the form Q(

√
d), where d is a non-square integer.
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Fix a positive non-square integer d. Then L = Q(
√
d) is a real quadratic

field, and the unit group O×L is

{
. . . ,−ε2,−ε,−1,−ε−1,−ε−2, . . . , ε−2, ε−1, 1, ε, ε2, . . .

}
for a unique ε ∈ O×L with ε > 1. This ε, the smallest element of O×L larger than
1, is the normalized fundamental unit of OL. For example, the normalized
fundamental unit is 1+

√
2 for d = 2; 2+

√
3 for d = 3; and (1+

√
5)/2 for d = 5.

Sometimes the literature says “fundamental unit” instead of “normalized fun-
damental unit”, but sometimes it defines all of ε, −ε, 1/ε, −1/ε as “fundamental
units”. The phrase “normalized fundamental unit” is unambiguous.

The size of the normalized fundamental unit ε is conventionally measured by
the regulator R = ln(ε). A theorem by Hua states that R <

√
d(ln(4d) + 2),

and experiments suggest that R is typically d1/2+o(1), although it is often much
smaller. Write ε as a + b

√
d with a, b ∈ Q; then both 2a and 2b

√
d are very

close to exp(R), and there are standard algorithms that compute a, b in time
essentially R, i.e., at most essentially d1/2. See generally [45] and [61].

For our time analysis we assume that d is quasipolynomial in N , i.e., log d ∈
(logN)O(1). Then the time to compute ε is also quasipolynomial in N .

Take, for example, d = d1 · · · dn, where d1, . . . , dn are the first n primes,
and write N = 2n. The product of primes ≤y is approximately exp(y), so
ln d ≈ n lnn = (log2N) ln log2N . As a larger example, if d1, . . . , dn are primes
between N3 and N4, and again d = d1 · · · dn, then log2 d is between 3n2 and
4n2, i.e., between 3(log2N)2 and 4(log2N)2. In both of these examples, d is
quasipolynomial in N .

Subexponential algorithms. There are much faster algorithms that compute ε
as a product of powers of smaller elements of L. There is a deterministic algo-
rithm that provably takes time essentially R1/2, i.e., at most essentially d1/4;
see [16]. Heuristic algorithms take subexponential time exp((ln(d))1/2+o(1)), and
thus time polynomial in N if ln(d) ∈ O((logN)2−ε); see [20,1,25,58]. Quantum
algorithms are even faster, as mentioned in the introduction, but in this paper
we focus on pre-quantum algorithms.

This representation of units is compatible with computing products, quo-
tients, quadratic characters (see Section 4), and automorphisms, but we also
need to be able to compute square roots. One possibility here is to generalize
from “product of powers” to any algebraic algorithm, i.e., any chain of addi-
tions, subtractions, multiplications, and divisions. This seems adequate for our
square-root algorithm in Section 3.7: for example, h0 inside Algorithm 3.3 can
be expressed as the chain (h+ σ(h))/2 for an appropriate automorphism σ, and
the base case involves square roots of small integers that can be computed ex-
plicitly. However, it is not clear whether our recursive algorithms produce chains
of polynomial size. This paper does not explore this possibility further.
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5.2 Units in multiquadratic fields

Let d1, . . . , dn be integers satisfying the conditions of Theorem 2.1. Assume fur-
ther that d1, . . . , dn are positive. Then L = Q(

√
d1, . . . ,

√
dn) is a real multi-

quadratic field.
This field has N − 1 = 2n − 1 quadratic subfields, all of which are real. Each

quadratic subfield is constructed as follows: take one of the N−1 nonempty sub-
sets J ⊆ {1, . . . , n}; define dJ =

∏
j∈J dj ; the subfield is Q(

√
dJ). We write the

normalized fundamental units of these N−1 quadratic subfields as ε1, . . . , εN−1.
The set of multiquadratic units of L is the subgroup 〈−1, ε1, . . . , εN−1〉 of

O×L ; equivalently, the subgroup of O×L generated by −1 and all units of rings of
integers of quadratic subfields of L. (The “−1 and” can be suppressed except for
L = Q.) A unit in OL is not necessarily a multiquadratic unit, but Theorem 5.2
states that its Nth power must be a multiquadratic unit.

The group O×L is isomorphic to (Z/2)×ZN−1 by Dirichlet’s unit theorem. For
N ≥ 2 this isomorphism takes the Nth powers to {0} × (NZ)N−1, a subgroup
having index 21+n(N−1). The index of the multiquadratic units in O×L is therefore
a divisor of 21+n(N−1). One corollary is that ε1, . . . , εN−1 are multiplicatively
independent: if

∏
ε
aj
j = 1, where each aj ∈ Z, then each aj = 0.

Lemma 5.1 Let L be a real multiquadratic field and let σ, τ be distinct non-
identity automorphisms of L. Define στ = σ ◦ τ . For ` ∈ {σ, τ, στ} let K` be the
subfield of L fixed by `. Define U = O×Kσ · O

×
Kτ
· σ(O×Kστ ). Then

(O×L )2 ≤ U ≤ O×L .

Proof. O×Kσ , O×Kτ , and O×Kστ are subgroups of O×L . The automorphism σ pre-

serves O×L , so σ(O×Kστ ) is a subgroup of O×L . Hence U is a subgroup of O×L .

For the first inclusion, let u ∈ O×L . Then NL:K`(u) ∈ O×K` for ` ∈ {σ, τ, στ}.
Each non-identity automorphism of L has order 2, so in particular each ` ∈
{σ, τ, στ} has order 2 (if στ is the identity then σ = σστ = τ , contradiction), so
NL:K`(u) = u · `(u). We thus have

NL:Kσ (u)NL:Kτ (u)

σ(NL:Kστ (u))
=
u · σ(u) · u · τ(u)

σ(u · στ(u))
= u2.

Hence u2 = NL:Kσ (u)NL:Kτ (u)σ(NL:Kστ (u−1)) ∈ U . This is true for each u ∈
O×L , so (O×L )2 is a subgroup of U . ut

Theorem 5.2 Let L be a real multiquadratic field of degree N . Let Q be the
group of multiquadratic units of L. Then O×L = Q if N = 1, and (O×L )N/2 ≤ Q
if N ≥ 2. In both cases (O×L )N ≤ Q.

Proof. Induct on N . If N = 1 then L = Q so O×L = 〈−1〉 = Q. If N = 2 then
L is a real quadratic field so O×L = 〈−1, ε1〉 = Q where ε1 is the normalized
fundamental unit of L.
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Assume from now on that N ≥ 4. By Theorem 2.2, L can be expressed as
Q(
√
d1, . . . ,

√
dn) where d1, . . . , dn are positive integers meeting the conditions

of Theorem 2.1 and N = 2n.
Define σ as the automorphism of L that preserves

√
d1, . . . ,

√
dn except for

negating
√
dn. The field Kσ fixed by σ is Q(

√
d1, . . . ,

√
dn−1), a real multi-

quadratic field of degree N/2. Write Qσ for the group of multiquadratic units of
Kσ. By the inductive hypothesis, (O×Kσ )N/4 ≤ Qσ ≤ Q.

Define τ as the automorphism of L that preserves
√
d1, . . . ,

√
dn except for

negating
√
dn−1. Then the field Kτ fixed by τ is Q(

√
d1, . . . ,

√
dn−2,

√
dn), and

the field Kστ fixed by στ is Q(
√
d1, . . . ,

√
dn−2,

√
dn−1dn). Both of these are

real multiquadratic fields of degree N/2, so (O×Kτ )N/4 ≤ Q and (O×Kστ )N/4 ≤ Q.

The automorphism σ preserves Q, so σ(O×Kστ )N/4 ≤ Q.

By Lemma 5.1, (O×L )2 ≤ O×Kσ · O
×
Kτ
· σ(O×Kστ ). Simply take (N/4)th powers:

(O×L )N/2 ≤ (O×Kσ )N/4 · (O×Kτ )N/4 · σ(O×Kστ )N/4 ≤ Q. ut

5.3 Representing units: logarithms and approximate logarithms

Sections 5.4 and 5.5 will use Lemma 5.1, quadratic characters, and square-root
computations to obtain a list of generators for O×L . However, this is usually far
from a minimal-size list of generators. Given this list of generators we would like
to produce a basis for O×L . This means a list of N − 1 elements u1, . . . , uN−1 ∈
O×L such that each element of O×L can be written uniquely as ζue11 · · ·u

eN−1

N−1
where ζ is a root of unity; i.e., as ±ue11 · · ·u

eN−1

N−1 . In other words, it is a list of

independent generators of O×L /{±1}.
A basis u1, . . . , uN−1 for O×L is traditionally viewed as a lattice basis in

the usual sense: specifically, as the basis Log u1, . . . ,Log uN−1 for the lattice
LogO×L , where Log is Dirichlet’s logarithm map. However, this view complicates
the computation of a basis. We instead view a basis u1, . . . , uN−1 for O×L as a
basis ApproxLog u1, . . . ,ApproxLog uN−1 for the lattice ApproxLogO×L , where
ApproxLog is an “approximate logarithm map”. We define our approximate
logarithm map here, explain why it is useful, and explain how we use the ap-
proximate logarithm map in our representation of units. In Section 5.5 we use
ApproxLog to reduce a list of generators to a basis.

Dirichlet’s logarithm map. Let σ1, σ2, . . . , σN be (in some order) the embeddings
of L into C, i.e., the ring homomorphisms L → C. Since L is Galois, these are
exactly the automorphisms of L. Dirichlet’s logarithm map Log : L× → RN
is defined as follows:

Log(u) = (ln |σ1(u)|, ln |σ2(u)|, . . . , ln |σN (u)|).

This map has several important properties. It is a group homomorphism from the
multiplicative group L× to the additive group RN . The kernel of Log restricted
to O×L is the cyclic group of roots of unity in L, namely {1,−1}. The image
Log(O×L ) forms a lattice of rank N − 1, called the log-unit lattice.
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Given units u1, . . . , ub generating O×L , one can compute Log(u1), . . . ,Log(ub)
in RN , and then reduce these images to linearly independent vectors in RN by
a chain of additions and subtractions, obtaining a basis for the log-unit lattice.
Applying the corresponding chain of multiplications and divisions to the original
units produces a basis for O×L .

However, elements of R are conventionally represented as nearby rational
numbers. “Computing” Log(u1), . . . ,Log(ub) thus means computing nearby vec-
tors of rational numbers. The group generated by these vectors usually has rank
larger than N − 1: instead of producing N − 1 linearly independent vectors and
b−(N−1) zero vectors, reduction can produce as many as b linearly independent
vectors.

One can compute approximate linear dependencies by paying careful atten-
tion to floating-point errors. An alternative is to use p-adic techniques as in [12].
Another alternative is to represent logarithms in a way that allows all of the
necessary real operations to be carried out without error: for example, one can
verify that ln |σ1(u)| > ln |σ1(v)| by using interval arithmetic in sufficiently high
precision, and one can verify that Log u = Log v by checking that u/v is a root
of unity.

Approximate logarithms. We instead sidestep these issues by introducing an
approximate logarithm function ApproxLog as a replacement for the logarithm
function Log. This new function is a group homomorphism from O×L to RN . Its
image is a lattice of rank N − 1, which we call the approximate unit lattice. Its
kernel is the group of roots of unity in L. The advantage of ApproxLog over
Log is that all the entries of ApproxLog(u) are rationals, allowing exact linear
algebra.

To define ApproxLog, we first choose N linearly independent vectors

ApproxLog(ε1), . . . ,ApproxLog(εN−1), (1, 1, . . . , 1) ∈ QN ,

where ε1, . . . , εN−1 are the normalized fundamental units of the quadratic sub-
fields of L as before; (1, 1, . . . , 1) is included here to simplify other computations.
We then extend the definition by linearity to the group 〈−1, ε1, . . . , εN−1〉 of
multiquadratic units: if

u = ±
N−1∏
j=1

ε
ej
j

then we define ApproxLog(u) as
∑
j ej ApproxLog(εj). Finally, we further extend

the definition by linearity to all of O×L : if u ∈ O×L then uN is a multiquadratic
unit by Theorem 5.2, and we define ApproxLog(u) as ApproxLog(uN )/N . It is
easy to check that ApproxLog is a well-defined group homomorphism.

For example, one can take ApproxLog(ε1) = (1, 0, . . . , 0, 0), ApproxLog(ε2) =
(0, 1, . . . , 0, 0), and so on through ApproxLog(εN−1) = (0, 0, . . . , 1, 0). Then
ApproxLog(u) = (e1/N, e2/N, . . . , eN−1/N, 0) if uN = ±εe11 ε

e2
2 · · · ε

eN−1

N−1 . In other
words, write each unit modulo ±1 as a product of powers of ε1, . . . , εN−1;
ApproxLog is then the exponent vector.
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We actually define ApproxLog to be numerically much closer to Log. We
choose a precision parameter β, and we choose each entry of ApproxLog(εj) to be
a multiple of 2−β within 2−β of the corresponding entry of Log(εj). Specifically,
we build ApproxLog(εj) as follows:

– Compute the regulator R = ln(εj) to slightly more than β + log2R bits of
precision.

– Round the resulting approximation to a (nonzero) multiple R′ of 2−β .
– Build a vector with R′ at the N/2 positions i for which σi(εj) = εj , and

with −R′ at the remaining N/2 positions i.

The resulting vectors ApproxLog(ε1), . . . ,ApproxLog(εN−1) are orthogonal to
each other and to (1, 1, . . . , 1).

How units are represented. Each unit in Algorithms 5.1 and 5.2 is implicitly
represented as a pair consisting of (1) the usual representation of an element of
L and (2) the vector ApproxLog(u). After the initial computation of ln(εj) for
each j, all subsequent units are created as products (or quotients) of previous
units, with sums (or differences) of the ApproxLog vectors; or square roots of
previous units, with the ApproxLog vectors multiplied by 1/2. This approach
ensures that we do not have to compute ln |σ(u)| for the subsequent units u.

As mentioned in Section 5.1, we assume that each quadratic field Q(
√
d) has

log d ∈ (logN)O(1) = nO(1), so logR ∈ nO(1). We also take β ∈ nO(1), so each
entry of ApproxLog(εj) has nO(1) bits. One can deduce an nO(1) bound on the
number of bits in any entry of any ApproxLog vector used in our algorithms, so
adding two such vectors takes time nO(1)N , i.e., essentially N .

For comparison, recall that multiplication takes time essentially NB, where
B is the maximum number of bits in any coefficient of the field elements being
multiplied. For normalized fundamental units, this number of bits is essentially
R, i.e., quasipolynomial in N , rather than logR, i.e., polynomial in n.

5.4 Pinpointing squares of units inside subgroups of the unit group

Algorithm 5.1, UnitsGivenSubgroup, is given generators u1, . . . , ub of any group
U with (O×L )2 ≤ U ≤ O×L . It outputs generators of O×L /{±1}.

The algorithm begins by building enough characters χ1, . . . , χm that are de-
fined and nonzero on U . Recall from Section 4.2 that m is chosen to be slightly
larger than N .

For each u ∈ U define X(u) as the vector (log−1(χ1(u)), . . . , log−1(χm(u))) ∈
(Z/2)m. If u ∈ (O×L )2 then X(u) = 0. Conversely, if u ∈ U and X(u) = 0 then
(heuristically, with overwhelming probability) u = v2 for some v ∈ L; this v
must be a unit, so u ∈ (O×L )2.

The algorithm assembles the rows X(u1), . . . , X(ub) into a matrix M ; com-
putes a basis S for the left kernel of M ; lifts each element (Si1, . . . , Sib) of this
basis to a vector of integers, each entry 0 or 1; and computes si = uSi11 · · ·uSibb . By
definition X(si) = Si1X(u1) + · · ·+SibX(ub) = 0, so si ∈ (O×L )2. The algorithm
computes a square root vi of each si, and it outputs u1, . . . , ub, v1, v2, . . . .
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Algorithm 5.1: UnitsGivenSubgroup(L, (u1, . . . , ub))

Input: A real multiquadratic field L; elements u1, . . . , ub of O×L such that
(O×L )2 ⊆ 〈u1, . . . , ub〉.

Result: Generators for O×L /{±1}.
1 χ1, . . . , χm ← EnoughCharacters(L, (u1, . . . , ub))
2 M ← [log−1(χk(uj))]1≤j≤b,1≤k≤m
3 S ← Basis(LeftKernel(M))
4 for i = 1, . . . ,#S do

5 si ←
∏
j u

Sij
j , interpreting exponents in Z/2 as {0, 1} in Z

6 vi ←
√
si

7 return u1, . . . , ub, v1, . . . , v#S

To see that −1, u1, . . . , ub, v1, v2, . . . generate O×L , consider any u ∈ O×L . By
definition u2 ∈ (O×L )2, so u2 ∈ U , so u2 = ue11 · · ·u

eb
b for some e1, . . . , eb ∈

Z. Furthermore X(u2) = 0 so e1X(u1) + · · · + ebX(ub) = 0; i.e., the vector
(e1 mod 2, . . . , eb mod 2) in (Z/2)b is in the left kernel of M . By definition S is
a basis for this left kernel, so (e1 mod 2, . . . , eb mod 2) is a linear combination
of the rows of S modulo 2; i.e., (e1, . . . , eb) is some (2f1, . . . , 2fb) plus a linear

combination of the rows of S; i.e., u2 is u2f11 · · ·u2fbb times a product of powers

of si; i.e., u is ±uf11 · · ·u
fb
b times a product of powers of vi.

Complexity analysis and improvements. Assume that the inputs u1, . . . , ub have
at most B bits in each coefficient. Each of the products s1, s2, . . . is a product of
at most b inputs, and thus has, at worst, essentially bB bits in each coefficient.

Computing the character matrix M takes time essentially bN(b + B); see
Section 4.2. Computing S takes O(N3) operations by Gaussian elimination over
F2; one can obtain a better asymptotic exponent here using fast matrix multi-
plication, but this is not a bottleneck in any case. Computing one product si
takes time essentially bNB with a product tree, and computing its square root
vi takes time essentially bN log2 3B. There are at most b values of i.

Our application of this algorithm has b ∈ Θ(N). The costs are essentially
N3 + N2B for characters, N3 for kernel computation, N3B for products, and
N2+log2 3B for square roots.

These bounds are too pessimistic, for three reasons. First, experiments show
that products often have far fewer factors, and are thus smaller and faster to
compute. Second, one can enforce a limit upon the output size by integrating
the algorithm with lattice-basis reduction (see Section 5.5), computing products
and square roots only after reduction. Third, we actually use the technique of
Section 3.5 to compute products of powers.

5.5 A complete algorithm to compute the unit group

Algorithm 5.2 computes a basis for O×L , given a real multiquadratic field L.
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Fig. 5.1: How to pick subfields for the recursive algorithm for multiquadratic
fields of degree 8.

As usual write N for the degree of L. There is no difficulty if N = 1. For
N = 2, the algorithm calls standard subroutines cited in Section 5.1. For N ≥ 4,
the algorithm calls itself recursively on three subfields of degree N/2; merges
the results into generators for a subgroup U ≤ O×L such that (O×L )2 ≤ U ;
calls UnitsGivenSubgroup to find generators for O×L ; and then uses lattice-basis
reduction to find a basis for O×L . A side effect of lattice-basis reduction is that
the basis is short, although it is not guaranteed to be minimal.

The subgroup and the generators. Lemma 5.1 defines U = O×Kσ · O
×
Kτ
· σ(O×Kστ )

where σ, τ are distinct non-identity automorphisms of L.

The three subfields used in the algorithm are Kσ, Kτ , and Kστ . The recursive
calls produce lists of generators for O×Kσ/{±1}, O×Kτ /{±1}, and O×Kστ /{±1}
respectively. The algorithm builds a list G that contains each element of the
first list; each element of the second list; σ applied to each element of the third
list; and −1. Then G generates U . As a speedup, we sort G to remove duplicates.

We cache the output of Units(L) for subsequent reuse (without saying so
explicitly in Algorithm 5.2). For example, if L = Q(

√
2,
√

3,
√

5), then the three
subfields might be Q(

√
2,
√

3), Q(
√

2,
√

5), and Q(
√

2,
√

15), and the next level
of recursion involves Q(

√
2) three times. We perform the Units(Q(

√
2)) compu-

tation once and then simply reuse the results the next two times.

The overall impact of caching depends on how σ and τ are chosen (which
is also not specified in Algorithm 5.2). We use the following specific strategy.
As usual write L as Q(

√
d1, . . . ,

√
dn), where d1, . . . , dn are integers meeting the

conditions of Theorem 2.1. Assume that 0 < d1 < · · · < dn. Choose σ and τ such
that Kσ = Q(

√
d1,
√
d2, . . . ,

√
dn−1) and Kτ = Q(

√
d1,
√
d2, . . . ,

√
dn−2,

√
dn).

We depict the resulting set of subfields in Figures 5.1 and 5.2. Notice that, in
Figures 5.1 and 5.2, the leftmost field in each horizontal layer is a subfield used
by all fields in the horizontal layer above it.

With this strategy, the recursion reaches exactly 2n−`+1 − 1 subfields of de-
gree 2`, namely the subfields of the form Q(

√
d1, . . . ,

√
d`−1,

√
D) where D is

a product of a nonempty subset of {d`, . . . , dn}. With a less disciplined strat-
egy, randomly picking 3 subfields of degree N/2 at each step, we would instead
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Fig. 5.2: How to pick subfields for the recursive algorithm for multiquadratic
fields of degree 16.

end up with nearly 3n−` subfields of degree 2`. “Nearly” accounts for accidental
collisions and for the limited number of subfields of low degree.

Finding short bases given generators. Applying Pohst’s modified LLL algorithm
[53] to the vectors ApproxLog(u1), . . . ,ApproxLog(ub) would find b − (N − 1)
zero vectors and N − 1 independent short combinations of the input vectors.
The algorithm is easily extended to produce an invertible b × b transformation
matrix T that maps the input vectors to the output vectors. (The algorithm in
[53] already finds the part of T corresponding to the zero outputs.) We could
simply use the entries of any such T as exponents of uj in our algorithm. It is
important to realize, however, that there are many possible choices of T (except
in the extreme case b = N − 1), and the resulting computations are often much
slower than necessary. For example, if u3 = u1u2, then an output u1/u2 might
instead be computed as u10011 u9992 /u10003 .

We instead apply LLL to the matrix A shown in Algorithm 5.2. This has
three effects. First, if H is chosen sufficiently large, then the right side of A is
reduced to b− (N − 1) zero vectors and N − 1 independent short combinations
of the vectors H ·ApproxLog(u1), . . . ,H ·ApproxLog(ub). (We check that there
are exactly b − (N − 1) zero vectors.) Second, the left side of A keeps track
of the transformation matrix that is used. Third, this transformation matrix
is automatically reduced: short coefficients are found for the b − (N − 1) zero
vectors, and these coefficients are used to reduce the coefficients for the N − 1
independent vectors.

An upper bound on LLL cost can be computed as follows. LLL in dimension
N , applied to integer vectors where each vector has O(B) bits, uses O(N4B)
arithmetic operations on integers with O(NB) bits; see [44, Proposition 1.26]
(and for lower exponents see, e.g., [50]). The total time is bounded by essentially
N5B2. To bound B one can bound each H · ApproxLog(· · · ). To bound H one
can observe that the transformation matrix has, at worst, essentially N bits in
each coefficient (see, e.g., [57]), while the required precision of ApproxLog is
essentially 1, so it suffices to take essentially N bits in H. The total time is, at
worst, essentially N7.

Our experiments show much better LLL performance for these inputs. We
observe LLL actually using very few iterations; evidently the input vectors are
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Algorithm 5.2: Units(L)

Input: A real multiquadratic field L. As a side input, a parameter H > 0.
Result: Independent generators of O×L /{±1}.

1 if [L : Q] = 1 then
2 return ()

3 if [L : Q] = 2 then
4 return the normalized fundamental unit of L

5 σ, τ ← distinct non-identity automorphisms of L
6 for ` ∈ {σ, τ, στ} do
7 G` ← Units(fixed field of `)

8 G← −1, Gσ, Gτ , σ(Gστ )
9 (u1, . . . , ub)← UnitsGivenSubgroup(L,G)

10 A←


1 0 . . . 0 H ·ApproxLog(u1)
0 1 . . . 0 H ·ApproxLog(u2)
...

...
. . .

...
...

0 0 . . . 1 H ·ApproxLog(ub)


11 A′ ← LLL(A), putting shortest vectors first
12 for i = 1, . . . , N − 1 where N = [L : Q] do

13 wi ←
∏

1≤j≤b u
A′b−(N−1)+i,j

j

14 return w1, . . . , wN−1

already very close to being reduced. It seems plausible to conjecture that the
entries of the resulting transformation matrix have at most nO(1) bits, and that
it suffices to take H with nO(1) bits, producing B bounded by nO(1). The total
time might be as small as essentially N3, depending on how many iterations
there are.

6 Finding generators of ideals

This section presents the main contribution of this paper: a fast pre-quantum
algorithm to compute a nonzero g in a multiquadratic ring, given the ideal
generated by g. For simplicity we focus on the real case, as in Section 5. The
algorithm takes quasipolynomial time under reasonable heuristic assumptions if
d1, . . . , dn are quasipolynomial.

The algorithm reuses the equation g2 = NL:Kσ (g)NL:Kτ (g)/σ(NL:Kστ (g))
that was used for unit-group computation in Section 5. To compute NL:K(g),
the algorithm computes the corresponding norm of the input ideal, and then
calls the same algorithm recursively.

The main algebraic difficulty here is that there are many generators of the
same ideal: one can multiply g by any unit, such as −1 or 1 +

√
2, to obtain

another generator. What the algorithm actually produces is some ug where u
is a unit. This means that the recursion produces unit multiples of NL:Kσ (g)



30 J. Bauch, D. J. Bernstein, H. de Valence, T. Lange & C. van Vredendaal

etc., and thus produces some vg2 rather than g2. The extra unit v might not
be a square, so we cannot simply compute the square root of vg2. Instead we
again use the techniques of Section 4, together with the unit group computed in
Section 5, to find a unit u such that u(vg2) is a square, and we then compute
the square root.

6.1 Representing ideals and computing norms of ideals

Let L be a real multiquadratic field of degree N = 2n. Let R be an order inside
L, such as Z[

√
d1, . . . ,

√
dn] inside Q(

√
d1, . . . ,

√
dn). Our algorithm does not

require R to be the ring of integers OL, although its output allows arbitrary
units from the ring of integers; i.e., if the input is a principal ideal I of R then
the output is some g ∈ OL such that gOL = IOL. Equivalently, one can (with
or without having computed OL) view I as representing the ideal IOL of OL.

We consider three representations of an ideal I of R:

– One standard representation is as a Z-basis ω1, ω2, . . . , ωN ∈ R, i.e., a basis
of I as a lattice.

– A more compact standard representation is the “two-element representation”
(α1, α2) representing I = α1R + α2R, typically with α1 ∈ Z. If R 6= OL
then I might not have a two-element representation, but failure to convert
I to a two-element representation reveals a larger order.

– Our target cryptosystem in Appendix A uses another representation that
works for many, but certainly not all, ideals ofR = Z[

√
d1, . . . ,

√
dn]: namely,

(q, s1, . . . , sn) ∈ Zn+1, where each sj is a nonzero square root of dj modulo q
and where q is odd, representing I = qR+(

√
d1−s1)R+ · · ·+(

√
dn−sn)R.

Our algorithm works with any representation that allows basic ideal operations,
such as ideal norms, which we discuss next. Performance depends on the choice
of representation.

Let σ be a nontrivial automorphism of L, and let K be its fixed field; then
K is a subfield of L with [L : K] = 2. Assume that σ(R) = R, and let S
be the order K ∩ R inside K. For example, if R = Z[

√
d1, . . . ,

√
dn] and σ pre-

serves
√
d1, . . . ,

√
dn−1 while negating

√
dn, then S = Z[

√
d1, . . . ,

√
dn−1]; ifR =

Z[
√
d1, . . . ,

√
dn] and σ preserves

√
d1, . . . ,

√
dn−2 while negating

√
dn−1,

√
dn,

then S = Z[
√
d1, . . . ,

√
dn−2,

√
dn−1dn].

The relative norm NL:K(I) is, by definition, Iσ(I) ∩K, which is the same
as Iσ(I) ∩ S. This is an ideal of S. It has two important properties: it is not
difficult to compute; and if I = gR then NL:K(I) = NL:K(g)S. See, e.g., [26].

Given a Z-basis of I, one can compute a Z-basis of NL:KI by computing
{ωi · σ(ωj) : 1 ≤ i ≤ j ≤ N}, transforming this into a Hermite-Normal-Form
(HNF) basis for Iσ(I), and intersecting with S. A faster approach appears in [7]:
compute a two-element representation of I; multiply the two elements by a Z-
basis for σ(I); convert to HNF form; and intersect with S, obtaining a Z-basis
for NL:KI. This takes total time essentially N5B.
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Algorithm 6.1: IdealSqrt(L, h)

Input: A real multiquadratic field L; an element h of O×L · (L
×)2.

Result: Some g ∈ L× such that h/g2 ∈ O×L .

1 u1, . . . , uN−1 ← Units(L)
2 u0 ← −1
3 χ1, . . . , χm ← EnoughCharacters(L, (u0, . . . , uN−1, h))
4 M ← [log−1 χj(ui)]0≤i≤N−1,1≤j≤m
5 V ← [log−1 χj(h)]1≤j≤m
6 [e0, . . . , eN−1]← SolveLeft(M,V )

7 u←
∏
j u

ej
j , interpreting exponents in Z/2 as {0, 1} in Z

8 g ←
√
uh

9 return g

The (q, s1, . . . , sn) representation allows much faster norms, and is used in
our software. The norm to Z[

√
d1, . . . ,

√
dn−1] is simply (q, s1, . . . , sn−1), and

the norm to Z[
√
d1, . . . ,

√
dn−2,

√
dn−1dn] is simply (q, s1, . . . , sn−2, sn−1sn).

6.2 Computing a generator of I from a generator of I2

Assume now that we have a nonzero principal ideal I ⊆ OL, and a generator
h for I2. To find a generator g for I, it is sufficient to find a square generator
for I2 and take its square root. To this end we seek a unit u ∈ O×L such that
uh = g2 for some g. Applying the map X from Section 4.2 to this equation, we
obtain

X(uh) = X(g2) = 2X(g) = 0.

Therefore X(u) = X(h).
We start by computing X(h) from h. We then compute a basis u1, . . . , uN−1

for O×L , and we define u0 = −1, so u0, u1, . . . , uN−1 generate O×L . We then solve
the matrix equation

[e0, e1, . . . , eN−1]


X(u0)
X(u1)

...
X(uN−1)

 = X(h)

for [e0, e1, . . . , eN−1] ∈ (Z/2)N and set u =
∏
j u

ej
j . Then uh is (almost certainly)

a square, so its square root g is a generator of I. This algorithm is displayed as
Algorithm 6.1.

The subroutine SolveLeft(M,V ) solves the matrix equation eM = V for
the vector e. One can save time by precomputing the inverse of an invertible
full-rank submatrix of M , and using only the corresponding characters.

Note that for this computation to work we need a basis of the full unit group.
If we instead use units v1, . . . , vN−1 generating, e.g., the group U = (O×L )2, and
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Algorithm 6.2: ShortenGen(L, h)

Input: A real multiquadratic field L, and a nonzero element h ∈ L. As a side
input, a positive integer parameter β.

Result: A short g ∈ L with g/h ∈ O×L .

1 u1, . . . , uN−1 ← Units(L)

2 M ←


ApproxLog(u1)

...
ApproxLog(uN−1)
1 1 . . . 1 1


3 v ← approximation to Log(h) within 2−β in each coordinate
4 e←

⌊
−vM−1

⌉
5 g ← hue11 · · ·u

eN−1

N−1

6 return g

if h = vg2 for some v ∈ O×L − U , then uh cannot be a square for any u ∈ U : if
it were then h would be a square (since every u ∈ U is a square), so v would be
a square, so v would be in U , contradiction.

There are several steps in this algorithm beyond the unit-group precomputa-
tion. Characters for u0, . . . , uN−1 take time essentially N3 +N2B and can also
be precomputed. Characters for h take time essentially N2+NB. Linear algebra
mod 2 takes time essentially N3, or better with fast matrix multiplication; most
of this can be precomputed, leaving time essentially N2 to multiply a precom-
puted inverse by X(h). The product of powers takes time essentially N2B, and
the square root takes time essentially N1+log2 3B, although these bounds are too
pessimistic for the reasons mentioned in Section 5.4.

6.3 Shortening

Algorithm 6.2, ShortenGen, finds a bounded-size generator g of a nonzero prin-
cipal ideal I ⊆ OL, given any generator h of I. See Section 8 for analysis of the
success probability of this algorithm at finding the short generators used in a
cryptosystem.

Recall the log-unit lattice Log(O×L ) defined in Section 5.3. The algorithm
finds a lattice point Log u close to Log h, and then computes g = h/u.

In more detail, the algorithm works as follows. Start with a basis u1, . . . , uN−1
for O×L . Compute Log h, and write Log h as a linear combination of the vec-
tors Log(u1), . . . ,Log(uN−1), (1, 1, . . . , 1); recall that (1, 1, . . . , 1) is orthogonal to
each Log(uj). Round the coefficients in this combination to integers (e1, . . . , eN ).
Compute u = ue11 · · ·u

eN−1

N−1 and g = h/u.
The point here is that Log h is close to e1 Log(u1) + · · ·+ eN−1 Log(uN−1) +

eN (1, 1, . . . , 1), and thus to Log u+eN (1, 1, . . . , 1). The gap Log g = Log h−Log u
is between −0.5 and 0.5 in each of the Log(uj) directions, plus some irrelevant
amount in the (1, 1, . . . , 1) direction.
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Algorithm 6.3: QPIP(Q, I)

Input: Real quadratic field Q and a principal ideal I of an order inside Q
Result: A short generator g for IOQ

1 h← FindQGen(Q, I)
2 g ← ShortenGen(Q,h)
3 return g

Normally the goal is to find a generator that is known in advance to be short.
If the logarithm of this target generator is between −0.5 and 0.5 in each of the
Log(uj) directions then this algorithm will find this generator (modulo ±1). See
Section 8 for further analysis of this event.

Approximations. The algorithm actually computes Log h only approximately,
and uses ApproxLog uj instead of Log uj , at the expense of marginally adjusting
the 0.5 bounds mentioned above.

Assume that h has integer coefficients with at most B bits. (We discard the
denominator in any case: it affects only the irrelevant coefficient of (1, 1, . . . , 1).)
Then |σj(h)| ≤ 2B

∏
i(1 +

√
|di|), so ln |σj(h)| ≤ B ln 2 +

∑
i ln(1 +

√
|di|). By

assumption each di is quasipolynomial in N , so ln |σj(h)| ≤ B ln 2 + nO(1).

To put a lower bound on ln |σj(h)|, consider the product of the other con-
jugates of h. Each coefficient of this product is between −2C and 2C where C
is bounded by essentially NB. Dividing this product by the absolute norm of
h, a nonzero integer, again produces coefficients between −2C and 2C , but also
produces exactly 1/σj(h). Hence ln |1/σj(h)| ≤ C ln 2 + nO(1).

In short, ln |σj(h)| is between essentially −NB and B, so an approxima-
tion to ln |σj(h)| within 2−β uses roughly β + log(NB) bits. We use interval
arithmetic with increasing precision to ensure that we are computing Log h ac-
curately; the worst-case precision is essentially NB. Presumably it would save
time here to augment our representation of ideal generators to include approx-
imate logarithms, the same way that we augment our representation of units,
but we have not implemented this yet.

Other reduction approaches. Finding a lattice point close to a vector, with a
promised bound on the distance, is called the Bounded-Distance Decoding Prob-
lem (BDD). There are many BDD algorithms in the literature more sophisti-
cated than simple rounding: for example, Babai’s nearest-plane algorithm [5].
See generally [32].

Our experiments show that, unsurprisingly, failures in rounding are triggered
most frequently by the shortest vectors in our lattice bases. One cheap way
to eliminate these failures is to enumerate small combinations of the shortest
vectors.
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Algorithm 6.4: MQPIP(L, I)

Input: Real multiquadratic field L and a principal ideal I of an order inside L
Result: A short generator g for IOL

1 if [L : Q] = 1 then
2 return the smallest positive integer in I
3 if [L : Q] = 2 then
4 return QPIP(L, I)

5 σ, τ ← distinct non-identity automorphisms of L
6 for ` ∈ {σ, τ, στ} do
7 K` ← fixed field of `
8 I` ← NL:K`(I)
9 g` ← MQPIP(K`, I`)

10 h← gσgτ/σ(gστ )
11 g′ ← IdealSqrt(L, h)
12 g ← ShortenGen(L, g′)
13 return g

6.4 Finding generators of ideals for quadratics

We now have all the ingredients for the attack algorithm. It will work in a
recursive manner and in this subsection we will treat the base case.

Recall from Section 5.1 that there are standard algorithms to compute the
normalized fundamental unit ε of a real quadratic field Q(

√
d) in time essentially

R = ln(ε), which is quasipolynomial under our assumptions. There is, similarly,
a standard algorithm to compute a generator of a principal ideal of OQ(

√
d) in

time essentially R+B, where B is the number of bits in the coefficients used in
the ideal. We call this algorithm FindQGen.

There are also algorithms that replace R by something subexponential in
d; see [59], [19], and [13]. As in Section 5.1, these algorithms avoid large coeffi-
cients by working with products of powers of smaller field elements, raising other
performance questions in our context.

Algorithm 6.3, QPIP, first calls FindQGen to find a generator h, and then
calls ShortenGen from Section 6.3 to find a short generator g. For quadratics
this is guaranteed to find a generator with a minimum-size logarithm, up to the
limits of the approximations used in computing logarithms.

6.5 Finding generators of ideals for multiquadratics

Algorithm 6.4 recursively finds generators of principal ideals of orders in real
multiquadratic fields. The algorithm works as follows.

Assume, as usual, that d1, . . . , dn are positive integers meeting the conditions
of Theorem 2.1. Let L be the real multiquadratic field Q(

√
d1, . . . ,

√
dn) of degree

N = 2n. Let I be a principal ideal of an order inside L, for which we want to
find a generator.
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Precomp? Subroutine Cost

yes units for all quadratic fields NB
yes characters of units (in UGS, IS) N3 +N2B
yes linear algebra (in UGS, IS) N3 without fast matrix multiplication
yes basis reduction (in Units) N7; experimentally closer to N3

yes products (in UGS, Units) N3B

yes square roots (in UGS) N2+log2 3B

no generators for all quadratic fields NB
no characters for h (in IS) N2 +NB
no linear algebra for h (in IS) N2

no products (in IS, SG, MQPIP) N2B

no square roots (in IS) N1+log2 3B

Table 6.1: Complexities of subroutines at the top and bottom levels of recursion
of MQPIP. Logarithmic factors are suppressed. B is assumed to be at least as
large as regulators. “UGS” means UnitsGivenSubgroup; “IS” means IdealSqrt;
“SG” means ShortenGen. “Precomp” means that the results of the computation
can be reused for many inputs I.

If N = 1 then there is no difficulty. If N = 2, we find the generator with the
QPIP routine of the previous section. Assume from now on that N ≥ 4.

As in Section 5.5, choose distinct non-identity automorphisms σ, τ of L, and
let Kσ,Kτ ,Kστ be the fields fixed by σ, τ, στ respectively. These are fields of
degree N/2.

For each ` ∈ {σ, τ, στ}, compute I` = NL:K`(I) as explained in Section 6.1,
and call MQPIP(K`, I`) recursively to compute a generator g` for each I`OK` .
Notice that if g is a generator of IOL, then g`(g) generates I`OK` , so g` =
u`g`(g) for some u` ∈ O×K` . Therefore

gσgτ
σ(gστ )

=
uσgσ(g)uτgτ(g)

σ(uστgστ(g))
= g2uσuτσ(u−1στ ),

so that h = gσgτ/σ(gστ ) is a generator of I2OL. Now use IdealSqrt to find a
generator of IOL, and ShortenGen to find a bounded-size generator.

Table 6.1 summarizes the scalability of the subroutines inside MQPIP. Many
of the costs are in precomputations that we share across many ideals I, and
these costs involve larger powers of N than the per-ideal costs. On the other
hand, the per-ideal costs can dominate when the ideals have enough bits B per
coefficient.

7 Timings

This section reports experiments on the timings of our software for our algo-
rithms: specifically, the number of seconds used for various operations in the
Sage [30] computer-algebra system on a single core of a 4GHz AMD FX-8350
CPU.
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n 2n mult square relnorm absnorm div sqrt

3 8 0.0005 0.0004 0.0004 0.0023 0.0007 0.0130
4 16 0.0007 0.0006 0.0006 0.0049 0.0012 0.0528
5 32 0.0013 0.0010 0.0009 0.0109 0.0022 0.1352
6 64 0.0030 0.0022 0.0018 0.0250 0.0043 0.5408
7 128 0.0057 0.0042 0.0035 0.0574 0.0101 1.8964
8 256 0.0116 0.0085 0.0067 0.1332 0.0193 6.4766

Table 7.1: Observed time for basic operations in Z[
√
d1, . . . ,

√
dn], with d1 = 2,

d2 = 3, d3 = 5, etc., using λ = 64. The “mult” column is the time to compute h =
fg where f, g have each coefficient chosen randomly between−21000 and 21000−1.
The “square” column is the time to compute f2. The “relnorm” column is the
time to compute fσ(f) where σ is any of the automorphisms in Theorem 2.1.
The “absnorm” column is the time to compute NQ(

√
d1,...,

√
dn):Qf . The “div”

column is the time to divide h = fg by g, recovering f . The “sqrt” column is the
time to recover ±f from f2. Each timing is the median of 101 measurements.

7.1 Basic subroutine timings

Table 7.1 shows the time taken for multiplication, squaring, etc., rounded to the
nearest 0.0001 seconds: e.g., 0.0116 seconds to multiply two elements of a degree-
256 multiquadratic ring, each element having random 1000-bit coefficients. The
table is consistent with the analysis earlier in the paper: e.g., doubling the degree
approximately doubles the cost of multiplication, and approximately triples the
cost of square roots.

We have, for comparison, also explored the performance of multiquadratics
using Sage’s tower-field functions, Sage’s absolute-number-field functions (us-
ing the polynomial F defined in Appendix A), and Sage’s ring constructors.
The underlying polynomial-arithmetic code inside Sage is written in C, avoiding
Python overhead, but suffers from poor algorithm scalability. Sage’s construc-
tion of degree-2 relative extensions (in towers of number fields or in towers of
rings) uses Karatsuba arithmetic, losing a factor of 3 for each extension, with
no obvious way to enable FFTs. Working with one variable modulo F produces
good scalability for multiplication but makes norms difficult. Division is very
slow in any case: for example, it takes 0.14 seconds, 1.5 seconds, and 31.5 sec-
onds in degrees 32, 64, and 128 respectively using the tower-field representation,
and it takes 0.12 seconds, 0.98 seconds, and 9.7 seconds in degrees 32, 64, and
128 respectively using the single-variable representation, while we use just 0.0101
seconds in degree 128 and 0.0193 seconds in degree 256.

7.2 Timings to compute the unit group and generators

The difference in scalability is much more striking for unit-group computation, as
shown in Table 7.2. Our algorithm uses 2.33 seconds for degree 16, 6.61 seconds
for degree 32, 23.30 seconds for degree 64, 93.02 seconds for degree 128, etc.,
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n 2n tower absolute new new2 new3 attack attack2 attack3

3 8 0.05 0.03 0.90 0.92 0.91 0.07 0.07 0.07
4 16 0.48 0.24 2.33 2.28 2.39 0.20 0.19 0.19
5 32 6.75 4.73 6.61 6.49 7.36 0.56 0.54 0.51
6 64 >700000 >700000 23.30 22.97 37.51 1.51 1.45 1.51
7 128 93.02 100.01 1560.49 4.95 5.18 7.29
8 256 463.91 650.92 31469.23 27.95 30.91 100.65

Table 7.2: Observed time to compute (once) the unit group of Q(
√
d1, . . . ,

√
dn);

and to find a generator for the public key in the cryptosystem presented in Ap-
pendix A. The “tower” column is the time used by Sage’s tower-field unit-group
functions (with proof=False) with d1 = 2, d2 = 3, d3 = 5, etc.; for n = 6 these
functions ran out of memory after approximately 710000 seconds. The “abso-
lute” column is the time used by Sage’s absolute-field unit-group functions (also
with proof=False), starting from the polynomial F defined in Appendix A.
The “new” column is the time used by this paper’s unit-group algorithm. The
“new2” column replaces d1, . . . with the first n primes ≥n. The “new3” column
replaces d1, . . . with the first n primes ≥n2. The “attack”, “attack2”, and “at-
tack3” columns are 0.001 times the total time to find generators for 1000 public
keys, including precomputation of the unit group.

slowing down by only a moderate factor for each doubling in the degree. Sage’s
internal C library uses under 5 seconds for degree 32, but we did not see it
successfully compute a unit group for degree 64.

Table 7.2 also shows that our short-generator algorithm has similar scaling
to our unit-group algorithm, as one would expect from the structure of the al-
gorithms. As inputs we used public keys from a Gentry-style multiquadratic
cryptosystem; see Appendix A. The number of bits per coefficient in this cryp-
tosystem grows almost linearly with 2n, illustrating another dimension of scal-
ability of our algorithm. See Section 8 for analysis of the success probability of
the algorithm as an attack against the cryptosystem.

The dimensions we used in these experiments are below the N = 8192 rec-
ommended by Smart and Vercauteren for 2100 security against standard lattice-
basis-reduction attacks, specifically BKZ. However, the Smart–Vercauteren anal-
ysis shows that BKZ scales quite poorly as N increases; see Appendix A. Our
attack should still be feasible for N = 8192, and a back-of-the-envelope calcula-
tion suggests that N ≈ 220 is required for 2100 security against our attack.

8 Key-recovery probabilities

In this section we analyze the success probability of our algorithm recovering
the secret key g in a Gentry-style multiquadratic cryptosystem.

The specific system that we target is the system defined in Appendix A, the
same system used for timings in Section 7.2. The secret key g in this cryptosystem
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is g0 + g1
√
d1 + g2

√
d2 + g3

√
d1
√
d2 + · · ·+ gN−1

√
d1 · · ·

√
dn, where g0, g1, g2, . . .

are independent random integers chosen from intervals

[−G,G], [−G/
√
d1, G/

√
d1], [−G/

√
d2, G/

√
d2], . . . .

The distribution within each interval is uniform, except for various arithmetic
requirements (e.g., g must have odd norm) that do not appear to have any
impact on the performance of our attack.

Section 8.1 presents heuristics for the expected size of Log g on the basis
Log ε1, . . . ,Log εN−1 for the logarithms of multiquadratic units, a sublattice of
the log-unit lattice. Section 8.2 presents experimental data confirming these
heuristics. Section 8.3 presents experimental data regarding the size of Log g
on the basis that we compute for the full log-unit lattice. Section 8.4 presents
an easier-to-analyze way to find g when Log ε1, . . . ,Log εN−1 are large enough.

8.1 MQ unit lattice: heuristics for Log g

Write UL for the group of multiquadratic units in L. Recall that UL is defined
as the group 〈−1, ε1, . . . , εN−1〉, where ε1, . . . , εN−1 are the normalized funda-
mental units of the N − 1 quadratic subfields Q(

√
D1), . . . ,Q(

√
DN−1).

The logarithms Log ε1, . . . ,Log εN−1 form a basis for the MQ unit lattice
LogUL. This is an orthogonal basis: for example, for Q(

√
2,
√

3), the basis vectors
are (x,−x, x,−x), (y, y,−y,−y), and (z,−z,−z, z) with x = ln(1 +

√
2), y =

ln(2 +
√

3), and z = ln(5 + 2
√

6). The general pattern (as in Section 5.3) is that
Log εj is a vector with Rj = ln εj at N/2 positions and −Rj at the other N/2
positions, specifically with Rj at position i if and only if σi(εj) = εj .

One consequence of orthogonality is that rounding on this basis is a perfect
solution to the closest-vector problem for the MQ unit lattice. If 0 is the closest
lattice point to Log g, and u is any multiquadratic unit, then rounding Log gu
produces Log u. One can decode beyond the closest-vector problem by enumer-
ating some combinations of basis vectors, preferably the shortest basis vectors,
but for simplicity we skip this option.

Write cj for the coefficient of Log g on the jth basis vector Log εj ; note that
if each cj is strictly between −0.5 and 0.5 then 0 is the closest lattice point to
Log g. Another consequence of orthogonality is that cj is simply the dot product
of Log g with Log εj divided by the squared length of Log εj ; i.e., the dot product
of Log g with a pattern of N/2 copies of Rj and N/2 copies of −Rj , divided by
NR2

j ; i.e., Y/(NRj), where Y is the dot product of Log g with a pattern of N/2
copies of 1 and N/2 copies of −1.

We heuristically model g0 as a uniform random real number from the interval
[−G,G]; g1 as a uniform random real number from [−G/

√
d1, G/

√
d1]; etc. In

this model, each conjugate σi(g) is a sum of N independent uniform random
real numbers from [−G,G]. For large N , the distribution of this sum is close to
a Gaussian distribution with mean 0 and variance G2N/3; i.e., the distribution
of (G

√
N/3)N , where N is a normally distributed random variable with mean
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0 and variance 1. The distribution of ln |σi(g)| is thus close to the distribution
of ln(G

√
N/3) + ln |N |.

Recall that Log(g) is the vector of ln |σi(g)| over all i, so Y is ln |σ1(g)| −
ln |σ2(g)|+· · · modulo an irrelevant permutation of indices. The mean of ln |σ1(g)|
is close to the mean of ln(G

√
N/3) + ln |N |, while the mean of − ln |σ2(g)| is

close to the mean of − ln(G
√
N/3) − ln |N |, etc., so the mean of Y is close

to 0. (For comparison, the mean of the sum of entries of Log(g) is close to
N ln(G

√
N/3) +Nc. Here c ≈ −0.6351814227 is a universal constant, the aver-

age of ln |N |; the difference −2c− ln(2) is Euler’s constant.)
To analyze the variance of Y , we heuristically model σ1(g), . . . , σN (g) as in-

dependent. Then the variance of Y is the variance of ln |σ1(g)| plus the variance
of − ln |σ2(g)| etc. Each term is close to the variance of ln |N |, a universal con-
stant V ≈ 1.2337005501, so the variance of Y is close to V N . The deviation
of Y is thus close to

√
V N , and the deviation of cj = Y/(NRj) is close to√

V /(
√
NRj) ≈ 1.11072/(

√
NRj).

To summarize, this model predicts that the coefficient of Log g on the jth
basis vector Log εj has average approximately 0 and deviation approximately

1.11072/(
√
NRj), where Rj = ln εj . Recall that Rj typically grows as D

1/2+o(1)
j .

8.2 MQ unit lattice: experiments for Log g

The experiments in Figure 8.1 confirm the prediction of Section 8.1. For each
n, we took 10 possibilities for n distinct primes d1, . . . , dn below 2n2. For each
corresponding multiquadratic field, there are N −1 red crosses (sometimes over-
lapping). For each D in {d1, d2, d1d2, . . . , d1d2 · · · dn}, one of these N − 1 crosses
is at horizontal position D. The vertical position is the observed average ab-
solute coefficient of Log g in the direction of the basis vector corresponding to
D, where g ranges over 1000 secret keys for the Q(

√
d1, . . . ,

√
dn) cryptosystem.

There is also a blue circle at the same horizontal position and at vertical position
1.11

√
2/π/(

√
N · ln εD); here

√
2/π accounts for the average of |N |.

For all experiments we see a similar distribution in the blue circles (predic-
tions) and the red crosses (experiment). We can even more strongly see this by
rescaling the x-axis from D to 1.11

√
2/π/(

√
N · ln εD), where εD is again the

normalized fundamental unit of Q(
√
D). This rescaling of the crosses is shown

in Figure 8.2.
After exploring these geometric aspects of the MQ unit lattice, we ran ex-

periments on the success probability of rounding in the lattice. Figure 8.3 shows
how often Log(g) is rounded to 0 (by simple rounding without enumeration) in
our basis for the MQ unit lattice.

This graph shows a significant probability of failure if d1 and n are both
small. Fields that contain the particularly short unit (1 +

√
5)/2 seem to be the

worst case, as one would expect from our heuristics. However, even in this case,
failures disappear as n increases. The success probability seems to be uniformly
bounded away from 0, seems to be above 90% for all fields with d1 ≥ 7 and
n ≥ 4, and seems to be above 90% for all fields with n ≥ 7.
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(a) n = 4

(b) n = 6

(c) n = 8

Fig. 8.1: Red crosses: For n = 4, 6, 8, the observed average absolute coefficient of
Log(g) in the direction of the basis vector corresponding to Q(

√
D). Blue circles:

Predicted values.
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Fig. 8.2: Rescaling of the experiments of Figure 8.1, including n ∈ {4, 5, 6, 7, 8}.

8.3 Full unit lattice: experiments for Log g

Analyzing the full unit lattice is difficult, so we proceed directly to experiments.
We first numerically compare the MQ unit lattice basis to the full unit lattice ba-
sis. The results of this are shown in Table 8.1. The index of Log(UL) in Log(O×L )
seems to grow as roughly N0.3N .

In Table 8.2 we see the total success probability of the attack, with public
keys provided as inputs, and with each successful output verified to match the
corresponding secret key times ±1. The success probability is measured for 1000
trials after one precomputation. We noticed for (n, j) = (7, 7) that running 1000
trials after another precomputation produced a significantly different success
probability, presumably because random choices in the precomputation produced
a significantly different basis. An attacker can try several precomputations and
keep the one that achieves the maximum observed success probability.

We see that as the size and the number of the primes grow, the success
probability increases, as was the case for the MQ unit basis. Specifically for the
first n primes after n2 the success probability seems to rapidly converge towards
1, as was mentioned in Section 1.

8.4 Full unit lattice: an alternative strategy

The following alternative method of computing g is easier to analyze asymptot-
ically, because it does not require understanding the effectiveness of reduction
in the full unit lattice. It does require d1, . . . , dn to be large enough compared
to N , say larger than N1.03, and it will obviously fail for many smaller di where
our experiments succeed, but it still covers a wide range of real multiquadratic
number fields.
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Fig. 8.3: Curves: n = 2, 3, 4, 5, 6, 7, 8. Horizontal axis: d1, specifying n consecutive
primes d1, . . . , dn. Vertical axis: Observed probability, for 10000 randomly drawn
secret keys g in the cryptosystem, that Log g is successfully rounded to 0 in the
MQ unit lattice.

The point of requiring d1, . . . , dn to be larger than N1.03 is that, for suffi-
ciently large N and most such choices of d1, . . . , dn, the n corresponding regula-
tors ln(ε) are heuristically expected to be larger than N0.51, and the remaining
regulators for d1d2 etc. are heuristically expected to be even larger. The coef-
ficients of Log g on the MQ unit basis are then predicted to have deviation at
most 1.11072/N1.01; see Section 8.1. We will return to this in a moment.

Compute, by our algorithm, some generator gu of the public key I. From
Theorem 5.2 we know that uN is an MQ unit. Compute N Log gu and round
in the MQ unit lattice. The coefficients of N Log g on the MQ unit basis are
predicted to have deviation at most 1.11072/N0.01, so for sufficiently large N
these coefficients have negligible probability of reaching 0.5 in absolute value.
Rounding thus produces Log(uN ) with high probability, revealing Log(gN ) and
thus ±gN . Use a quadratic character to deduce gN , compute the square root
±gN/2, use a quadratic character to deduce gN/2, and so on through ±g.

One can further extend the range of applicability of this strategy by finding
a smaller exponent e such that ue is always an MQ unit. Theorem 5.2 says N/2
for N ≥ 2. By computing the MQ units for a particular field one immediately
sees the minimum value of e for that field; our computations suggest that N/2
is usually far from optimal.
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A A multiquadratic cryptosystem

To generate realistic targets for our attack, we have implemented a Gentry-style
cryptosystem using multiquadratic fields, including various optimizations. Most
of the optimizations are due to Smart–Vercauteren [55] and Gentry–Halevi [39],
although in some cases the original optimizations were specific to cyclotomic
fields and required some adaptations for multiquadratics.

A.1 Smart–Vercauteren for multiquadratics

The cryptosystem defined by Smart and Vercauteren [55, Section 3.1, “The
Scheme”] uses Z[x]/F for any “monic irreducible polynomial” F ∈ Z[x]. The
cryptosystem does not actually require the ring Z[x]/F to be the ring of integers
of the field.

Take d1, . . . , dn as in Theorem 2.1. The algebraic integer
√
d1 + · · ·+

√
dn is a

root of a unique monic irreducible polynomial F ∈ Z[x]. Explicitly,
√
d1 + · · ·+√

dn has exactly 2n distinct conjugates in the field Q(
√
d1, . . . ,

√
dn), namely

µ1

√
d1 + · · · + µn

√
dn where µ1, . . . , µn ∈ {−1, 1}n, so F is the product of

the linear polynomials x − (µ1

√
d1 + · · · + µn

√
dn) ∈ Q(

√
d1, . . . ,

√
dn)[x], and

degF = 2n. The field Q[x]/F is isomorphic to Q(
√
d1, . . . ,

√
dn).

The Smart–Vercauteren cryptosystem repeatedly generates a short secret
element g of Z[x]/F until finding that q, the absolute value of NQ[x]/F :Q(g), is
a prime number. There is then a unique ring homomorphism ϕ : Z[x]/F → Z/q
that takes g to 0. The public key in the cryptosystem is the pair (q, r) where
r = ϕ(x), i.e., r is a root of g(x) modulo q. The ideal generated by q and x− r
in Z[x]/F is the same as the ideal generated by g.

Gentry’s original cryptosystem did not require q to be prime, but it worked
with a much larger, much slower representation for the public ideal generated
by g. Smart–Vercauteren suggested instead using the classic “two-element repre-
sentation” of an ideal, and in particular computing r via standard algorithms to
find roots of polynomials in the field Z/q. Gentry–Halevi, in the special case of
power-of-2 cyclotomics, suggested constructing ϕ in a different way that works
efficiently for any squarefree q (and for some other q’s; the main failure cases
are norms divisible by squares of small primes), avoiding the many iterations
needed to find a prime.

Here is a multiquadratic adaptation of the Gentry–Halevi idea. View g as an
element of Z[

√
d1, . . . ,

√
dn]. As before, let q =

∣∣NQ(
√
d1,...,

√
dn):Q(g)

∣∣. Compute

NQ(
√
d1,...,

√
dn):Q(

√
d1)

(g), obtaining some a+b
√
d1 with a, b ∈ Z. If gcd {b, q} > 1,

start over with a new g. (Note that ±q = a2 − b2d1, so any prime dividing both
b and q must also divide a, but then the square of the prime divides q; in
other words, this restart will not happen if q is squarefree.) If gcd {b, q} = 1,
find k, ` ∈ Z with kb + `q = 1. Now g divides both a + b

√
d1 and q

√
d1 in

Z[
√
d1, . . . ,

√
dn], so it divides k(a+ b

√
d1) + lq

√
d1 = ka+

√
d1; i.e., the image

of
√
d1 in Z/q is exactly −ka. Similarly compute the images of

√
d2, . . . ,

√
dn,

and define r as the sum of the images of
√
d1, . . . ,

√
dn.
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The messages encrypted by Smart–Vercauteren are short elements m of
Z[x]/F . The ciphertext c corresponding to m is simply ϕ(m) ∈ Z/q. Addi-
tion and multiplication of messages, up to some limit, are simply addition and
multiplication of ciphertexts in Z/q.

Given c, the receiver lifts c to {0, 1, . . . , q − 1}, computes c/g in the field
Q[x]/F , rounds coefficients to integers to obtain an element of Z[x]/F , multiplies
by g, and subtracts from c. It is easy to see that this produces m if each coefficient
of m/g ∈ Q[x]/F is strictly between −1/2 and 1/2.

Smart and Vercauteren choose the “short” in g longer than the “short” in m
with the goal of limiting each coefficient of m/g in this way. Beware that Silver-
berg later pointed out a flaw in the Smart–Vercauteren size analysis, creating
decryption failures if some coefficients of 1/g happen to be larger than expected;
the easiest fix is for the key generator to check the coefficients of 1/g and restart
if necessary.

A.2 Does the Smart–Vercauteren cryptosystem take polynomial
time?

We observe that the Smart–Vercauteren key-generation algorithm is asymptot-
ically much slower than polynomial time for some number fields. In particular,
for degree-2n multiquadratic fields, the Smart–Vercauteren key-generation time
is exponential in essentially 2n. Smart and Vercauteren suggest taking the field
degree to be essentially quadratic in the target security level; the key-generation
time for multiquadratics is then exponential in essentially the square of the target
security level.

The issue is the expected number of choices of g before the norm q is prime.
The Gentry–Halevi speedup does not help much: finding a squarefree norm (more
precisely, a norm that survives the gcd {b, q} = 1 requirement mentioned above)
also takes many tries.

Sizes are chosen so that the total number of bits in the norm is bounded by
a polynomial in N = degF , so one might guess that a prime norm will appear
after a polynomial number of tries, and one might guess that a squarefree norm
will appear after a constant number of tries. But these guesses turn out to be
quite wrong for multiquadratic fields.

To understand the issue, fix a prime number p, and fix a field k of size p2.
All integers are squares in k, so in particular d1, . . . , dn are squares in k. Choose
square roots s1, . . . , sn. Then the image of F in k[x] is the product of the linear
polynomials x− (µ1s1 + · · ·+ µnsn).

Assume that the image of F in Fp[x] factors as he11 h
e2
2 · · · where h1, h2, . . .

are distinct irreducible polynomials in Fp[x]. Then each hj divides the image of
F in k[x], so hj factors into linear polynomials in k[x], so the field Fp[x]/hj maps
to k and is thus isomorphic to a subfield of k.

Each deg hj must therefore be either 1 or 2. This limit on deg hj is an ex-
tremely special property of multiquadratics. The limit almost guarantees that
there are many irreducibles h1, h2, . . .; the only other possibility would be sur-
prisingly large powers in the factorization of F . Experiments confirm that there
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are in fact many irreducibles, far more than what one would expect for a “ran-
dom” polynomial F .

A uniform random element of Fp[x]/F has probability 1/p2 of being divisible
by a quadratic hj . The randomly chosen element g of Z[x]/F has a distribution
reasonably close to uniform modulo p (if p is not very large), so it has probability
approximately 1/p2 of being divisible by hj modulo p. In this case the norm of g
must be divisible by p2. For g = 0 this is trivial, and for g 6= 0 it follows from the
fact that the absolute value of the norm of g is the size of the ring (Z[x]/F )/g,
which has a ring homomorphism onto the field Fp[x]/hj of size p2.

Slightly less obvious is that divisibility by a linear hj , something that occurs
with much higher probability 1/p, forces p2 (not just p) to divide the norm of g,
except in the rare case that all of d1, . . . , dn are squares in Fp. The point here is
that if any of d1, . . . , dn is a non-square in Fp then the ring of integers O cannot
have any degree-1 primes lying over p. The exponent of p in the norm of g is
the sum (with appropriate multiplicities) of the exponents of p in the norms of
ideals of O containing g, so it is either 0 or ≥2.

These probabilities are approximately independent across j, and across p. In
particular, there are approximately 2n/ ln(2n) primes p ≤ 2n, and experiments
show that a typical prime contributes Θ(p) linear factors hj , each of which is
avoided by g with probability approximately 1 − 1/p. The product for each p
is approximately constant, and the product over all p ≤ 2n is inverse exponen-
tial in 2n/ ln(2n). Quadratics and larger primes contribute further, less severe,
slowdowns.

For 2n = 16, a computation applying the above analysis to the factors of F for
all p < 10000 predicts that norms will be squarefree with probability only about
0.09084 ≈ 2−3.46. Experiments with 100000 random norms found 9099 norms
avoiding all of these p2. For 2n = 64, the prediction drops to 0.00934 ≈ 2−6.74,
and experiments with 100000 random norms found 963 norms avoiding all of
these p2. For 2n = 256, the prediction drops to 2−11.2. For 2n = 1024, the
prediction drops to 2−21.9.

A.3 Speeding up key generation

To avoid a seemingly neverending series of norm computations, we tweak the
Smart–Vercauteren/Gentry–Halevi approach to allow much faster key generation
for multiquadratics.

We begin by generalizing the approach to support n polynomial variables,
directly supporting the multiquadratic ring Z[

√
d1, . . . ,

√
dn] rather than artifi-

cially working with the minimal polynomial F of
√
d1 + · · · +

√
dn. Specifying

ϕ : Z[
√
d1, . . . ,

√
dn]→ Z/q then means specifying, for each j, a square root rj of

dj in Z/q. We compute these square roots using norms to Q(
√
dj) as explained

above.
We force g to be invertible modulo all primes p ≤ y. Specifically, for each

p, we construct a uniform random invertible element of Z[
√
d1, . . . ,

√
dn]/p as

explained in Appendix A.4. We glue these elements together into a uniform
random element of Z[

√
d1, . . . ,

√
dn]/

∏
p≤y p, which we view as an element u of
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Z[
√
d1, . . . ,

√
dn] with each coefficient bounded in absolute value by (1/2)

∏
p≤y p.

We then take g in the form u + s
∏
p≤y p, where s is a short secret element of

Z[
√
d1, . . . ,

√
dn].

We choose the parameter y around 0.25N/ ln(N) where N = 2n, so
∏
p≤y p

has roughly 0.35N/ ln(N) bits. We choose each coefficient of s to have around
0.5N/ ln(N) bits. We give slightly more bits to the earlier coefficients, balancing
the coefficients against the natural weights of 1,

√
d1,
√
d2, etc.

Here is a heuristic analysis indicating that taking y on the scale of N/ ln(N)
produces a significant probability of squarefree norms. A typical prime p > y
splits into N/2 degree-2 prime ideals, each of which contains g with probability
1/p2, so the norm of g is coprime to p with probability (1−1/p2)N/2. The product
of these probabilities over all p > y is 1/ exp(Θ(N/(y log y)). Similar comments
apply to the occasional primes p that split differently. Even if y is merely on the
scale of N/(ln(N))2, the probability is inverse polynomial in N .

It is of course conceivable that our tweaks have introduced some serious
weakness, allowing our target cryptosystem to be broken in a way that would
not have been applicable to, e.g., the original Smart–Vercauteren system using
F , or to another multiquadratic system that achieves faster key generation in a
different way. We emphasize, however, that the objective of our experiments is
to help confirm the performance of our attack. Recovering secret keys g from
this cryptosystem’s public keys demonstrates that our attack scales smoothly to
rather large coefficients in g. We are putting our attack software online to allow
other people to carry out experiments with it, further reducing the risk of an
unnoticed obstruction.

A.4 Uniform random invertible ring elements modulo primes

A subroutine used above is to generate a uniform random invertible element of
R = k[x1, . . . , xn]/(x21 − d1, . . . , x2n − dn), where d1, . . . , dn are integers and k is
a finite field. We handle this as follows.

If n = 0, generate a uniform random nonzero element of k. From now on
assume that n ≥ 1, and write R′ = k[x2, . . . , xn]/(x22 − d2, . . . , x2n − dn). Then
R = R′[x1]/(x21 − d1).

Case 1: 2d1 = 0 in k. Recursively generate a uniform random invertible
element f0 ∈ R′, and, independently of f0, a uniform random element f1 ∈ R′.
Output f0 + f1(x1 − d1).

To see that this is invertible, first note that d21 + d1 = 0 in k: if d1 = 0 in k
then d21 + d1 = 0 in k, and if 2 = 0 in k then d21 + d1 = 0 in k since d21 + d1 ∈ 2Z.
Hence x21 − d1 = (x1 − d1)2 in R′[x1]. The product of f0 + f1(x1 − d1) and
f0 − f1(x1 − d1) is f20 in R.

Conversely, each element of R can be written uniquely as f0 + f1(x1 − d1)
with f0, f1 ∈ R′, and if f0 + f1(x1 − d1) has inverse g0 + g1(x1 − d1) in R then
1 = f0g0 + (f0g1 + f1g0)(x1 − d1) so f0g0 = 1 in R′.

Case 2: d1 is a nonzero square in k, and 2 6= 0 in k. Say d1 = s2 with s ∈ k.
Recursively generate independent uniform random invertible elements a, b ∈ R′.
Output (a+ b)/2 + (a− b)x1/(2s).
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The point here is that (a, b) 7→ (a+ b)/2 + (a− b)x1/(2s) is an isomorphism
from R′×R′ to R. Each element of R can be written as (a+b)/2+(a−b)x1/(2s),
and is invertible if and only if a, b are both invertible in R′.

Case 3: d1 is non-square in k. Write k′ = k[x1]/(x21 − d1). Then k′ is a finite
field. Recursively generate and output a uniform random invertible element of
k′[x2, . . . , xn]/(x22 − d2, . . . , x2n − dn).

A.5 BKZ attack on Smart–Vercauteren

We follow Smart–Vercauteren’s suggestion of N as a power of the target secu-
rity level λ, specifically λ2+o(1). Concretely, Smart and Vercauteren suggested
N = 8192 for 2100 security using cyclotomics. These suggestions were based on
conventional lattice-basis-reduction attacks. We now adapt the analysis of such
attacks to multiquadratics, showing that N ∈ λ2+o(1) provides ample security
asymptotically. Accurate analysis of BKZ performance for cryptographic sizes
is difficult, but existing estimates suggest that our cryptosystem is extremely
difficult to break by these attacks for the same N = 8192.

The first attack target is the secret key g. The public key I = gR is specified
as its norm q and the image ci mod q of each

√
di modulo I. A ring element

f0 + f1
√
d1 + · · · is in I if and only if f0 + f1c1 + · · · is a multiple of q, i.e., if

and only if (f0, f1, . . .) is some combination of the rows of the matrix

Λ =

(
q 0
−c IN−1

)
,

where c ∈ (Z/q)N−1 consists of the products of all nonempty subsets of ci.
It is natural to multiply the columns by weights (1,

√
d1, . . .), obtaining a ma-

trix of determinant q(d1 · · · dn)N/2 whose row space contains the short vector
(g0, g1

√
d1, . . .).

Quantitatively, the cryptosystem takes each component of this vector as a
random number between −G and G for some large G, so the vector is expected to
have length approximately G

√
N/3. For comparison, as mentioned in Section 8,

ln |q| is expected to be approximately N ln(G
√
N/3) +Nc where c ≈ −0.63518

is a universal constant, the average of ln |N |. Hence (q(d1 · · · dn)N/2)1/N ≈
γG
√
N/3 where γ =

√
d1 · · · dn exp c ≈ 0.52984

√
d1 · · · dn.

In short, this short vector is smaller than the Nth root of the determinant
by a factor γ. Note that, since we have limited each di to quasipolynomial in N ,
this approximation factor is also quasipolynomial in N .

Smart and Vercauteren also considered, as a better attack target, the plain-
text message m. As mentioned above, m needs to be somewhat shorter than g
for reliable decryption (several bits shorter in our experiments), correspondingly
increasing the factor γ, but the factor is still quasipolynomial.

The standard estimate is that, in time 2λ, the smallest approximation factor
reachable by BKZ (for most lattices) is asymptotically exponential in (N log λ)/λ.
For Smart and Vercauteren this is exponential in λ1+o(1), since N ∈ λ2+o(1). For
comparison, the target approximation factor γ is far smaller: it is exponential in
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(logN)O(1), i.e., exponential in (log λ)O(1), which is far smaller than exponential

in λ1+o(1). Reaching this approximation factor with BKZ takes time 2λ
2+o(1)

,
obviously very poor scalability for an attack when the target security level is 2λ.

The reason that Smart and Vercauteren take N so large is to allow much
shorter messages m: specifically, they allow m to be shorter than g by a factor

as large as 2λ
1+o(1)

. This reduces the security against BKZ to 2λ
1+o(1)

. From this
perspective, the difference between cyclotomics and multiquadratics is only a
minor difference in the allowable gap between m and g.

We can also see the poor scalability of BKZ by looking at concrete values
of N . If we assume a multiquadratic field of the first n primes bigger than
respectively 1, n and n2, then after computing the approximation factor γ, we
need lattice-basis reduction on Λ with a Hermite factor as shown in the following
table:

n 4 5 6 7 8 9 10 11 12 13

δ1 = γ
1/N
1 1.1359 1.1064 1.0732 1.0475 1.0293 1.0176 1.0105 1.0061 1.0034 1.0019

δn = γ
1/N
n 1.2542 1.1706 1.1204 1.0725 1.0460 1.0264 1.0150 1.0084 1.0048 1.0027

δn2 = γ
1/N
n2 1.4107 1.2964 1.1849 1.1157 1.0686 1.0402 1.0231 1.0133 1.0074 1.0041

Experiments from [34] show that the LLL algorithm gives a Hermite factor of
1.0219 for most lattices. LLL has comparable performance to our algorithm (see
also Figure A.1), but is conjectured to not find the secret key beyond n = 10.
In a sample size of 1 on the field Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23),
the LLL attack returned a key of norm approximately 29729.6NL:Q(g), where g
is the secret key, in 11.1 days. For comparison, our attack on the field
Q(
√

2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19,
√

23,
√

29) took 4.3 days.

For BKZ the estimates of realistic running time vary in the literature (see
e.g. [34,46,23,3]). For this purpose we will use the approach of [3], which estimates
the running time of BKZ as

log2 tBKZ2.0 =
0.009

log2
2 δ
− 27.

Using this estimate, in Figure A.1 we graph the running times of an LLL
attack on Λ, along with our attack results of Section 7.2. Beware that this BKZ
estimate is not meaningful for δ above 1.0219 (i.e., for n ≤ 10), and also does
not account for the large sizes of our input coefficients, which is presumably why
our observed LLL time is far above this BKZ estimate.

We see that our attack is conjectured to outperform BKZ greatly from around
n = 11. For smaller multiquadratic fields this cross-over point is even earlier:
e.g., for the multiquadratic field consisting of the first n primes, the intersection
occurs at n = 10.
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Fig. A.1: Experimental running times for LLL (red) and our attack (blue) com-
pared to estimated BKZ running times (black). Experimental data was averaged
over 1000 random keys for the field consisting of the first n consecutive primes
after n2.

B Recent progress in attacking Ideal-SVP

SVPγ is the problem of finding, in a given lattice, a nonzero vector whose length
is at most γ times the length of the shortest nonzero vector in the lattice.

Micciancio and Goldwasser wrote in 2002 [49] that “To date, the best known
polynomial time (possibly randomized) approximation algorithms for SVP and
CVP achieve worst-case (over the choice of the input) approximation factors
γ(n) that are essentially exponential in the rank n” (emphasis added). The
same approximation factors are featured on the right side of a picture displayed,
for example, by Regev in 2010 [54]:

Micciancio wrote in 2013 [48] that there is a “smooth trade-off between running
time and approximation: γ ≈ 2O(n log log T/ log T )”. Taking a polynomial run time
T produces the same essentially exponential approximation factor γ. Taking
an exponential run time T produces a polynomial approximation factor γ. In
the middle is a run time T of the form exp(Θ(

√
n lnn)), i.e., exp(n1/2+o(1)),

producing an approximation factor of the same form.
A new attack taking polynomial time—or quantum polynomial time—to

reach an exp(n1/2+o(1)) approximation factor would be tremendous progress,
shredding the standard tradeoff picture and jumping halfway to the exp(no(1))
(e.g., polynomial) approximation factors commonly used in cryptography. For
comparison, a similar jump to exp(n1/2+o(1)) in the time for integer factor-
ization was followed by a jump to exp(n1/3+o(1)), and the underlying algo-
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rithms broke widely used RSA key sizes. A similar jump in the time for small-
characteristic multiplicative-group discrete logarithms was followed by a jump to
exp(n1/3+o(1)), and then exp(n1/4+o(1)), and then exp(no(1)), more specifically
quasipolynomial.

This impressive jump to an exp(n1/2+o(1)) approximation factor is exactly
what has happened for SVP for an important class of lattices, namely ideals
for various cyclotomic fields. SVPγ restricted to this class of inputs is typically
called “Ideal-SVPγ” or “approximate Ideal-SVP” or simply “Ideal-SVP”.

This jump began with the Biasse–Song–Campbell–Groves–Shepherd attack.
This attack was initially described as handling an even more restricted type
of input, namely ideals with short generators, and for this case it reaches an
exp(no(1)) approximation factor. Principal ideals very rarely have short gener-
ators. However, the same attack works for arbitrary principal ideals, provided
that one allows an exp(n1/2+o(1)) approximation factor. See [28, Theorem 6.5]
for a variant of this attack.

Most ideals in cyclotomic rings are not principal. However, Cramer, Ducas,
and Wesolowski recently [29] used the Biasse–Song–Campbell–Groves–Shepherd
attack as a subroutine to break worst-case Ideal-SVP inputs, again with an
exp(n1/2+o(1)) approximation factor, again for various cyclotomic fields, under
plausible assumptions.

This history illustrates the general point that successful attacks are usually
outgrowths of successful attacks on simpler problems. From a cryptanalyst’s
perspective, ideals of the form gO are a natural and important example of ideal
lattices, and they are an obvious starting point even if the objective is to handle
more general ideals.

It is interesting to compare this progress to the comments just a few years
ago from Lyubashevsky, Peikert, and Regev in [47, 2013 version online] regarding
the difficulty of “SVP and other problems on ideal lattices”: namely, “despite
considerable effort, no significant progress in attacking these problems has been
made. The best known algorithms for ideal lattices perform essentially no better
than their generic counterparts, both in theory and in practice.”

The Ideal-SVP instances highlighted in [47] (as the security foundation for
“Ring-LWE”; see [52] for a survey of various related problems) are worst-case,
so they are not broken by the Biasse–Song–Campbell–Groves–Shepherd attack.
They also use exp(no(1)) approximation factors, so they are not broken by the
Cramer–Ducas–Wesolowski extension of the attack. Perhaps exp(n1/2+o(1)) is
the end of the worst-case story, and the exp(no(1)) worst-case problem will never
be broken. On the other hand, perhaps exp(n1/2+o(1)) is an important step
towards a complete break. The only way to find out is to continue to explore
cryptanalytic algorithms.
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