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Abstract. Several ideal-lattice-based cryptosystems have been broken
by recent attacks that exploit special structures of the rings used in those
cryptosystems. The same structures are also used in the leading propos-
als for post-quantum lattice-based cryptography, including the classic
NTRU cryptosystem and typical Ring-LWE-based cryptosystems.

This paper (1) proposes NTRU Prime, which tweaks NTRU to use
rings without these structures; (2) proposes Streamlined NTRU Prime, a
public-key cryptosystem optimized from an implementation perspective,
subject to the standard design goal of IND-CCA2 security; (3) finds
high-security post-quantum parameters for Streamlined NTRU Prime;
and (4) optimizes a constant-time implementation of those parameters.
The resulting sizes and speeds show that reducing the attack surface has
very low cost.
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1 Introduction

This paper presents an efficient implementation of high-security prime-degree
large-Galois-group inert-modulus ideal-lattice-based cryptography. “Prime
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Fig. 1.1. Terminology in this paper for selected branches of the NTRU family tree.
This paper introduces the NTRU Prime branch. Streamlined NTRU Prime is specified
and analyzed in detail as a case study. See Section 3 for more options.

degree” etc. are three features that we recommend because they take various
mathematical tools away from the attacker; see Appendix A. The reader can, if
desired, skip the appendix in favor of the following short summary:

– “NTRU Classic”: Rings of the form (Z/q)[x]/(xp − 1), where p is a prime
and q is a power of 2, are used in the original NTRU cryptosystem [64], and
are excluded by our recommendation.

– “NTRU NTT”: Rings of the form (Z/q)[x]/(xp + 1), where p is a power
of 2 and q ∈ 1 + 2pZ is a prime, are used in typical “Ring-LWE-based”
cryptosystems such as [5], and are excluded by our recommendation.

– “NTRU Prime”: Fields of the form (Z/q)[x]/(xp − x− 1), where p is prime,
are used in this paper, and follow our recommendation.

Specifically, we use only 28682 cycles on one core of an Intel Haswell CPU for
constant-time multiplication in the field (Z/4591)[x]/(x761 − x− 1).

We define a public-key cryptosystem “Streamlined NTRU Prime 4591761”
using this field, aiming for the standard design goal of IND-CCA2 security at the
standard 2128 post-quantum security level. Streamlined NTRU Prime 4591761

uses just 59600 cycles for encryption (more precisely, “encapsulating” a 256-bit
session key), and just 97452 cycles for decryption (“decapsulation”).
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Our public keys are field elements, easily squeezed into 1218 bytes. We explain
how to further squeeze ciphertexts into just 1047 bytes. Obviously these sizes
are not competitive with 256-bit ECC key sizes, but they are small enough for
many applications.4

Streamlined NTRU Prime provides several implementation advantages and
security-auditing advantages beyond the NTRU Prime choice of ring: for exam-
ple, it eliminates the annoying possibility of “decryption failures” that appear in
most lattice-based cryptosystems. Our security analysis indicates that Stream-
lined NTRU Prime 4591761 actually provides a large security margin beyond
our target security level, compensating for potential progress in estimating the
actual cost of lattice attacks.

To put our speed in perspective: Modern implementations [40,53] of the popu-
lar Curve25519 elliptic curve use more than 150000 Haswell cycles for scalar mul-
tiplication. However, one should not conclude that post-quantum lattice-based
cryptography is faster than pre-quantum ECC. The total time for cryptography
includes time to communicate keys and ciphertexts; lattice-based cryptography
has much larger keys and ciphertexts than ECC.5

1.1. Comparison to previous multiplication speeds aiming for high se-
curity. Before our work, the state of the art in implementations of lattice-based
cryptography was the November 2015 paper “Post-quantum key exchange: a
new hope” [5] by Alkim, Ducas, Pöppelmann, and Schwabe, using about 40000
Haswell cycles for NTRU NTT multiplication. Most of the implementations
before [5] are, in our view, obviously unsuitable for deployment because they
access the CPU cache at secret addresses, taking variable time and allowing
side-channel attacks.

We announced 51488 cycles for NTRU Prime multiplication in May 2016, in
a preliminary version of this paper. Longa and Naehrig [83] announced 33000
cycles for NTRU NTT multiplication the same month. An update of [5] in August
2016 announced 31000 cycles for NTRU NTT multiplication.6 We now announce
28682 cycles for NTRU Prime multiplication.

Like our paper, [5] and [83] target the Haswell CPU, require constant-time
implementations, and aim for more than 2128 post-quantum security. Unlike
our paper, [5] follows the tradition from NTRU and Ring-LWE [87] of using
cyclotomic rings. More precisely, [5] is an example of Product NTRU NTT,
using the ring (Z/q)[x]/(xp + 1) with p = 1024 and q = 12289 = 12 · 1024 + 1.

4 For example, our ciphertexts fit into the 1500-byte Ethernet MTU for plaintexts up
to a few hundred bytes, avoiding the implementation hassle of packet fragmentation.

5 If an operation takes 100000 cycles then one can imagine a typical quad-core 3GHz
CPU completing 1 million operations in just 8 seconds. However, if each operation
involves 1000 bytes of network data, then the data for 1 million operations will take
80 seconds to be transmitted through a typical 100Mbps network.

6 Each forward NTT in the updated version of [5] takes 8448 cycles (compared to 10968
cycles in the first version, and 9100 cycles in [83, Table 1]). A reverse NTT takes
9464 cycles (compared to 12128 and 9300). The time for pointwise multiplication is
not stated in [5] or [83] but can be extrapolated from [60] to take about 5000 cycles.
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rec constant cycles ring technique source

no yes 11722 (Z/8192)[x]/(x701 − 1) Karatsuba etc. [71]
yes yes 28682 (Z/4591)[x]/(x761 − x− 1) Karatsuba etc. this paper
no yes 31000 (Z/12289)[x]/(x1024 + 1) NTT New Hope [5], [83]
no no <91056 (Z/2048)[x]/(x743 − 1) sparse input ntruees743ep1 [77]

Table 1.1. Comparison of multiplication results. “Rec” means that the ring follows this
paper’s recommendation to reduce attack surface. “Constant” means that the software
runs in constant time. “Cycles” is approximate multiplication time on an Intel Haswell.
All rings are used in public-key cryptosystems designed for at least 2128 post-quantum
security. The estimated pre-quantum security levels are 2248 for Streamlined NTRU
Prime 4591761; 2256 for ntruees743ep1; 2281 for New Hope; not stated in [71].

A disadvantage of requiring the lattice dimension p to be a power of 2, as
in [5], is that security levels are quite widely separated. In [5] there is a claim
of “94 bits of post quantum security” for one dimension-512 system; we are not
aware of any dimension-512 system that is claimed today to reach the standard
2128 post-quantum security target. Jumping to the next power of 2, namely
p = 1024, means at least doubling key sizes, ciphertext sizes, encryption time,
etc. This severe discontinuity in the security-performance graph means that [5]
is unable to offer any options truly comparable to the better-tuned p = 743 in
“ntruees743ep1” (see [77]) or p = 761 in this paper. Of course one can view
p = 1024 as an additional buffer against the possibility of improved attacks; but
dimension is only one contributing factor to security, and size does matter.

The conventional wisdom is that, despite the large p, rings of the type used
in [5] are particularly efficient. These rings allow multiplication at the cost of
three “number-theoretic transforms” (NTTs), i.e., fast Fourier transforms over
finite fields, with only a small overhead for “pointwise multiplication”. This
multiplication strategy relies critically on choosing an NTT-friendly polynomial
such as x1024 + 1 and choosing an NTT-friendly prime such as 12289.

Tweaking the polynomial and prime, as we recommend, would make the
NTTs several times more expensive. A typical NTT-based method to multiply
in, e.g., (Z/8819)[x]/(x1021−x−1) would replace x1021−x−1 with x2048−1, and
would also replace 8819 with two or three NTT-friendly primes. The conventional
wisdom therefore implies that we pay a very large penalty for requiring a large
Galois group (NTT-friendly polynomials always have small Galois groups) and
an inert modulus (NTT-friendly primes are never inert).

We do much better by scrapping the NTTs and multiplying in a completely
different way. The May 2016 version of this paper presented details of a combina-
tion of several layers of Karatsuba’s method and Toom’s method. This approach
does not need NTT-friendly polynomials, and it does not need NTT-friendly
primes. (The approach is like NTTs in that a significant part of the work is
for separately transforming each input, allowing transforms to be skipped in
many settings.) We now do even better by tweaking various details, as explained
later in this paper; in particular, our current software uses purely Karatsuba’s
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method. The resulting multiplication speed is slightly faster than in [5] and [83],
and the sizes are smaller.

We are not saying that the NTRU Prime rings have zero cost. Last month
Hülsing, Rijneveld, Schanck, and Schwabe [71] announced 11722 cycles for NTRU
Classic multiplication, specifically multiplication in the ring (Z/q)[x]/(xp − 1)
with p = 701 and q = 8192, again using a combination of several layers of Karat-
suba’s method and Toom’s method. The power-of-2 moduli in NTRU Classic
avoid the cost of reducing modulo medium-size primes. These moduli force a
moderate discontinuity in the security-performance graph7 but it seems likely
that taking (Z/q)[x]/(xp − 1) with prime q would be slightly faster than NTRU
Prime at every security level.

1.2. Priority dates and additional followup work. Our recommendation
to switch lattice-based cryptography to prime-degree large-Galois-group inert-
modulus lattice-based cryptography was announced in February 2014.

In 2016, the NTRU authors posted a draft [65] that they had circulated
at Crypto 1996. Page 21 of the draft says “One could also consider variants of
standard NTRU by using rings such as A = Z[X]/(XN−X−1). This would slow
computations somewhat, while providing greater mixing of the coefficients.” Our
announcement was published earlier; pinpoints stronger mathematical reasons to
use these rings (not merely “providing greater mixing” but also taking subfields
and automorphisms away from the attacker); adds the further requirement to
use quotient fields; and is a recommendation, not merely a “could”.

We posted a preliminary version of this paper in May 2016, as mentioned
above. That version included, among other things, an improved cryptosystem, a
detailed security analysis, and new performance results showing that the NTRU
Prime ring recommendation is compatible with high speed. All of this was writ-
ten independently of the above quote from [65].

Lyubashevsky, in response to the possibility that “some rings could give
rise to more difficult instances of Ring-SIS and Ring-LWE than other rings”,
introduced a signature system [85] in August 2016 for which a polynomial-time
attack would imply a polynomial-time attack against similar problems for all
rings. Rosca, Sakzad, Steinfeld, and Stehlé introduced an encryption system
[103] in June 2017 with similar properties. The concrete performance of these
systems is unclear.

In June 2017, Bos–Ducas–Kiltz–Lepoint–Lyubashevsky–Schanck–Schwabe–
Stehlé [28] announced 119652 cycles for encapsulation and 125736 cycles for de-
capsulation using a new public-key cryptosystem “Kyber”. (Preliminary speeds
announced in January 2017 [9] were slower.) This system uses Module-LWE
[82] with three elements of (Z/7681)/(x256 + 1), for a total of 768 coefficients.
Ciphertexts occupy 1184 bytes.

In March 2017, Peikert, Regev, and Stephens–Davidowitz [97] argued briefly
that “one might wish to use Ring-LWE over non-Galois number fields”. The

7 The security level in [71] seems somewhat lower than the security level of Streamlined
NTRU Prime 4591761. Taking a larger p in [71] would require jumping to q = 16384,
and the resulting ciphertext expansion seems likely to outweigh any small speed gap.
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argument is essentially one of the arguments from this paper, without credit. The
main result of [97] is a worst-case-to-average-case reduction; see Appendix C.

Acknowledgements We wish to thank John Schanck for detailed discussion of
the security of NTRU and for suggesting the “transitional security” terminology;
Dan Shepherd and Manuel Pancorbo Castro for pointing out a stronger bound
for Theorem 2.1; and Sean Parkinson for helpful comments.

2 Streamlined NTRU Prime: an optimized cryptosystem

This section specifies “Streamlined NTRU Prime”, a public-key cryptosystem.
The next section compares Streamlined NTRU Prime to alternatives.

We emphasize that Streamlined NTRU Prime is designed for the standard
goal of IND-CCA2 security, i.e., security against adaptive chosen-ciphertext at-
tacks. A server can reuse a public key any number of times, amortizing the costs
of key generation and key distribution. The cost of setting up a new session
key, including post-quantum server authentication, is then just one encryption
for the client and one decryption for the server. This gives Streamlined NTRU
Prime important performance advantages over unauthenticated key-exchange
mechanisms such as [5]; see Appendix E for a precise comparison.

We are submitting our complete implementation to eBACS [22] for bench-
marking. However, we caution potential users that many details of Streamlined
NTRU Prime were first published in May 2016 and still require careful security
review. We have not limited ourselves to the minimum changes that would be
required to switch to NTRU Prime from an existing version of the NTRU public-
key cryptosystem; we have taken the opportunity to rethink and reoptimize all
of the details of NTRU from an implementation and security perspective. We
recommend NTRU Prime, but it is too early to recommend Streamlined NTRU
Prime.

2.1. Parameters. Streamlined NTRU Prime is actually a family of cryptosys-
tems parametrized by positive integers (p, q, t) subject to the following restric-
tions: p is a prime number; q is a prime number; t ≥ 1; p ≥ 3t; q ≥ 32t + 1;
xp − x− 1 is irreducible in the polynomial ring (Z/q)[x].

We abbreviate the ring Z[x]/(xp − x − 1), the ring (Z/3)[x]/(xp − x − 1),
and the field (Z/q)[x]/(xp − x − 1) as R, R/3, and R/q respectively. We refer
to an element of R as small if all of its coefficients are in {−1, 0, 1}. We refer
to a small element as t-small if exactly 2t of its coefficients are nonzero, i.e., its
Hamming weight is 2t.

Our case study in this paper is Streamlined NTRU Prime 4591761. This spe-
cific cryptosystem has parameters p = 761, q = 4591, and t = 143. The following
subsections specify the algorithms for general parameters but the reader may
wish to focus on these particular parameters. Figures Z.1 and Z.2 show complete
algorithms for key generation, encapsulation, and decapsulation in Streamlined
NTRU Prime 4591761, using the Sage [104] computer-algebra system.

2.2. Key generation. The receiver generates a public key as follows:
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– Generate a uniform random small element g ∈ R. Repeat this step until g
is invertible in R/3.

– Generate a uniform random t-small element f ∈ R. (Note that f is nonzero
and hence invertible in R/q, since t ≥ 1.)

– Compute h = g/(3f) in R/q. (By assumption q is a prime larger than 3, so
3 is invertible in R/q, so 3f is invertible in R/q.)

– Encode h as a string h. The public key is h.
– Save the following secrets: f in R; and 1/g in R/3.

See keygen in Figure Z.2.

The encoding of public keys as strings is another parameter for Streamlined
NTRU Prime. Each element of Z/q is traditionally encoded as dlog2 qe bits, so
the public key is traditionally encoded as pdlog2 qe bits. If q is noticeably smaller
than a power of 2 then one can easily compress a public key by merging adjacent
elements of Z/q, with a lower limit of p log2 q bits. For example, 5 elements of
Z/q for q = 4591 are easily encoded together as 8 bytes, saving 1.5% compared
to separately encoding each element as 13 bits, and 20% compared to separately
encoding each element as 2 bytes. See Figure Z.1 for further encoding details.

2.3. Encapsulation. Streamlined NTRU Prime is actually a “key encapsulation
mechanism” (KEM). This means that the sender takes a public key as input and
produces a ciphertext and session key as output. See Section 3.5 for comparison
to older notions of public-key encryption, and for an explanation of how to use
a KEM to encrypt a user-provided message.

Specifically, the sender generates a ciphertext as follows:

– Decode the public key h, obtaining h ∈ R/q.
– Generate a uniform random t-small element r ∈ R.
– Compute hr ∈ R/q.
– Round each coefficient of hr, viewed as an integer between −(q − 1)/2

and (q − 1)/2, to the nearest multiple of 3, producing c ∈ R. (If q ∈
1 + 3Z, as in our case study q = 4591, then each coefficient of c is in
{−(q − 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q − 1)/2}. If q ∈ 2 + 3Z then each coef-
ficient of c is in {−(q + 1)/2, . . . ,−6,−3, 0, 3, 6, . . . , (q + 1)/2}.)

– Encode c as a string c.
– Hash r, obtaining a left half C (“key confirmation”) and a right half K.
– The ciphertext is the concatenation C c. The session key is K.

See encapsulate in Figure Z.2.

The hash function for r is another parameter for Streamlined NTRU Prime.
We encode r as a byte string by adding 1 to each coefficient, obtaining an element
of {0, 1, 2} encoded as 2 bits in the usual way, and then packing 4 adjacent
coefficients into a byte, consistently using little-endian form. See encodeZx in
Figure Z.1. We hash the resulting byte string with SHA-512, obtaining a 256-bit
key confirmation C and a 256-bit session key K.

The encoding of ciphertexts c as strings c is another parameter for Stream-
lined NTRU Prime. This encoding can be more compact than the encoding of
public keys because each coefficient of c is in a limited subset of Z/q. Concretely,
for q = 4591 and p = 761, we use 32 bits for each 3 coefficients of c and a total
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of 8120 bits (padded to a byte boundary) for c, saving 16% compared to the
size of a public key, 18% compared to separately encoding each element of Z/q
as 13 bits, and 33% compared to separately encoding each element of Z/q as 2
bytes. See encoderoundedRq in Figure Z.1. Key confirmation adds 256 bits to
ciphertexts.

2.4. Decapsulation. The receiver decapsulates a ciphertext C c as follows:

– Decode c, obtaining c ∈ R.
– Multiply by 3f in R/q.
– View each coefficient of 3fc in R/q as an integer between −(q − 1)/2 and

(q − 1)/2, and then reduce modulo 3, obtaining a polynomial e in R/3.
– Multiply by 1/g in R/3.
– Lift e/g in R/3 to a small polynomial r′ ∈ R.
– Compute c′, C ′,K ′ from r′ as in encapsulation.
– If r′ is t-small, c′ = c, and C ′ = C, then output K ′. Otherwise output False.

See decapsulate in Figure Z.2.

If C c is a legitimate ciphertext then c is obtained by rounding the coefficients
of hr to the nearest multiples of 3; i.e., c = m+hr in R/q, where m is small. All
coefficients of the polynomial 3fm+ gr in R are in [−16t, 16t] by Theorem 2.1
below, and thus in [−(q−1)/2, (q−1)/2] since q ≥ 32t+1. Viewing each coefficient
of 3fc = 3fm+ gr as an integer in [−(q− 1)/2, (q− 1)/2] thus produces exactly
3fm+ gr ∈ R, and reducing modulo 3 produces gr ∈ R/3; i.e., e = gr in R/3,
so e/g = r in R/3. Lifting now produces exactly r since r is small; i.e., r′ = r.
Hence (c′, C ′,K ′) = (c, C,K). Finally, r′ = r is t-small, c′ = c, and C ′ = C, so
decapsulation outputs K ′ = K, the same session key produced by encapsulation.

Theorem 2.1 Fix integers p ≥ 3 and t ≥ 1. Let m, r, f, g ∈ Z[x] be polynomials
of degree at most p − 1 with all coefficients in {−1, 0, 1}. Assume that f and r
each have at most 2t nonzero coefficients. Then 3fm + gr mod xp − x − 1 has
each coefficient in the interval [−16t, 16t].

3 The design space of lattice-based encryption

There are many different ideal-lattice-based public-key encryption schemes in
the literature, including many versions of NTRU, many Ring-LWE-based cryp-
tosystems, and now Streamlined NTRU Prime. These are actually many different
points in a high-dimensional space of possible cryptosystems. We give a unified
description of the advantages and disadvantages of what we see as the most im-
portant options in each dimension, in particular explaining the choices that we
made in Streamlined NTRU Prime.

Beware that there are many interactions between options. For example, us-
ing Gaussian errors is incompatible with eliminating decryption failures, because
there is always a small probability of large samples combining with large values.
Using truncated Gaussian errors is compatible with eliminating decryption fail-
ures, but requires a much larger modulus q. Neither of these options is compatible
with the simple tight KEM that we use.
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3.1. The ring. The choice of cryptosystem includes a choice of a monic degree-p
polynomial P ∈ Z[x] and a choice of a positive integer q. As in Section 2, we
abbreviate the ring Z[x]/P as R, and the ring (Z/q)[x]/P as R/q.

The choices of P mentioned in Section 1 include xp − 1 for prime p (NTRU
Classic); xp + 1 where p is a power of 2 (NTRU NTT); and xp− x− 1 for prime
p (NTRU Prime). Choices of q include powers of 2 (NTRU Classic); split primes
q (NTRU NTT); and inert primes q (NTRU Prime).

Of course, Streamlined NTRU Prime makes the NTRU Prime choices here.
Most of the optimizations in Streamlined NTRU Prime can also be applied to
other choices of P and q, with a few exceptions noted below.

3.2. The public key. The receiver’s public key, which we call h, is an element
of R/q. It is invertible in R/q but has no other obvious public structure.

3.3. Inputs and ciphertexts. In the original NTRU system, ciphertexts are
elements of the form m + hr ∈ R/q. Here h ∈ R/q is the public key as above,
and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts
to include additional information, for various reasons explained below; but these
cryptosystems all share the same core design element, sending m + hr ∈ R/q
where m, r are small secrets and h is public. We suggest systematically using the
name “NTRU” to refer to this design element, and more specific names (e.g.,
“NTRU Classic” vs. “NTRU Prime”) to refer to other design elements.

The multiplication of h by r is the main bottleneck in encryption in all of
these systems and the main target of our implementation work; see Section 6. We
refer to (m, r) as “input” rather than “plaintext” because in any modern public-
key cryptosystem the input is randomized and is separated from the sender’s
plaintext by symmetric primitives such as hash functions; see Section 3.5.

In the original NTRU specification [64], m was allowed to be any element of
R having all coefficients in a standard range. The range was {−1, 0, 1} for all of
the suggested parameters, with q not a multiple of 3, and we focus on this case
for simplicity (although we note that some other lattice-based cryptosystems
have taken the smaller range {0, 1}, or sometimes larger ranges).

Current NTRU specifications such as [63] prohibit m that have an unusu-
ally small number of 0’s or 1’s or −1’s. For random m, this prohibition applies
with probability <2−10, and in case of failure the sender can try encoding the
plaintext as a new m, but this is problematic for applications with hard real-
time requirements. The reason for this prohibition is that the original NTRU
system gives the attacker an “evaluate at 1” homomorphism from R/q to Z/q,
leaking m(1). The attacker scans many ciphertexts to find an occasional cipher-
text where the value m(1) is particularly far from 0; this value constrains the
search space for the corresponding m by enough bits to raise security concerns.
In NTRU Prime, R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which
we call a “rounded ciphertext”. The sender chooses a small r as input and com-
putes hr ∈ R/q. The sender obtains the ciphertext by rounding each coefficient
of hr, viewed as an integer between −(q − 1)/2 and (q − 1)/2, to the nearest
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multiple of 3. This ciphertext can be viewed as an example of the original ci-
phertext m + hr, but with m chosen so that each coefficient of m + hr is in a
restricted subset of Z/q.

With the original ciphertexts, each coefficient of m+hr leaves 3 possibilities
for the corresponding coefficients of hr and m. With rounded ciphertexts, each
coefficient of m+ hr also leaves 3 possibilities for the corresponding coefficients
of hr and m, except that the boundary cases −(q−1)/2 and (q−1)/2 (assuming
q ∈ 1 + 3Z) leave only 2 possibilities. In a pool of 264 rounded ciphertexts, the
attacker might find one ciphertext that has 15 of these boundary cases out of
761 coefficients; these occasional exceptions have very little impact on known
attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined
entirely by r. It would also be possible to prohibit ciphertexts at the boundaries,
but as above we prefer to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which
m is chosen deterministically by rounding hr to a standard subset of Z/q, and
“Noisy NTRU” for the original version in which m is chosen randomly. Rounded
NTRU has two advantages over Noisy NTRU. First, it reduces the space required
to transmit m+ hr; see, e.g., Section 2.3. Second, the fact that m is determined
by r simplifies protection against chosen-ciphertext attacks; see Section 3.5.

[94, Section 4] used an intermediate non-deterministic possibility to provide
some space reduction for a public-key cryptosystem: first choose m randomly,
and then round m + hr, obtaining m′ + hr. The idea of rounded hr as a de-
terministic substitute for noisy m+ hr was introduced in [10] in the context of
a symmetric-key construction, was used in [7] to construct another public-key
encryption system, and was further studied in [27] and [6]. All of the public-key
cryptosystems in these papers have ciphertexts longer than Noisy NTRU, but
applying the same idea to Noisy NTRU produces Rounded NTRU, which has
shorter ciphertexts.

3.4. Key generation and decryption. In the original NTRU cryptosystem,
the public key h has the form 3g/f in R/q, where f and g are secret. Decryption
computes fc = fm + 3gr, reduces modulo 3 to obtain fm, and multiplies by
1/f to obtain m.

The NTRU literature, except for the earliest papers, takes f of the form
1 + 3F , where F is small. This eliminates the multiplication by the inverse of f
modulo 3. In Streamlined NTRU Prime we have chosen to skip this speedup for
two reasons. First, in the long run we expect cryptography to be implemented in
hardware, where a multiplication in R/3 is far less expensive than a multiplica-
tion in R/q. Second, this speedup requires noticeably larger keys and ciphertexts
for the same security level, and this is important for many applications, while
very few applications will notice the CPU time for Streamlined NTRU Prime.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f)
rather than 3g/f . Decryption computes 3fc = 3fm + gr, reduces modulo 3 to
obtain gr, and multiplies by 1/g to obtain r. This change lets us compute (m, r)
by first computing r and then multiplying by h, whereas otherwise we would first
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compute m and then multiply by 1/h. One advantage is that we skip computing
1/h; another advantage is that we need less space for storing a key pair. This 1/h
issue does not arise for NTRU variants that compute r as a hash of m, but those
variants are incompatible with rounded ciphertexts, as discussed in Section 3.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a
ratio of two secret small polynomials. An alternative is what we call “Product
NTRU”, namely NTRU with h of the form e + Af , where e and f are secret
small polynomials. Here A ∈ R/q is public, like h, but unlike h it does not need
a hidden multiplicative structure: it can be, for example, a standard chosen
randomly by a trusted authority, or output of a long hash function applied to
a standard randomly chosen seed, or (as proposed in [5]) output of a long hash
function applied to a per-receiver seed supplied along with h as part of the public
key.

Product NTRU does not allow the same decryption procedure as Quotient
NTRU. The first Product NTRU system, introduced by Lyubashevsky, Peikert,
and Regev in [87] (originally in talk slides in 2010), sends d + Ar as additional
ciphertext along with m + hr + M , where d is another small polynomial, and
M is a polynomial consisting of solely 0 or bq/2c in each position. The receiver
computes (m + hr + M) − (d + Ar)f = M + m + er − df , and rounds to 0 or
bq/2c in each position, obtaining M . Note that m+ er− df is small, since all of
m, e, r, d, f are small.

The ciphertext size here, two elements of R/q, can be improved in various
ways. One can replace hr with fewer coefficients, for example by simply summing
batches of three coefficients [100], before adding M and m. Rounded Product
NTRU rounds hr+M to obtain m+ hr+M , rounds Ar to obtain d+Ar, and
(to similarly reduce key size) rounds Af to obtain e+Af . Decryption continues
to work even if m + hr + M is compressed to two bits per coefficient. “NTRU
LPRime” is an example of Rounded Product NTRU Prime in which r is chosen
deterministically as a hash of M .

A disadvantage of Product NTRU is that r is used twice, exposing approx-
imations to both Ar and hr. This complicates security analysis compared to
simply exposing an approximation to hr. State-of-the-art attacks against Ring-
LWE, which reveals approximations to any number of random public multiples
of r, are significantly faster for many multiples than for one multiple. Perhaps
this indicates a broader weakness, in which each extra multiple hurts security.

Quotient NTRU has an analogous disadvantage: if one moves far enough
in the parameter space [74] then state-of-the-art attacks distinguish g/f from
random more efficiently than they distinguish m + hr from random. Perhaps
this indicates a broader weakness. On the other hand, if one moves far enough
in another direction in the parameter space [114], then g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product
NTRU and Quotient NTRU is a safer option.8 We see no way to simultaneously

8 Peikert claimed in [96], modulo terminology, that Product NTRU is “at least as hard”
to break as Quotient NTRU (and “likely strictly harder”). This claim ignores the
possibility of attacks against the reuse of r in Product NTRU. There are no theorems
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avoid both types of complications. Since Quotient NTRU has a much longer his-
tory, we have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime.

3.5. Padding, KEMs, and the choice of q. In Streamlined NTRU Prime we
use the modern “KEM+DEM” approach introduced by Shoup; see [109]. This
approach is much nicer for implementors than previous approaches to public-
key encryption. For readers unfamiliar with this approach, we briefly review the
analogous options for RSA encryption.

RSA maps an input m to a ciphertext me mod n, where (n, e) is the receiver’s
public key. When RSA was first introduced, its input m was described as the
sender’s plaintext. This was broken in reasonable attack models, leading to the
development of various schemes to buildm as some combination of fixed padding,
random padding, and a short plaintext; typically this short plaintext is used as
a shared secret key. This turned out to be quite difficult to get right, both in
theory (see, e.g., [110]) and in practice (see, e.g., [90]), although it does seem
possible to protect against arbitrary chosen-ciphertext attacks by building m in
a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [109] (also
called “Simple RSA”), is much easier:

– Choose a uniform random integer m modulo n. This step does not even look
at the plaintext.

– To obtain a shared secret key, simply apply a cryptographic hash function
to m.

– Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.
“KEM” means “key encapsulation mechanism”: me mod n is an “encapsula-

tion” of the shared secret key H(m). “DEM” means “data encapsulation mech-
anism”, referring to the encryption and authentication using this shared secret
key. Authenticated ciphers are normally designed to be secure for many mes-
sages, so H(m) can be reused to protect further messages from the sender to
the receiver, or from the receiver back to the sender. It is also easy to combine
KEMs, for example combining a pre-quantum KEM with a post-quantum KEM,
by simply hashing the shared secrets together.

When NTRU was introduced, its input (m, r) was described as a sender
plaintext m combined with a random r. This is obviously not secure against
chosen-ciphertext attacks. Subsequent NTRU papers introduced various mecha-
nisms to build (m, r) as increasingly convoluted combinations of fixed padding,
random padding, and a short plaintext.

It is easy to guess that KEMs simplify NTRU, the same way that KEMs
simplify RSA; we are certainly not the first to suggest this. However, all the

justifying Peikert’s claim, and we are not aware of an argument that eliminating this
reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in
some state-of-the-art attacks without providing new structure used in other attacks.
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NTRU-based KEMs we have found in the literature (e.g., [113] and [105]) con-
struct the NTRU input (m, r) by hashing a shorter input and verifying this
hash during decapsulation; typically r is produced as a hash of m. These KEMs
implicitly assume that m and r can be chosen independently, whereas rounded
ciphertexts (see Section 3.3) have r as the sole input. It is also not clear that
generic-hash chosen-ciphertext attacks against these KEMs are as difficult as
inverting the NTRU map from input to ciphertext: the security theorems are
quite loose.

We instead follow a simple generic KEM construction introduced in the ear-
lier paper [46, Section 6] by Dent, backed by a tight security reduction [46,
Theorem 8] saying that generic-hash chosen-ciphertext attacks are as difficult as
inverting the underlying function:

– Like RSA-KEM, this construction hashes the input, in our case r, to obtain
the session key.

– Decapsulation verifies that the ciphertext is the correct ciphertext for this
input, preventing per-input ciphertext malleability.

– The KEM uses additional hash output for key confirmation, making clear
that a ciphertext cannot be generated except by someone who knows the
corresponding input.

Key confirmation might be overkill from a security perspective, since a random
session key will also produce an authentication failure; but key confirmation
allows the KEM to be audited without regard to the authentication mechanism,
and adds only 3% to our ciphertext size.

Dent’s security analysis assumes that decryption works for all inputs. We
achieve this in Streamlined NTRU Prime by requiring q ≥ 32t + 1. Recall that
decryption sees 3fm+gr inR/q and tries to deduce 3fm+gr inR; the condition
q ≥ 32t+ 1 guarantees that this works, since each coefficient of 3fm+ gr in R
is between −(q− 1)/2 and (q− 1)/2 by Theorem 2.1. Taking different shapes of
m, r, f, g, or changing the polynomial P = xp − x− 1, would change the bound
32t+ 1; for example, replacing g by 1 + 3G would change 32t+ 1 into 48t+ 3.

In lattice-based cryptography it is standard to take somewhat smaller values
of q. The idea is that coefficients in 3fm+ gr are produced as sums of many +1
and −1 terms, and these terms usually cancel, rather than conspiring to produce
the maximum conceivable coefficient. However, this idea led to attacks that
exploited occasional decryption failures; see [68] and, for an analogous attack
on code-based cryptography using QC-MDPC codes, [61]. It is common today
to choose q so that decryption failures will occur with, e.g., probability 2−80;
but this does not meet Dent’s assumption that decryption always works. This
nonzero failure rate appears to account for most of the complications in the
literature on NTRU-based KEMs. We prefer to guarantee that decryption works,
making the security analysis simpler and more robust.

3.6. The shape of small polynomials. As noted in Section 3.3, the coeffi-
cients of m are chosen from the limited range {−1, 0, 1}. The NTRU literature
[64,70,62,63] generally puts the same limit on the coefficients of r, g, and f , ex-
cept that if f is chosen with the shape 1+3F (see Section 3.4) then the literature
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puts this limit on the coefficients of F . Sometimes these “ternary polynomials”
are further restricted to “binary polynomials”, excluding coefficient −1.

The NTRU literature further restricts the Hamming weight of r, g, and f .
Specifically, a cryptosystem parameter is introduced to specify the number of
1’s and −1’s. For example, there is a parameter t (typically called “d” in NTRU
papers) so that r has exactly t coefficients equal to 1, exactly t coefficients
equal to −1, and the remaining p− 2t coefficients equal to 0. These restrictions
allow decryption for smaller values of q (see Section 3.5), saving space and time.
Beware, however, that if t is too small then there are attacks; see our security
analysis in Section 4.

We keep the requirement that r have Hamming weight 2t, and keep the
requirement that these 2t nonzero coefficients are all in {−1, 1}, but we drop
the requirement of an equal split between −1 and 1. This allows somewhat more
choices of r. The same comments apply to f . Similarly, we require g to have all
coefficients in {−1, 0, 1} but the distribution is otherwise unconstrained.

These changes would affect the conventional NTRU decryption procedure:
they expand the typical size of coefficients of fm and gr, forcing larger choices
of q to avoid noticeable decryption failures. But we instead choose q to avoid all
decryption failures (see Section 3.5), and these changes do not expand our bound
on the size of the coefficients of fm and gr.

Elsewhere in the literature on lattice-based cryptography one can find larger
coefficients: consider, e.g., the quinary polynomials in [50], and the even wider
range in [5]. In [114], the coefficients of f and g are sampled from a very wide dis-
crete Gaussian distribution, allowing a proof regarding the distribution of g/f .
However, this appears to produce worse security for any given key size. Specif-
ically, there are no known attack strategies blocked by a Gaussian distribution,
while the very wide distribution forces q to be very large to enable decryption
(see Section 3.5), producing a much larger key size (and ciphertext size) for the
same security level. Furthermore, wide Gaussian distributions are practically al-
ways implemented with variable-time algorithms, creating security problems, as
illustrated by the successful cache-timing attack in [30].

4 Pre-quantum security of Streamlined NTRU Prime

In this section we adapt existing pre-quantum NTRU attack strategies to the
context of Streamlined NTRU Prime and quantify their effectiveness. In partic-
ular, we account for the impact of changing xp−1 to xp−x−1, and using small
f rather than f = 1 + 3F with small F .

Underestimating attack cost can damage security, for reasons explained in
[23, full version, Appendix B.1.2], so we prefer to use accurate cost estimates.
However, accurately evaluating the cost of lattice attacks is generally quite diffi-
cult. The literature very often explicitly resorts to underestimates. Comprehen-
sively fixing this problem is beyond the scope of this paper, but we have started
work in this direction, as illustrated by Appendix M. At the same time it is clear
that the best attack algorithms known today are much better than the best
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attack algorithms known a few years ago, so it is unreasonable to expect that
the algorithms have stabilized. We plan to periodically issue updated security
estimates to reflect ongoing work.

4.1. Meet-in-the-middle attack. Odlyzko’s meet-in-the-middle attack [69,67]
on NTRU works by splitting the space of possible keys F into two parts such
that F = F1 ⊕ F2. Then in each loop of the algorithm partial keys are drawn
from F1 and F2 until a collision function (defined in terms of the public key h)
indicates that f1 ∈ F1 and f2 ∈ F2 have been found such that f = f1 + f2 is the
private key.

The number of choices for f is
(
p
t

)(
p−t
t

)
in NTRU Classic and

(
p
2t

)
22t in

Streamlined NTRU Prime. A first estimate is that the number of loops in the
algorithm is the square root of the number of choices of f . However, this estimate
does not account for equivalent keys. In NTRU Classic, a key (f, g) is equivalent
to all of the rotated keys (xif, xig) and to the negations (−xif,−xig), and the
algorithm succeeds if it finds any of these rotated keys. The 2p rotations and
negations are almost always distinct, producing a speedup factor very close to√

2p.
The structure of the NTRU Prime ring is less friendly to this attack. Say

f has degree p − c; typically c is around p/2t, since there are 2t terms in f .
Multiplying f by x, x2, . . . , xc−1 produces elements of F , but multiplying f by
xc replaces xp−c with xp mod xp − x− 1 = x+ 1, changing its weight and thus
leaving F . It is possible but rare for subsequent multiplications by x to reenter
F . Similarly, one expects only about p/2t divisions by x to stay within F , for a
total of only about p/t equivalent keys, or 2p/t when negations are taken into
account. We have confirmed these estimates with experiments.

One could modify the attack to use a larger set F , but this seems to lose
more than it gains. Furthermore, similar wraparounds for g compromise the
effectiveness of the collision function. To summarize, the extra term in xp−x−1
seems to increase the attack cost by a factor around

√
t, compared to NTRU

Classic; i.e., the rotation speedup is only around
√

2p/t rather than
√

2p.
On the other hand, some keys f allow considerably more rotations. We have

decided to assume a speedup factor of
√

2(p− t), since we designed some patho-
logical polynomials f with that many (not consecutive) rotations in the set. For
random r the speedup is much smaller. This means that the number of loops
before this attack is expected to find f is bounded by

L =

√(
p

2t

)
22t

/√
2(p− t). (1)

In each loop, t vectors of size p are added and their coefficients are reduced
modulo q. We thus estimate the attack cost as Lpt. The storage requirement of
the attack is approximately L log2 L. We can reduce this storage by applying
collision search to the meet-in-the-middle attack (see [92,116]). In this case we
can reduce the storage capacity by a factor s at the expense of increasing the
running time by a factor

√
s.
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4.2. Streamlined NTRU Prime lattice. As with NTRU we can embed the
problem of recovering the private keys f, g into a lattice problem. Saying 3h =
g/f in R/q is the same as saying 3hf + qk = g in R for some polynomial k; in
other words, there is a vector (k, f) of length 2p such that(

k f
)(qI 0

H I

)
=
(
k f
)
B =

(
g f
)
,

where H is a matrix with the i’th vector corresponding to xi · 3h mod xp−x− 1
and I is the p× p identity matrix. We will call B the Streamlined NTRU Prime
public lattice basis. This lattice has determinant qp. The vector (g, f) has norm
at most

√
2p. The Gaussian heuristic states that the length of the shortest vector

in a random lattice is approximately det(B)1/(2p)
√
πep =

√
πepq, which is much

larger than
√

2p, so we expect (g, f) to be the shortest nonzero vector in the
lattice.

Finding the secret keys is thus equivalent to solving the Shortest Vector
Problem (SVP) for the Streamlined NTRU Prime public lattice basis. The fastest
currently known method to solve SVP in the NTRU public lattice is the hybrid
attack, which we discuss below.

A similar lattice can be constructed to instead try to find the input pair
(m, r). However, there is no reason to expect the attack against (m, r) to be
easier than the attack against (g, f): r has the same range as f , and m has
essentially the same range as g. Recall that Streamlined NTRU Prime does
not have the original NTRU problem of leaking m(1). There are occasional
boundary constraints onm (see Section 3.3), and there is also anR/3 invertibility
constraint on g, but these effects are minor.

4.3. Hybrid security. The best known attack against the NTRU lattice is the
hybrid lattice-basis-reduction-and-meet-in-the-middle attack described in [67].
The attack works in two phases: the reduction phase and the meet-in-the-middle
phase.

Applying lattice-basis-reduction techniques will mostly reduce the middle
vectors of the basis [106]. Therefore the strategy of the reduction phase is to
apply lattice-basis reduction, for example BKZ 2.0 [38], to a submatrix B′ of the
public basis B. We then get a reduced basis T = UBY :

 Iw 0 0
0 U ′ 0
0 0 Iw′

 ·
 qIw 0 0
∗ B′ 0
∗ ∗ Iw′

 ·
 Iw 0 0

0 Y ′ 0
0 0 Iw′

 =

 qIw 0 0
∗ T ′ 0
∗ ∗ Iw′


Here Y is orthonormal and T ′ is again in lower triangular form.

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm
to guess options for the last w′ coordinates of the key by guessing halves of the
key and looking for collisions. If the lattice basis was reduced sufficiently in the
first phase, a collision resulting in the private key will be found by applying a
rounding algorithm to the half-key guesses. More details on how to do this can
be found in [67].
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To estimate the security against this attack we adapt the analysis of [63] to
the set of keys that we use in Streamlined NTRU Prime. Let w be the dimension
of Iw and w′ be the dimension of Iw′ . For a sufficiently reduced basis the meet-
in-the-middle phase will require on average

− 1

2

(
log2(2(p− t)) +

∑
0≤a≤min{(}2t,w′)

2a
(
w′

a

)
v(a) log2(v(a))

)
(2)

work, where the log2(2(p− t)) term accounts for equivalent keys and

v(a) =
22t−a

(
p−w′

2t−a
)

22t
(
p
2t

) =
2−a

(
p−w′

2t−a
)(

p
2t

) . (3)

The quality of a basis after lattice reduction can be measured by the Hermite
factor δ = ||b1||/det(B)1/p. Here ||b1|| is the length of the shortest vector among
the rows of B. To be able to recover the key in the meet-in-the-middle phase,
the (2p− w − w′)× (2p− w − w′) matrix T ′ has to be sufficiently reduced. For
given w and w′ this is the case if the lattice reduction reaches the required value
of δ. This Hermite factor has to satisfy

log2(δ) ≤ (p− w) log2(q)

(2p− (w + w′))2
− 1

2p− (w′ + w)
. (4)

We use the BKZ 2.0 simulator of [38] to determine the best BKZ 2.0 parameters,
specifically the “block size” β and the number of “rounds” n, needed to reach a
root Hermite factor δ. To get a concrete security estimate of the work required
to perform BKZ-2.0 with parameters β and n we use the conservative formula
determined by [63] from the experiments of [39]:

Estimate(β, p, n) = 0.000784314β2 + 0.366078β − 6.125 + log2(p · n) + 7. (5)

This estimate and the underlying experiments rely on “enumeration”; see Ap-
pendix M for a comparison to “sieving”. This analysis also assumes that the
probabily of two halves of the key colliding is 1. We will also conservatively
assume this, but a more realistic estimate can be found in [118]. Using these
estimates we can determine the optimal w and w′ to attack a parameter set and
thereby estimate its security.

Lastly we note that this analysis is easily adaptable to generalizing the co-
efficients to be in the set {−d,−(d− 1), . . . , d− 1, d} by replacing base 2 in the
exponentiations in Equations 1, 2 and 3 with 2d. In this case however the range
of t, by a generalization of Theorem 2.1, decreases to q ≥ 16(d3 + d2)t.

4.4. Algebraic attacks. The attack strategy of Ding [47], Arora–Ge [8], and
Albrecht–Cid–Faugère–Fitzpatrick–Perret [4] takes subexponential time to break
dimension-n LWE with noise width o(

√
n), and polynomial time to break LWE

with constant noise width. However, these attacks require many LWE samples,
whereas typical cryptosystems such as NTRU and NTRU Prime provide far less
data to the attacker. When these attacks are adapted to cryptosystems that
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Algorithm 1: Determine parameter sets for security level above `.

Input: Upper bound qb for q, range [p1, p2] for p, lower bound ` for security
level

Result: Viable parameters p, q and t with security level λ.
p← p1 − 1 (the prime we are currently investigating)
while p ≤ p2 do

p← nextprime(p)
Q← viableqs(p, qb)
for q ∈ Q do

t← min{b(q − 1)/32c , bp/3c}
λ1 ← mitmcosts(p, t)
if λ1 ≥ ` then

Find w, w′, β, n such that BKZ-2.0 costs are approximately equal
to meet-in-the-middle costs in the hybrid attack.
λ2 ← max{hybridbkzcost, hybridmitmcost}
return p, q, t,min{λ1, λ2}

provide only (say) 2n samples, they end up taking more than 20.5n time, even
when the noise is limited to {0, 1}. See generally [4, Theorem 7] and [86, Case
Study 1].

5 Parameters

Algorithm 1 searches for (p, q, t, λ), where λ is Section 4’s estimate of the pre-
quantum security level for parameters (p, q, t). For example, we used Algorithm 1
to find our recommended parameters (p, q, t) = (761, 4591, 143) with estimated
pre-quantum security 2248. We expect post-quantum security levels to be some-
what lower (e.g., [80] saves a factor 1.1 in the best known asymptotic SVP
exponents), and lattice security remains a tricky research topic, but there is a
comfortable security margin above our target 2128.

In the parameter generation algorithm the subroutine nextprime(i) returns
the first prime number >i. The subroutine viableqs(p, qb) returns all primes q
larger than p and smaller than qb for which it holds that xp−x−1 is irreducible
in (Z/q)[x]. The subroutine mitmcosts uses the estimates from Equation (1)
to determine the bitsecurity level of the parameters against a straightforward
meet-in-the-middle attack. To find w,w′, β, n we set w to the hybridbkzcost of
the previous iteration (initially 0) and do a binary search for w′ such that the
two phases of the hybrid attack are of equal cost. For each w′ we determine
the Hermite factor required with Equation (4), use the BKZ-2.0 simulator to
determine the optimal β and n to reach the required Hermite factor and use
Equations (5) and (2) to determine the hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of t such that there are
no decryption failures according to Theorem 2.1 and that no more than 2/3 of
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the coefficients of f are set. Experiments show that decreasing t to t1 linearly
decreases the security level by approximately t− t1.

The results of the algorithm for qb = 20000, [p1, p2] = [500, 950], and ` = 128
can be found in Appendix P.

6 Vectorized polynomial multiplication

Our optimized implementation of Streamlined NTRU Prime 4591761 takes a
total of 157052 Haswell cycles for encapsulation and decapsulation. Almost 75%
of this time is spent on four multiplications of polynomials modulo xp − x − 1.
(Another 15% is spent on generating a t-small element; see Appendices S and
T.) This section explains how we perform each multiplication in under 30000
cycles.

6.1. Sizes of inputs and intermediate results. Three of the multiplications
are in R/q = (Z/q)[x]/(xp − x − 1). Specifically, encapsulation multiplies the
public key h by r; decapsulation multiplies the ciphertext c by 3f , and later
multiplies h by r′.

Each element of Z/q is conventionally represented as an element of Z between
0 and q− 1. Each element of R/q is then represented as an element of Z[x] with
p coefficients between 0 and q− 1. The product of two such elements in Z[x] has
coefficients between 0 and p(q − 1)2. The product in R = Z[x]/(xp − x− 1) has
coefficients between 0 and 2p(q − 1)2; see the proof of Theorem 2.1. Reducing
these coefficients modulo q produces the desired product in R/q.

A standard improvement, “signed digits” or “signed coefficients”, is to instead
represent each element of Z/q as an element of Z between−(q−1)/2 and (q−1)/2.
This is an improvement because the product in Z[x] then has coefficients between
−p(q − 1)2/4 and p(q − 1)2/4, an interval just half as long as before. This fits
each coefficient into fewer bits, and allows the coefficient arithmetic to use less
precision.

We use signed digits but go much further by observing that, in NTRU and
its variants, each multiplication has an input that is guaranteed to be small.
For example, r in Streamlined NTRU Prime has coefficients in {−1, 0, 1}, so the
product in Z[x] has coefficients between −p(q − 1)/2 and p(q − 1)/2, a much
smaller interval than before. Even better, r has Hamming weight 2t, so the
product in Z[x] has coefficients between −t(q− 1) and t(q− 1), and the product
in R has coefficients between −2t(q− 1) and 2t(q− 1), as in Theorem 2.1. Note
that 2t(q − 1) = 1312740 < 220.4 for Streamlined NTRU Prime 4591761.

The same bounds apply to the multiplication by r′, since r′ is constructed
to have coefficients in {−1, 0, 1} and is (eventually) checked to have Hamming
weight 2t. Similar comments apply to 3f , except for a factor 3 in the bounds.
We actually multiply by f , so identical bounds apply, and then multiply each
output coefficient by 3.

The fourth multiplication is in R/3 = (Z/3)[x]/(xp − x − 1): decapsulation
multiplies e by a precomputed 1/g. For simplicity we currently reuse the same
R/q code for this multiplication inR/3. The output coefficients here are bounded
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by 2p in absolute value; 2p is below q/2 for Streamlined NTRU Prime 4591761. We
could save time by performing arithmetic on more tightly packed R/3 elements.

6.2. Choosing Haswell multiplication instructions. The Haswell instruc-
tion set includes “AVX” and “AVX2” instructions operating on 256-bit vectors.
We now compare various multiplication instructions to the requirements of the
polynomial multiplications in Streamlined NTRU Prime 4591761. For this sub-
section we assume schoolbook multiplication of polynomials; later we consider
the impact of polynomial-multiplication techniques that use fewer arithmetic
operations.

The vpmullw instruction performs 16 separate multiplications of integers
modulo 216. A new vpmullw instruction can start every cycle. Using vpmullw to
perform p2 separate multiplications modulo 216 thus takes p2/16 ≈ 36195 cycles.

Polynomial multiplication involves a similar number of additions, which one
might think take extra time. However, the same Haswell core can start a new
vpaddw instruction, which performs 16 separate additions mod 216, twice every
cycle, in parallel with the vpmullw instructions. The multiplication instructions
occupy “port 0” on the core, while the addition instructions are handled by “port
1” and “port 5”; the “ports” in a core operate in parallel.

A more serious problem is that 216 is not large enough for the output coef-
ficients in Z[x], which as noted above can range from −t(q − 1) = −656370 to
t(q−1) = 656370. One can safely add as many as 14 integers between −(q−1)/2
and (q − 1)/2 while staying within an interval of length 14(q − 1) < 216, but to
safely add more integers one must first “squeeze” the sums. This means reduc-
ing the sums modulo q into a smaller range, although not necessarily “freezing”
them into the minimum range, −2295 through 2295.

The best squeezing method we found uses vpmulhrsw, which performs 16
separate copies of the following operation: multiply two integers between −215

and 215, divide by 215, and round to an integer. We take the second integer as 7;
then the output is round(7x/215) where x is the first integer. This is not always
exactly round(x/4591) but it is close. We then multiply by 4591 and subtract
from x, obtaining something that cannot be much larger than 2295 in absolute
value. The exact bound depends on exactly how big x is allowed to be; for
example, if x is between −32000 and 32000, then the output is between −2881
and 2881. (At the end of the computation we use several more instructions to
freeze x.)

An alternative is to switch to vpmulld, which performs 8 separate multipli-
cations of integers modulo 232, and vpaddd, which performs 8 separate additions
of integers modulo 232. This has the advantage of not requiring any reductions
until the end of the computation, but it has two much larger disadvantages:
first, each instruction handles only 8 operations instead of 16; second, vpmulld
occupies port 0 for 2 cycles instead of 1.

A better alternative is to switch to vfmadd231ps, which performs 8 separate
operations of the form ab+c on single-precision floating-point inputs a, b, c. Port
0 and port 1 can each handle a new vfmadd231ps instruction every cycle, for a
total of 16 ab+ c operations every cycle. The advantage over vpmullw is that a
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single-precision floating-point number can exactly represent any integer between
−224 and 224. Again no reductions are required until the end of the computation.

There are some slowdowns not discussed above, but quite concise schoolbook-
polynomial-multiplication code using vfmadd231ps performs a multiplication in
R/q in just 50000 cycles. The number of coefficient multiplications here is an
order of magnitude larger than the number of coefficient multiplications inside
NTT-based multiplication in (Z/12289)[x]/(x1024 + 1), but this cycle count is
only 1.6× more than the New Hope software [5], which relies on double-precision
floating-point arithmetic. This illustrates the importance of keeping intermediate
results small, so that one can efficiently use small multipliers without spending
much time on reductions.

6.3. Karatsuba’s method. Karatsuba’s method uses a linear amount of extra
work to reduce a 2n-coefficient multiplication to three n-coefficient multiplica-
tions We use specifically the “refined Karatsuba identity” from [18, Section 2]:

(F0 + xnF1)(G0 + xnG1) = (1− xn)(F0G0 − xnF1G1) + xn(F0 + F1)(G0 +G1).

The initial computations of F0+F1 and G0+G1 each take n additions. The final
computations take 5n−3 additions. For simplicity we actually use 5n additions,
zero-padding each intermediate product from 2n−1 coefficients to 2n coefficients.

For schoolbook multiplication our main concern was the Haswell multipli-
cation instructions: 16 single-precision floating-point multiplications per cycle
sounded better than 16 16-bit integer multiplications per cycle, since floating-
point operations have more precision. Karatsuba’s method adds emphasis to the
addition instructions, and here the integer story might sound clearly better:

– The Haswell can start two vpaddw instructions per cycle: as noted above,
one on port 1 and one on port 5. This is a total of 32 separate additions
modulo 216 per cycle.

– The Haswell floating-point addition instruction vaddps is limited to port 1,
for a total of 8 single-precision floating-point additions per cycle. One can
do better by using vfmadd231ps for additions (artificially multiplying by 1),
for a total of 16 single-precision floating-point additions per cycle, but this
is still just half as many additions per cycle as the integer case.

– Furthermore, floating-point numbers occupy more space than 16-bit integers,
and floating-point additions have higher latency. These are not problems for
schoolbook multiplication, which (at the size we use) easily fits into level-1
cache and is highly parallel, but Karatsuba’s method uses more space and
is less parallel.

On the other hand, floating-point numbers still have the advantage of more preci-
sion. Two Karatsuba layers applied to integers between −2295 and 2295 produce
results between −9180 and 9180, still fitting into 16-bit integers; meanwhile the
same layers applied to integers in {−1, 0, 1} produce results between −4 and 4;
but then the products can overflow 16-bit integers. There is a vpmulhd instruc-
tion that produces the high 16 bits of each product, but reduction then costs
many more instructions.
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Our current software starts with 768-coefficient polynomials (zero-padded
from the 761-coefficient inputs) stored as vectors of 16-bit integers. We use
multiple layers of Karatsuba’s method: specifically, 5 layers, down to 24 × 24
schoolbook multiplications. To avoid reductions, we use floating-point arithmetic
for the schoolbook multiplications, and we squeeze inputs partway through the
Karatsuba layers: specifically, we squeeze 96-coefficient polynomials. We also
convert from integers to floating-point numbers partway through the Karatsuba
layers, trying to minimize the total cost of conversions and Karatsuba additions.
We use floating-point operations to squeeze 192-coefficient products, convert
those products back to integers, and then squeeze intermediate results in the
final Karatsuba additions so as to avoid overflowing 16-bit integers.

6.4. Other multiplication methods. Karatsuba’s method is asymptotically
superseded by Toom’s method and various FFT-based methods. For large input
sizes, it is clear that FFT-based methods are the best. However, for small to
medium input sizes, it is unclear which methods or combinations of methods are
best.

We have analyzed many different combinations of schoolbook multiplication,
refined Karatsuba, the arbitrary-degree variant of Karatsuba for degrees 3, 4, 5,
or 6, and Toom’s method for splitting into 3, 4, 5, or 6 pieces. Many methods
involve multiplications by large constants, spoiling the smallness of our second
polynomial, but this is not a problem in double-precision floating-point arith-
metic. Our best double-precision result so far is 46784 cycles, achieved as follows:
use Toom’s method with evaluation points 0, 1,−1, 2,−2, 3,−3, 4,−4, 5,∞ to re-
duce a 768 × 768 product to 11 separate 128 × 128 products; then use 5 layers
of refined Karatsuba.

We also experimented with variants of the Schönhage–Strassen multiplication
method, starting from the framework of [16, Section 9]. The Schönhage–Strassen
multiplication method is like Karatsuba’s method in that it does not involve
multiplications by large constants, but as n→∞ it uses only n1+o(1) arithmetic
operations. The conventional wisdom is that the Schönhage–Strassen method is
of purely asymptotic interest, but we found a tuned variant to be surprisingly
competitive, around 32000 cycles, again mixing 16-bit integer arithmetic with
floating-point arithmetic.
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A Avoiding rings with worrisome structure

Practically all proposals for ideal-lattice-based cryptography use cyclotomic rings
such as Z[x]/(x1024+1). These rings have many automorphisms, such as x 7→ x3.
Typical encryption proposals work specifically in cyclotomic quotient rings such
as (Z/12289)[x]/(x1024 + 1), allowing further nontrivial ring homomorphisms
such as x 7→ 7.

In February 2014, as noted in Section 1, we publicly recommended9 changing
the choice of rings in ideal-lattice-based cryptography. Part of the recommenda-
tion is to switch from cyclotomic rings to new rings very far from having any non-
identity automorphisms: specifically, rings of the form Z[x]/(xp−x−1). Another
part of the recommendation is to use quotient fields such as (Z/4591)[x]/(x761−
x − 1), eliminating further nonzero homomorphisms. The complete recommen-
dation has a precise mathematical definition explained below.

Attacks published after this recommendation have already built an excellent
track record for the recommendation. For example, it is now generally agreed
that the Smart–Vercauteren system [112] using the old rings is broken by a
polynomial-time quantum attack and by a subexponential-time pre-quantum
attack. Nobody has extended these attacks to our new rings. The attacks rely
upon various interesting operations that are available in the old rings and not
in the new rings; see below.

A.1. Cryptographic risk management. An important part of the cryptog-
rapher’s job is to extrapolate beyond known attacks (just like other scientists
formulating theories beyond current knowledge), with the goal of making the
safest decisions about an unclear future. For example:

– Dobbertin, Bosselaers, and Preneel wrote in 1996 [48] that “it is anticipated
that these techniques can be used to produce collisions for MD5” and rec-
ommended switching to other hash functions. This was long before the MD5
attack by Wang and Yu [117].

– Many discrete-logarithm experts recommended prime fields (see, e.g., [1,
page 25]) long before recent attacks such as [72] against small-characteristic
finite-field discrete logarithms.

– Many discrete-logarithm experts specifically recommend prime-field ECDL
over small-characteristic ECDL (see, e.g., [1, page 62]), even though none of
the efforts to break small-characteristic ECDL have been successful (see the
recent survey [56]).

– Experts frequently recommend one unbroken system over another unbroken
system of similar speed, saying that possible attack strategies against the
first system are better understood.

9 See the blog post [20] by the first author; see also the 2013 note [19, page 2]. It
is proper to credit this “NTRU Prime” paper as the paper introducing this rec-
ommendation; [19] and [20] were preliminary announcements. We mention these
announcements because the timeline illustrates the points made in Section A.1.
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– Our general recommendation included, as a special case, switching the Smart–
Vercauteren system from the old rings to the new rings. This came before
the polynomial-time quantum attacks against the system using the old rings.

History shows that this approach, despite its uncertainties, produces much better
security than merely asking what has already been broken.

Our recommendation to change the choice of rings was, and is, a broad recom-
mendation for ideal-lattice-based cryptography: it applies to Smart–Vercauteren,
to NTRU, to Ring-LWE-based cryptosystems, etc. We suggest the name “NTRU
Prime” for cryptosystems obtained in this way from NTRU or from Ring-LWE.
Here “NTRU” refers to a central idea used in all of these cryptosystems (as
noted in Section 3.3), namely sending m+hr where m, r are small secrets and h
is public; and “Prime” reflects the fact that our modifications eliminate several
different types of factorizations.

We emphasize that normal NTRU parameters are not affected by any of the
known attacks discussed in this appendix. The same holds for cyclotomic Ring-
LWE. However, we are skeptical of the notion that the most recent papers are
the end of the attack story.

There is widespread agreement on the general goal of removing unnecessary
algebraic structure from cryptography. As an example, the common recommen-
dation of prime fields for DL takes various operations (in particular, automor-
phisms) away from attackers, and all available evidence is that this rescues some
fraction of DL systems without enabling any new attacks. This provides ample
justification for the recommendation, not merely in the cases where there are
already known attacks (such as FFDL) but also in other cases (such as ECDL).
Similarly, our recommendation of the new rings takes various operations (again,
in particular, automorphisms) away from attackers, and all available evidence is
that this rescues some fraction of lattice-based systems without enabling any new
attacks. This provides ample justification for the recommendation, not merely
in the cases where there are already known attacks (such as Smart–Vercauteren)
but also in other cases (such as NTRU).

Of course, one could speculate that our recommendation does not help secu-
rity. A recent paper by Albrecht, Bai, and Ducas [3] broke some “overstretched
NTRU assumptions” using the old rings, but Kirchner and Fouque [74] extended
this attack to all rings, and one could speculate that all attacks against the old
rings can be somehow adapted to the new rings. One could even speculate that
our recommendation somehow hurts security.

However, the state of the art in cryptanalysis points in the opposite direction
to these speculations. Some systems are unbroken with rings that comply with
the recommendation and broken with rings that do not comply with the recom-
mendation; there is nothing the other way around. We successfully and publicly
predicted this situation in advance as a consequence of worrisome structure,
specifically unnecessary ring homomorphisms.

Ideas for improving security usually hurt performance; see, e.g., Appendix C.
If following our recommendation makes lattice-based systems much more expen-
sive, then one has to ask whether using the increased costs in other ways, such as
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larger lattice dimensions, would produce a larger security benefit. But our per-
formance results show that Streamlined NTRU Prime is competitive with, and
in some ways even better than, previous lattice-based public-key cryptosystems.

We again emphasize that we are not saying that standard NTRU parameters
are known to be broken in a way rescued by NTRU Prime. We are saying that
taking unnecessary ring homomorphisms away from the attacker is reducing the
attack surface. NTRU Prime provides a less structured alternative to NTRU
Classic and NTRU NTT, the same way that prime-field FFDL/ECDL have al-
ways provided less structured alternatives to small-characteristic FFDL/ECDL.

A.2. Case study: the Campbell–Groves–Shepherd attack. The October
2014 Campbell–Groves–Shepherd preprint “Soliloquy: a cautionary tale” [32]
sent shock waves through lattice-based cryptography. The preprint describes a
lattice-based cryptosystem named “Soliloquy” that the authors say they pri-
vately developed in 2007, and then claims a polynomial-time quantum key-
recovery attack against this system. As mentioned briefly in [32], the key-recovery
problem for this system is identical to the key-recovery problem for the Smart–
Vercauteren system. The same problem has also appeared in various other ho-
momorphic encryption systems and multilinear-map systems.

In these systems, everyone shares a standard monic irreducible polynomial
P ∈ Z[x] with small coefficients. Smart and Vercauteren [112, Section 7] take
power-of-2 cyclotomic polynomials, such as the polynomial x1024 + 1, but [112,
Section 3] allows more general polynomials, and [32] allows any cyclotomic poly-
nomial. The receiver’s public key consists of an integer α and a prime number q
dividing P (α). Note that qR+(x−α)R is a prime ideal of the ring R = Z[x]/P ;
the receiver’s secret key is a small generator g ∈ R of this ideal. The encryption
and decryption procedures are not difficult but are not relevant here.

The first stage of the attack finds some generator of the ideal, expressed as a
product of powers of small ring elements. Biasse and Song questioned the claimed
performance of the algorithm for this stage (and these claims were not defended
by the authors of [32]) but subsequently presented a different polynomial-time
quantum algorithm for this stage; see [25] and [26]. Even without quantum com-
puters, well-known techniques complete this stage in subexponential time.

The second stage of the attack reduces the generator to a small generator
(either g or something else that is just as good for decryption, such as−g). This is
a decoding problem in what is called the “log-unit lattice”. One normally expects
decoding problems to take exponential time, but for cyclotomic polynomials
P (under certain technical assumptions) one can efficiently write down a very
short basis for the log-unit lattice. This basis consists of logarithms of various
“cyclotomic units”, as explained very briefly in [32] and analyzed in detail in
the followup paper [43] by Cramer, Ducas, Peikert, and Regev. For example, for
P = x1024+1, the ring R contains (1−x3)/(1−x) = 1+x+x2, and also contains
the reciprocal (1− x)/(1− x3) = (1− x2049)/(1− x3) = 1 + x3 + · · ·+ x2046; so
(1− x3)/(1− x) is a unit in R, a typical example of a cyclotomic unit.

This attack was originally stated as an attack specifically against principal
ideals with short generators. However, Cramer, Ducas, and Wesolowski [44] re-
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cently used this attack as a subroutine in a polynomial-time quantum attack
against a broader problem. For cyclotomic fields (again under certain technical
assumptions), given any nonzero ideal, the Cramer–Ducas–Wesolowski attack

finds a vector whose length is within a factor 2Õ(
√
degP ) of the length of the

shortest nonzero vector. This is a tremendous improvement compared to the

2Õ(degP ) from previous attacks against the same problem. This attack makes
further use of cyclotomic structure to find a nearby principal multiple of the
input ideal, and then applies the original attack to find the shortest generator
of this principal ideal.

A.3. Mathematical specification of our recommendation. We recommend
taking a standard monic irreducible polynomial P whose degree is a prime p,
and whose “Galois group” is as large as possible, isomorphic to the permutation
group Sp of size p!. Most polynomials of degree p have Galois group Sp, and we
specifically suggest the small polynomial P = xp−x−1, which is irreducible and
has Galois group Sp; see [108] and [93]. Furthermore, in contexts using moduli
(such as NTRU and Ring-LWE), we recommend taking a prime modulus q that
is “inert” in R, i.e., where P is irreducible in (Z/q)[x], i.e., where (Z/q)[x]/P is
a field. This happens with probability approximately 1/p for a “random” prime
q; see Appendix P for many examples of acceptable pairs (p, q).

One way to define the Galois group is as the group of automorphisms of the
smallest field that contains all the complex roots of P . Consider, for example, the
field Q(ζ) where ζ = exp(2πi/2048). The notation Q(ζ) means the smallest field
containing both Q and ζ; explicitly, Q(ζ) is the set of complex numbers q0+q1ζ+
· · · + q1023ζ

1023 with q0, q1, . . . , q1023 ∈ Q. The complex roots of P = x1024 + 1
are ζ, ζ3, ζ5, . . . , ζ2047, all of which are in Q(ζ), so Q(ζ) is the smallest field that
contains all the complex roots of P . There are exactly 1024 automorphisms of
this field (invertible maps from the field to itself preserving 0, 1,+,−, ·). These
automorphisms are naturally labeled 1, 3, 5, . . . , 2047; the automorphism with
label i maps ζ to ζi, so it maps ζj to ζij . In other words, automorphism i
permutes the complex roots of P the same way that ith powering does; the
Galois group is thus isomorphic to the multiplicative group (Z/2048)∗.

NTRU traditionally takes P = xp − 1 with p prime and q a power of 2,
typically 2048. These choices violate our recommendation in several ways. First
of all, xp − 1 is not irreducible. One can tweak NTRU to work modulo the
cyclotomic polynomial Φp = (xp− 1)/(x− 1), but this polynomial does not have
prime degree. Furthermore, the Galois group of Φp has size only p − 1, vastly
smaller than (p− 1)!. Also, the modulus q is not prime.

Ring-LWE-based systems typically take P = xp + 1 where p is a power of
2 and q is a prime in 1 + 2pZ. These choices also violate our recommendation
in several ways. The polynomial P is irreducible, but it does not have prime
degree. Furthermore, its Galois group has size only p, vastly smaller than p!.
The modulus q is prime, but P is very far from irreducible modulo q: in fact, it
splits into linear factors modulo q.

A.4. How the recommendation reduces attack surface. A recent pre-
quantum quasipolynomial-time attack by Bauch, Bernstein, de Valence, Lange,
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and van Vredendaal [14] finds short generators of ideals in a large class of mul-
tiquadratic rings. This attack exploits the fact that a multiquadratic field has
many subfields. The degree of the field is a multiple of the degree of every sub-
field, so by taking a prime degree we obviously rule out any such attack: the
only subfields of Q[x]/P are Q and the entire field Q[x]/P .

To understand why we also require very large Galois groups, consider the
suggestion from [3] to use the field Q(ζ + ζ−1) with ζ = exp(2πi/2p), where
both p and (p− 1)/2 are prime. This field has prime degree (p− 1)/2 and thus
stops subfield attacks. It does not, however, stop the attack of [32]: one can easily
write down a very short basis consisting of logs of cyclotomic units in this field,
such as (ζ3 − ζ−3)/(ζ − ζ−1).

More generally, if a number field of prime degree p has a Galois group of
size p then the field is a subfield of a cyclotomic field. Even more generally, the
Kronecker–Weber theorem states that any “abelian” number field is a subfield
of a cyclotomic field. This might not enable an attack along the lines of [32] if
the cyclotomic field has degree much larger than p, but we do not think that it
is wise to rely on this.

Of course, prohibiting minimum size p is not the same as requiring maximum
size p!; there is a large gap between p and p!. But having a Galois group of size,
say, 2p means that one can write down a degree-2p extension field with 2p auto-
morphisms, and one can then try to apply these automorphisms to build many
units, generalizing the construction of cyclotomic units. From the perspective of
algebraic number theory, the fact that, e.g., (ζ3 − ζ−3)/(ζ − ζ−1) is a unit is
not a numerical accident: it is the same as saying that the ideal I generated by
ζ − ζ−1 is also generated by ζ3 − ζ−3, i.e., that I is preserved by the ζ 7→ ζ3

automorphism. This in turn can be seen from the factorization of I into prime
ideals, together with the structure of Galois groups acting on prime ideals—a
rigid structural feature that is not specific to the cyclotomic case.

Having a much larger Galois group means that P will have at most a small
number of roots in any field of reasonable degree. This eliminates all known
methods of efficiently performing computations with more than a small number
of automorphisms.

It is of course still possible to compute a minimum-length basis for the log-
unit lattice, but all known methods are very slow. Cohen’s classic book “A course
in computational algebraic number theory” [41, page 217] describes the task of
computing “a system of fundamental units” (i.e., a basis for the log-unit lattice)
as one of the five “main computational tasks of algebraic number theory”. One
can compute some basis in subexponential time by techniques similar to the
number-field sieve for integer factorization, but for almost all P the resulting
basis elements will not be very short and will not be close to orthogonal, and
finding a very short basis takes exponential time by all known methods.

The theory of units generalizes to what are called “S-units”; see, e.g., [42,
Chapter 7]. For any polynomial P it is trivial to write down a few independent
S-units for various S; we have heard speculation that this would somehow allow
attacks. We point out that this is a reinvention of a special case of “free relations”,
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a small speedup to NFS. Writing down a few independent S-units is much less
than writing down an entire basis, and does not seem helpful for decoding the log-
S-unit lattice. More broadly, this well-known lattice remains strong against all
known decoding attacks, except attacks that exploit extremely special algebraic
features of number fields with small Galois groups.

Finally, we choose q as an inert prime so that there are no ring homomor-
phisms from (Z/q)[x]/P to any smaller nonzero ring. The attack strategies of
[51], [52], and [37] start by applying such homomorphisms;10 the attacks are
restricted in other ways, but we see no reason to provide homomorphisms to
the attacker in the first place. The examples from [52] were shown in [35] to
be breakable in a simpler way without homomorphisms (some noise components
turn out to always be 0); but, as pointed out in [37, Section 2.2] (see also [34,
Section 5]), many other examples have been broken by homomorphisms without
being broken by the algorithm from [35] or any other known attacks. It is some-
times claimed that “modulus switching” makes the choice of q irrelevant, but
an attacker switching from q to another modulus will noticeably increase noise,
interfering with typical attack algorithms.

C Worst-case-to-average-case reductions

We now consider an argument against our NTRU Prime recommendation: specif-
ically, an argument that using cyclotomic fields with split modulus (i.e., with P
splitting into linear factors in (Z/q)[x]) is desirable for security, whereas we rec-
ommend against this choice.

The argument begins with statements from Lyubashevsky, Peikert, and Regev
[87] that the Ring-LWE problem—with cyclotomic P , split q, and a wide error—
has “very strong hardness guarantees” and in turn provides a “truly practi-
cal lattice-based public-key cryptosystem with an efficient security reduction”.
These statements allude to a conversion

– from any attack algorithm against the cryptosystem

– into an algorithm to solve the worst case of a “hard” SVP-like ideal-lattice
problem.

This conversion is, internally, the composition of three theorems, first producing
an algorithm to attack Decision-Ring-LWE, then producing an algorithm to at-
tack Search-Ring-LWE, and finally producing an algorithm to attack the “hard”
problem.

These statements and theorems have created a common belief that some
“truly practical” lattice-based cryptosystems are guaranteed to be secure. The
particular cryptosystems that are subjected to this belief have cyclotomic P

10 Exactly the same homomorphisms are used in [95, Section 3, “Attack Framework”],
where they are relabeled as “reduction modulo an ideal divisor”. Choosing an inert
prime eliminates all nontrivial ideal divisors.
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(occasionally generalized to Galois P ) and split q. The belief is not directly con-
tradicted by, e.g., attacks against the Smart–Vercauteren system: no theorems
of this type have been proven for that system.

A more extreme argument against NTRU Prime—and against NTRU and
Ring-LWE-based systems—is the argument that one should actually use the orig-
inal LWE problem. This argument begins with similar theorems, but this time
the conversion (introduced by Regev [102]) applies to different “LWE-based”
cryptosystems, and the conversion ends with the worst case of a “hard” SVP-
like lattice problem. If all relevant parameters are equal then this problem is
clearly at least as difficult to break as the worst case of an SVP-like ideal-lattice
problem, since ideal lattices are a special case of lattices.

We have five counterarguments to both of these arguments. First, asymptotic
attacks against SVP have improved dramatically in the last few years, reducing
the asymptotic security level of d-dimensional lattices from approximately 0.41d
bits to approximately 0.29d bits. This does not mean that there is any loss of
security in, e.g., NTRU (see Appendix M below), but it calls into question the
notion that SVP has been thoroughly studied.

Second, even in the extreme context of LWE, the allegedly “hard” SVP-like
lattice problems are not the classic SVP problem. The same issue is even more
obvious in the context of Ring-LWE: the “hard” SVP-like ideal-lattice problems
are considerably more complicated, and less attractive to cryptanalysts, than
truly well-known problems such as SVP. It is not easy to justify the notion that
these allegedly “hard” problems have been studied more thoroughly than, e.g.,
the problem of breaking the NTRU cryptosystem. Simply labeling problems as
“hard” does not make them so.

Third, it is not true that the cryptosystems have been proven to be as difficult
to break as the “hard” problems. The underlying issue is that the conversion is
very far from tight. Even if one assumes that there are no better attacks against
the “hard” problems than the attacks known today, the conversion does not
guarantee a reasonable cryptographic security level for any reasonably efficient
cryptosystem. We have not found any paper proposing a specific lattice-based
cryptosystem for which the conversion is meaningful.

Our work analyzing the tightness of this conversion is less detailed than
an independent analysis recently posted [36, Section 6] by Chatterjee, Koblitz,
Menezes, and Sarkar. The analysis in [36] features an astonishing 2504 tightness
gap for reasonable LWE parameters. The analysis concludes that there is a
“flimsy scientific foundation” for “the claim that, because of worst-case/average-
case reductions, the more recent lattice-based encryption schemes have better
security than classical NTRU”.

Fourth, even if the conversion were tight, switching to these “provable” cryp-
tosystems would impose considerable costs. One example of these costs is quan-
tified in the analysis of [31]. Another example of these costs is implicit in the
security analysis of [5]: the Ring-LWE parameters in [5] are not chosen to ensure
the hardness of Ring-LWE, but merely to ensure hardness against attacks using
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the very small number of output samples actually provided by the cryptosystem.
Secure parameters for Ring-LWE would be more expensive.

These costs raise an important question mentioned in Appendix A: would
it be better for security to use the same resources in other ways? In particular,
taking larger parameters in the original cryptosystem would straightforwardly
increase security against all known attacks. Compared to this option, switching
to “provable” cryptosystems at the same cost means reducing security against
known attacks. The argument to impose this security loss is, fundamentally,
speculation that attacks against the original cryptosystem will improve much
more than attacks against an SVP-like ideal-lattice problem that is claimed to
be “hard” but that has little evidence of serious study.

Replacing Ring-LWE with the more extreme case of LWE somewhat simpli-
fies the statement of the “hard” problem but imposes even more serious costs:
“size be damned”, in the words of a commentator who does not wish to be iden-
tified. Switching to LWE is likely to make network traffic a bottleneck. If this is
affordable then much larger parameters in the original cryptosystem should also
be affordable, producing an even larger increase in security against all known
attacks. The argument for LWE thus rests on an even more extreme speculation
regarding the progress of attacks.

For comparison, our recommendation to switch from NTRU Classic and
NTRU NTT to NTRU Prime has low costs (as illustrated by the efficiency
of Streamlined NTRU Prime), so it does not produce a noticeable security loss
against known attacks. This recommendation is thus quite different from recom-
mendations to switch to cryptosystems based on Ring-LWE, or more extreme
cryptosystems based on LWE.

Notice that none of these four counterarguments are questioning the correct-
ness of the proofs of the aforementioned theorems. The core problem is that,
even if the theorems are correct exactly as stated, there are severe restrictions
in what the theorems actually say.

Fifth, the very recent paper [97] says that it has generalized the result of
[87] to arbitrary P and arbitrary q. The central argument for using cyclotomic
fields thus appears to have been nothing more than a temporary deficiency in
proof techniques. We caution the reader that this generalization has the same
weaknesses mentioned above: there is no guarantee of the hardness of SVP, there
is no guarantee that the “hard” problems are as hard as SVP, there is a severe
lack of tightness, and there are considerable costs.

E Public-key encryption vs. unauthenticated key
exchange

Our speed comparison in Section 1 focused on the cost of multiplication: for
example, 31000 Haswell cycles for the NTRU NTT ring (Z/12289)[x]/(x1024 +1)
used in New Hope [5]. However, the complete cryptographic operations reported
in [5] cost 110986 cycles for the client and 88920+19422 = 108342 cycles for the
server, a total cost similar to the cost of seven multiplications.
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There are 4 multiplications in [5], plus considerable overhead. The cost in [5]
for 4 NTT multiplications is 4 pointwise multiplications and just 6 NTTs, rather
than the 4 pointwise multiplications and 12 NTTs that one might expect; the
protocol in [5] skips some NTTs.

We report 28682 Haswell cycles for our case study (Z/4591)[x]/(x761−x−1)
of an NTRU Prime ring; this is not much faster than New Hope multiplication.
We also use 4 multiplications. Our current software uses multiplication as a black
box. But our costs are just 59600 cycles for the client and 97452 cycles for the
server.

Overall New Hope spends 40% more time than Streamlined NTRU Prime
4591761 for the client and server to share a fresh 256-bit session key.11 More
importantly, New Hope sends much more network traffic. In the latest version of
[5], the server sends 1824 bytes and the client sends 2048 bytes. For us, the server
sends a 1218-byte public key and the client sends a 1047-byte ciphertext, saving
42% of the New Hope network traffic. If the client already knows the public key
then it simply sends a ciphertext, saving 73% of the New Hope network traffic.

New Hope’s larger dimension can be viewed as providing an additional buffer
against the possibility of improved attacks, as mentioned in Section 1; but this
difference does not explain the gap in network traffic. The point of this appendix
is to analyze this gap.

E.1. How servers are identified. Fundamentally, [5] and this paper are ac-
tually taking two completely different approaches to securing communication.
Both approaches support the most urgent goal of post-quantum cryptography,
namely encrypting today’s data in a way that will not be decrypted by future
quantum computers. Both approaches also support server authentication, so that
the client will not be fooled into encrypting data to a “man in the middle” rather
than the server. However, the details and costs of these two approaches are quite
different.

In the first approach, the server’s long-term identifier is a public key for a
signature system. To start a secure session, the client and server perform an unau-
thenticated post-quantum key exchange (as in [5]), obtaining a shared secret key
used to authenticate and encrypt subsequent messages by standard symmetric
techniques. The server signs a hash of the key exchange, so the client knows that
it is talking to the server; this is what stops the “man in the middle”. At the
end of the session, the client and server erase the shared secret key.

In the second approach, the server’s long-term identifier is a public key for an
encryption system. To start a secure session, the client sends a ciphertext to the
server. Decryption provides both the client and the server with a shared secret
key used to authenticate and encrypt subsequent messages; see our discussion

11 The exact speed gap depends on further optimizations. For example, Gueron and
Schlieker [59] modified the New Hope protocol to reduce the overhead for generating
a uniform random polynomial; an exact speed comparison requires more benchmark-
ing work, since [59] switched from Haswell to Skylake. We can certainly save some
time in Streamlined NTRU Prime by caching transforms of repeated multiplication
inputs such as f , and by speeding up the multiplication modulo 3.
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of KEMs in Section 3.5. The client knows that it is talking to the server since
nobody else has the shared secret key.

The second approach is less expensive for several reasons:

– In the first approach, the client cost is signature verification plus the client
side of unauthenticated key exchange. In the second approach, the client cost
is merely one public-key encryption.

– In the first approach, the server cost is signature generation plus the server
side of unauthenticated key exchange. In the second approach, the server
cost is merely one decryption.

– In the first approach, the network traffic is a signature plus unauthenticated
key exchange. In the second approach, the network traffic is merely one
ciphertext.

As a concrete example of total costs for the first approach, the recent paper [45,
Table 2] combines [5] with a lattice-based signature system, reporting a total of
more than 4700 bytes for post-quantum authenticated-server key exchange after
significant compression effort. CPU time is not reported in [45] but presumably
the signatures add significantly to the cost of [5].

As another example, [5] suggests combining post-quantum unauthenticated
key exchange with the current world of pre-quantum signatures. The total traffic
is then 3936 bytes, assuming a typical 64-byte ECC signature. The total CPU
time is the time reported in [5] plus the cost of generating and verifying an ECC
signature.

This type of combination provides transitional security: if the signature is
verified before the attacker has a quantum computer then both integrity and
confidentiality are protected, even against future quantum computers. However,
it does not provide post-quantum security: if the signature is verified after the
attacker has a quantum computer then neither integrity nor confidentiality is
protected. Users will thus need another upgrade, switching all deployments to
post-quantum signatures before attackers have quantum computers.

For comparison, we use just 1047 bytes of network traffic to set up a ses-
sion key with true post-quantum server authentication. There is no need for a
subsequent upgrade.

E.2. Key erasure (“forward secrecy”). An attacker who steals physical
server hardware has a copy of the server’s long-term secret key. The attacker
can pose as the server for as long as this key is valid: often 90 days, often
much longer. Furthermore, if the key is an encryption key, then the attacker can
decrypt any previously recorded ciphertexts for this key. The low-cost encryption
approach described above does not provide fast key erasure: there are many
ciphertexts encrypted to the server’s long-term key, and the plaintexts expose
useful information.

For comparison, in a TLS “ECDHE” session, the client and server exchange
short-term ECC keys and use the corresponding Diffie–Hellman shared secret
as a session key. The client and server subsequently switch to new short-term
ECC keys and erase their old secret keys, so they have no way to recompute
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total bytes client bytes server bytes key erasure source

1047 1047 0 no this paper
3312 1047+1047 1218 yes this paper
3312 1047+1218 1047 yes this paper

3872+signature 2048 1824+signature yes [5]+signature

Fig. E.1. Bandwidth used by different techniques of authenticated-server key exchange,
assuming client already knows server’s long-term key. In first line, long-term key is
encryption key; client sends ciphertext; session key is hash of plaintext. In second line,
server also sends short-term encryption key; client sends another ciphertext to that
key; session key is hash of two plaintexts. In third line, short-term encryption key is
generated by client rather than server. In fourth line, long-term key is signature key,
and server signs hash of unauthenticated key exchange.

the shared secret. Servers nevertheless retain keys for “many months” in some
cases, as explained in [81], but this period is no longer tied to the lifetime of the
signature key that identifies the server; it is possible for a good implementation
to erase keys much more quickly. Generating a new short-term key every minute
has negligible cost.

The least expensive way to add post-quantum security to ECDHE is to add
a layer of post-quantum public-key encryption using a long-term server key.
Attackers stealing keys are stopped by ECDHE if they do not have quantum
computers, and attackers with quantum computers are stopped by the post-
quantum encryption if they are not stealing keys. However, it might still be
possible for an attacker to use key theft to break the post-quantum system and
a quantum computer to break ECDHE, so there is a comprehensible security
benefit to deploying post-quantum key erasure.

Post-quantum key erasure is compatible with the second approach described
above, although it does increase costs. The simplest protocol allowing key erasure
is as follows. The server maintains a long-term post-quantum public key and also
a short-term post-quantum public key. The client sends a ciphertext to each of
these keys, and the two plaintexts are hashed to produce the shared secret key. A
server-generated MAC under this secret key implicitly confirms server ownership
of the short-term public key, at which point the client can safely send secret data
under the same key. An attacker who later steals the server’s secrets does not
know the short-term secret key (the key has been erased), cannot decrypt the
ciphertext sent to that key, and cannot compute the shared secret.

With this protocol, the client performs two public-key encryption operations,
and the server performs two decryption operations, assuming key-generation
costs are amortized. This is an authenticated-server key-exchange protocol using
the same amount of computation as a naive unauthenticated key-exchange pro-
tocol in which the client sends a ciphertext to a short-term server key and the
server sends a ciphertext to a short-term client key. One would expect an opti-
mized unauthenticated key-exchange protocol to be somewhat faster than this,
but it is not at all clear that this speedup can outweigh the costs of generating
and verifying signatures.
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As for bandwidth, this protocol requires the server to send its short-term
post-quantum public key to the client. This could be smaller or larger than the
signature in the first approach. See Figure E.1 for a comparison of the bandwidth
of various techniques for authenticated-server key exchange.

One can alternatively have the client send a short-term public key and a
ciphertext to the server’s long-term public key, and the server send a ciphertext
to the client’s short-term public key, with MACs at each moment under secret
keys obtained by hashing all plaintexts received so far. Similar comments apply
to authenticated-client authenticated-server key exchange, but for simplicity we
skip the details.

The general idea of all of these protocols is that, instead of checking a sig-
nature from X’s long-term signature public key, one can check a MAC from X
under a secret key derived from a plaintext sent to X’s long-term encryption
public key. Of course this plaintext needs to be generated with enough random-
ness: for example, it can simply be the output of KEM decapsulation.

To summarize, a post-quantum public-key cryptosystem is a simple, highly
flexible tool that provides all desired long-term security features. Combining
signatures with unauthenticated key exchange is more complicated, does not
add any security features, and does not seem to provide significant performance
benefits.

We emphasize that, as in the bulk of the cryptographic literature, we as-
sume that each party can generate random numbers. Occasionally the literature
considers the theory of deterministic parties (or, equivalently, parties with com-
pletely broken random-number generators); authentication to a deterministic
party is equivalent to signing, and encryption to or from a deterministic party
cannot meet the standard definitions of security.

E.3. Questioning the value of unauthenticated key exchange. With the
above analysis in mind, we review the arguments given in [5, Section 2.3] for
studying unauthenticated key exchange.

The first argument is that the “protection of stored transcripts against fu-
ture decryption using quantum computers” is “much more urgent” than post-
quantum authentication. This is indisputably the most urgent issue for many
users. However, unauthenticated key exchange is not the only way to achieve
this protection: a pure post-quantum public-key cryptosystem provides the same
protection, and also straightforwardly provides authentication.

The second argument is that the unauthenticated key-exchange protocol in
[5] is simpler than earlier authenticated key-exchange protocols. However, this
ignores the possibility of building authenticated key exchange in an even simpler
way from post-quantum public-key encryption.

The third argument is that combining unauthenticated key exchange with
signatures allows the two components to be designed and optimized separately.
However, it is not clear how this is better than building the same security features
from a single well-optimized component, namely a public-key cryptosystem.
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F Frequently asked questions

Why is rounding better than random errors? Rounding produces shorter
ciphertexts and is deterministic. See the comparison of “Rounded NTRU” and
“Noisy NTRU” in Section 3.3, and see the review of Dent’s simple KEM (which
relies on determinism) in Section 3.5.

Why not add random errors and then round? This is an older idea to
shorten ciphertexts. See Section 3.3 for references. Pure rounding has the ad-
vantage of being deterministic.

Isn’t there a proof that some Ring-LWE-based cryptosystem is at least
as secure as lattice problems? No, not for the range of key sizes considered
in this paper. See Appendix C.

Isn’t there a proof that some Ring-LWE-based cryptosystem is more
secure than NTRU? Or at least as secure? No. Either system could be more
secure. Each system has security concerns (illustrated by attacks on extreme
parameters) that are inapplicable to the other system. See the comparison of
“Product NTRU” and “Quotient NTRU” in Section 3.4.

K An attack on a KEM

As a spinoff of analyzing KEM options, we found a fast chosen-ciphertext attack
against the code-based KEM proposed in [98].

The problem is that [98] switches to predictable KEM output if decoding
fails. The attacker can easily modify the ciphertext to flip a small number of bits
(e.g., one or two bits) in the unknown error vector and to generate an authen-
ticator from the predictable KEM output; decryption will succeed if the flipped
error vector is decodable, and will almost certainly fail otherwise. Repeating
these modifications quickly reveals the unknown error vector from the pattern
of decryption failures, similarly to Berson’s attack [24] on the plain McEliece
system.

McBits [21] avoids this problem, because it uses a separate output bit from
the KEM to indicate a decoding failure.

L Proof of Theorem 2.1

Proof. We first show that fm has coefficients in [−4t, 4t]. Let f =
∑p−1
i=0 fix

i,

a ternary polynomial of exactly 2t terms. Let m =
∑p−1
i=0 mix

i a ternary poly-

nomial. Now we rewrite fm as
∑p−1
i=0 fi(x

im). Since this sum adds at most 2t
terms of each degree, it just remains to be shown that the coefficients of xim
are all in the range [−2, 2]. To show this we observe that xm ≡ mp−1 + (m0 +
mp−1)x+m1x

2 + · · ·+mp−2x
p−1 mod xp − x− 1, which has coefficients in the

range [−1, 1], except |m0 + mp−1| may be 2. Generalizing this, for 2 ≤ i < p,
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we get xim ≡ mp−i + (mp−i +mp−i−1)x+ · · ·+ (mp−2 +mp−1)xi−1 + (mp−1 +
m0)xi +m1x

i+1 + · · ·+mp−i−1x
p−1 mod xp − x− 1 with coefficients in [−2, 2].

Similar reasoning for gr implies that each coefficient of gr mod xp − x− 1 is in
[−4t, 4t]. Hence each coefficient of 3fm+ gr mod xp−x− 1 is in [−16t, 16t]. ut

M Memory, parallelization, and sieving algorithms

The security estimates in Section 4 rely on enumeration algorithms [99,54,73,63].
For very large dimensions, the performance of enumeration algorithms is slightly
super-exponential and is known to be suboptimal. The provable sieving algo-
rithms of Pujol and Stehlé [101] solve dimension-β SVP in time 22.465...β+o(β)

and space 21.233...β+o(β), and more recent SVP algorithms [2] take time 2β+o(β).
More importantly, under heuristic assumptions, sieving is much faster. The most
recent work on lattice sieving (see [15,79]) has pushed the heuristic complexity
down to 20.292...β+o(β).

Simply comparing 0.292β to enumeration exponents suggests that sieving
could be faster than enumeration for sizes of β of relevance to cryptography.
However, this comparison ignores two critical caveats regarding the performance
of sieving. First, a closer look at polynomial factors indicates that the o(β) here
is positive. Consider, e.g., [15, Figure 3], which reports a best fit of 20.387β−15

for its fastest sieving experiments. The comparison in [91] takes this caveat into
account and concludes that the sieving cutoff is “far out of reach”.

Second, sieving needs much more storage as β grows: at least 20.208...β+o(β)

bits of storage, again with positive o(β). Furthermore, sieving is bottlenecked
by random access to storage, and this random access also becomes slower as the
amount of storage increases. The slowdown is approximately the square root of
the storage in realistic cost models; see, e.g., [29].

Enumeration fits into very little memory even for large β. Kuo, Schneider,
Dagdelen, Reichelt, Buchmann, Cheng, and Yang [78] showed that enumera-
tion parallelizes effectively within and across GPUs. An attacker who can afford
enough hardware for sieving for large β can instead use the same amount of
hardware for enumeration, obtaining an almost linear parallelization speedup.

We do not mean to suggest that the operation-count ratio should be multi-
plied by the sieving storage (accounting for this enumeration speedup) and fur-
ther by the square root of the storage (accounting for the cost of random access
inside sieving): this would ignore the possibility of a speedup from parallelizing
sieving. “Mesh” sorting algorithms such as the Schnorr–Shamir algorithm [107]
sort n small items in time just O(

√
n), which is optimal in realistic models of

parallel computation; these algorithms can be used as subroutines inside sieving,
reducing the asymptotic cost penalty to just 20.104...β+o(β). However, this is still
much less effective parallelization than [78].

This cost penalty for sieving is ignored in measurements such as [88] and [15,
Figure 3], and in the resulting comparisons such as [91]. These measurements
are limited to sieving sizes that fit into DRAM on a single computer, and do not
account for the important increase in memory cost as β increases. Another way
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to see the same issue would be to scale sieving down to a small enough size to fit
into GPU multiprocessors; this would demonstrate a sieving speedup for smaller
β, for fundamentally the same reason that there will be a sieving slowdown for
larger β.

In the absence of any realistic analyses of sieving cost for large β, we have
decided to omit sieving from our security estimates. There is very little reason
to believe that sieving can beat enumeration inside any attack that fits within
our 2128 security target.

P Parameters

The following table shows Streamlined NTRU Prime parameter sets with 465 <
p < 970 and q < 20000. The estimated pre-quantum security level is 2λ. Pa-
rameter sets with λ < 128 are omitted. Key size is computed as dp log2(q)e (see
Section 2.2).
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Parameters
p q t λ key size

467 3911 122 130 5573

479
5689 159 132 5976
6089 159 130 6022

491
6287 163 135 6196
8627 163 130 6420
9277 163 129 6472

499
8243 166 134 4692
9029 166 132 6558

503
2879 89 137 5781
8663 167 134 6580

509
10939 169 133 6830
11087 169 133 6840

521
15271 173 132 7242
15359 173 132 7246
16001 173 132 7277

523

3331 104 147 6121
7151 174 146 6697
7159 174 146 6698
11003 174 138 7022
19853 174 129 7467

541
2297 71 140 6041
2437 76 150 6087
17789 180 137 7639

557

4759 148 164 6805
9323 185 155 7345
13339 185 148 7633
13963 185 148 7669
14827 185 147 7718
18719 185 143 7906

563 10627 187 155 7531

569

1579 49 129 6046
3929 122 166 6794
11489 189 156 7675
12781 189 154 7763
16193 189 150 7957

571
4201 131 168 6873
7177 190 166 7315

577
1861 58 141 6268
19081 192 150 8205

587
5233 163 176 7252
8263 195 170 7639

593
1381 43 131 6186
14423 197 161 8193
19697 197 156 8460

599
7001 199 178 7652
9551 199 171 7920

601
17257 200 161 8460
18701 200 159 8529

607
6317 197 184 7664
17747 202 163 8568
18749 202 162 8617

613

1459 45 137 6444
3319 103 174 7170
4363 136 183 7412
9157 204 178 8068
10529 204 175 8191
11867 204 173 8297
12109 204 173 8315
13799 204 170 8431
19469 204 164 8735

617

1511 47 140 6517
12829 205 173 8421
16007 205 169 8618
16073 205 169 8621

619

2297 71 160 6912
6907 206 187 7895
9397 206 180 8170
9679 206 180 8196
12203 206 175 8403
13933 206 172 8522
14173 206 172 8537

Parameters
p q t λ key size

631

2081 65 158 6956
2693 84 171 7191
11287 210 182 8495
16481 210 174 8840

641 13691 213 182 8808

643

6247 195 199 8108
14737 214 181 8904
15797 214 180 8969
17189 214 178 9047

631

3559 111 188 7633
16573 215 180 9069
16883 215 180 9086
18461 215 178 9170

653

2311 72 169 7297
4621 144 199 7950
8419 217 197 8515
17477 217 182 9203
17627 217 182 9211
19163 217 180 9290
19507 217 179 9307

659

2137 66 166 7290
6781 211 205 8388
7481 219 203 8481
19571 219 182 9395

661
13327 220 191 9058
15907 220 187 9226

673
1493 46 149 7097
9413 224 204 8884
17123 224 190 9465

677 3251 101 192 7899

683
5623 175 214 8509
13313 227 200 9358

691

1499 46 147 7290
5471 170 217 8581
6449 201 219 8745
12281 230 205 9387

701 17921 233 201 9905

709
10337 236 217 9455
11923 236 214 9601

719

2087 65 179 7929
2351 73 185 8053
5153 161 226 8867
9133 239 225 9460
10531 239 221 9608
10739 239 221 9628
14831 239 213 9963
19079 239 208 10224

727
5827 182 232 9094
12241 242 221 9873
17317 242 213 10236

739

9829 246 232 9802
10859 246 229 9908
12713 246 225 10076
17183 246 218 10397
19429 246 216 10528

743

7541 235 240 9571
11251 247 231 10000
16451 247 221 10407
17959 247 219 10501

751
3067 95 211 8699
3823 119 223 8938

757

1193 37 138 7737
3727 116 224 8981
6869 214 247 9649
7879 246 246 9799
10979 252 237 10161
12973 252 233 10344
13789 252 231 10410
14737 252 230 10483

761
1619 50 170 8113
4091 127 229 9131

Parameters
p q t λ key size

761

4591 143 248 9258
7883 246 248 9851
13829 253 233 10468
14107 253 232 10490
19001 253 225 10817

769
1433 44 162 8063
6599 206 251 9758
17729 256 231 10854

773

877 27 131 7558
2099 65 190 8531
8317 257 252 10066
9811 257 247 10251
13757 257 239 10628

787 4243 132 240 9485
797 1259 39 158 8208

809
1801 56 187 8749
6113 191 265 10176
14107 269 254 11152

811

8543 266 269 10593
10457 270 263 10829
11831 270 260 10974
14083 270 255 11177

823
4513 141 255 9992
8069 252 275 10681
11197 274 267 11070

827

7219 225 276 10601
9767 275 273 10961
13159 275 264 11317
19081 275 254 11760

829

1657 51 183 8866
12227 276 267 11256
13037 276 265 11333
14107 276 263 11427

853
9721 284 285 11300
12377 284 278 11597
15511 284 272 11875

857
5167 161 274 10572
13367 285 278 11747
14797 285 275 11872

859
12487 286 280 11690
17203 286 272 12087

863
1523 47 182 9125
4111 128 263 10361
8779 274 293 11306

881
3217 100 248 10265
7673 239 300 11370
15733 293 284 12283

883
8089 252 302 11463
14639 294 287 12219

887 13007 295 292 12123

907

7727 241 311 11715
8807 275 313 11886
12109 302 304 12303
15467 302 297 12622
17389 302 293 12776

919
11827 306 311 12434
13933 306 306 12652
14771 306 304 12729

929
12953 309 313 12692
14011 309 310 12797
18229 309 302 13149

937
1823 56 206 10150
12401 312 318 12742

941
2521 78 239 10634
10781 313 324 12606

947 3917 122 282 11303

953
6343 198 322 12038
8237 257 333 12397
16693 317 316 13367

967 8243 257 338 12580
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R Randomized projective coordinates

Rather than directly transmitting an NTRU public key h as an element of R/q,
one can transmit it as two elements d, hd ∈ R/q, where d is chosen as a uniform
random invertible element of R/q. This was proposed by Banks and Shparlinski
in [11] (along with the idea of not requiring h to be invertible), and was reused in
[12] for an analogous code-based cryptosystem “CAKE”. This is what would be
called “randomized projective coordinates” in the ECC context, whereas simply
sending h would be called “affine coordinates”.

The advantage of representing h as a fraction (hd)/d is that, for Quotient
NTRU, the receiver can skip the division in the secret computation of the public
key h. The receiver instead computes h as a fraction, and then multiplies the
numerator and denominator by a uniform random invertible element of R/q to
hide all information beyond what h would have revealed.

The obvious disadvantage of sending d, hd is that public keys become twice as
large; a further disadvantage is that arithmetic on h turns into arithmetic on both
d and hd. Key size is important, and we expect key generation to be amortized
across many uses of h, so we have skipped this alternative in Streamlined NTRU
Prime. We have also skipped the idea of supporting both key formats as a run-
time option: this would complicate implementations.

S Fast sorting, and fast constant-time sorting

We wrote a simple general-purpose library to sort an array of n signed 32-bit
integers in constant time. Here “constant time” means that the time depends
only on n, not on the values of the integers; all branches and all memory addresses
are independent of the values of the integers.

Our library takes approximately 17.8n Haswell cycles for n = 16; 20.6n
Haswell cycles for n = 256; 25.3n Haswell cycles for the case n = 761 used
in Appendix T; 25.7n Haswell cycles for n = 1024; 31.6n Haswell cycles for
n = 4096; 67.5n Haswell cycles for n = 65536 (no longer fitting into level-
1 cache); and 131.5n Haswell cycles for n = 1048576 (no longer fitting into
level-2 cache). The library sorts the array in place, using a negligible amount of
temporary storage.

For comparison, [58] reported that Intel’s “Integrated Performance Primi-
tives” library took about 130n Haswell cycles for n = 1000 and about 160n
Haswell cycles for n = 1000000. These results use radix sort, which is not con-
stant time (memory addresses depend on the values of the integers being sorted,
presumably leaking information through cache timing) and not in-place.

We are not aware of any faster Haswell results than IPP in the literature. Our
library is about 5× faster for n = 1000 and about 1.2× faster for n = 1000000,
setting new speed records for in-memory sorting at a wide range of sizes.

We now explain how we constructed our sorting library.
Most sorting methods (see generally [75]) fail our constant-time requirement

when they are implemented in a straightforward way. There are easy generic
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void int32_sort(crypto_int32 *x,int n)
{
  int top,p,q,i;

  if (n < 2) return;
  top = 1;
  while (top < n - top) top += top;

  for (p = top;p > 0;p >>= 1) {
    for (i = 0;i < n - p;++i)
      if (!(i & p))
        minmax(x + i,x + i + p);
    for (q = top;q > p;q >>= 1)
      for (i = 0;i < n - q;++i)
        if (!(i & p))
          minmax(x + i + p,x + i + q);
  }
}

Fig. S.1. Reference implementation of Batcher’s merge exchange.

transformations into constant-time algorithms, but the resulting algorithms typ-
ically take time quadratic in n. The main exceptions are sorting networks.

An n-input sorting network is a sequence of instructions that correctly sorts
every possible n-entry array (K0,K1, . . . ,Kn−1). Each instruction is a pair (i, j),
specifying that array entriesKi andKj are replaced by, respectively, min{Ki,Kj}
and max{Ki,Kj}. As Knuth puts it in [75, Section 5.3.4], a sorting network is
an “oblivious sequence of comparisons, in the sense that whenever we compare
Ki versus Kj the subsequent comparisons for the case Ki < Kj are exactly the
same as for the case Ki > Kj , but with i and j interchanged”.

This obliviousness—the fact that the comparison is forgotten after it is used
to sort (Ki,Kj), and that the indices (i, j) are then independent of the input—
allows a particularly cheap transformation into a constant-time sorting algo-
rithm: one simply has to perform each min-max computation in constant time.
This approach to constant-time sorting is certainly not new: it was used in, e.g.,
[21].

However, the same obliviousness also has a well-known cost. The sorting net-
work we use (see below) involves (1/4)(e2−e+4)n−1 comparisons in the simplest
case n = 2e, while a non-oblivious comparison-based sorting algorithm such as
heapsort involves only about en comparisons, saving a factor around e/4. Sort-
ing networks are thus generally believed to be non-competitive in performance,
except when n is tiny.

We point out that well-known trends in CPU microarchitecture are making
sorting networks competitive for a much wider range of n. Concretely, the vector
units on a single Haswell core can, every cycle, perform 8 “min” operations on
32-bit integers and also 8 “max” operations on 32-bit integers. There are also
separate load/store units that can load 16 32-bit integers every cycle and store 8
32-bit integers every cycle. The Haswell is far less efficient at performing the basic
operations used in other sorting algorithms, such as data-dependent branches or
(in radix sort) updates of counters at variable memory locations.
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The data flow in vector units is constrained. For example, the “min” op-
eration computes a 256-bit vector (min{a0, b0}, . . . ,min{a7, b7}) given vectors
(a0, . . . , a7) and (b0, . . . , b7). If one wants to instead compare, e.g., a0 with b3
then a vector permutation is required, taking some extra time. The cost of a
sorting network thus depends not only on the number of min-max operations,
but also on how those operations are laid out.

We use the classic “odd-even merging network” introduced by Batcher [13]
in 1968. Figure S.1 is a C translation of Knuth’s “merge exchange” in [75, Algo-
rithm 5.2.2M], a simplified presentation of Batcher’s odd-even merging network.
Beware that many other descriptions of Batcher’s method require n to be a
power of 2.

To understand the vectorizability of this sorting network, consider the first i
loop in Figure S.1 for n = 761. The top variable is set to 512, and the p variable
starts at 512. The i loop compares x[0] with x[512], compares x[1] with x[513],
etc., and finally compares x[248] with x[760]. To vectorize this we simply pick up
x[0] through x[7] as a vector, pick up x[512] through x[519] as a vector, perform
vector min and max operations, etc.

Later in the computation, when p is small, the vectorization becomes some-
what more intricate, requiring some permutations of vector entries.

The most obvious bottleneck in our computation is 2 cycles consumed by
2 vector stores for each 8 min-max operations. We could reduce the number of
stores by merging levels of min-max operations, although this would complicate
the control flow. More importantly, this bottleneck explains only about 5.9n
Haswell cycles for, e.g., n = 1024; we have not yet analyzed the gap but suspect
that there is still room for improvement.

T Further notes on constant-time computations

This appendix reviews ways to perform various computations inside NTRU
in constant time. The sorting subroutine used here is presented separately in
Appendix S because sorting is of interest far beyond the NTRU context. Any
bounded-time computation can be mechanically converted into a constant-time
computation, but the resulting time often expands quadratically; obtaining a fast
constant-time computation often requires a new algorithm, as in Appendix S.

T.1. Generating polynomials of specified weight. The obvious way to
generate t-small polynomials is choose a random position for a nonzero coefficient
and repeat until the weight has reached 2t. This takes variable time, raising
security questions. Here is a constant-time alternative:

– Generate a target list (±1, . . . ,±1, 0, . . . , 0) starting with 2t nonzero entries,
each chosen randomly as either 1 or −1.

– Use a constant-time algorithm to sort a list of p random numbers, and at the
same time apply the same permutation to the target list. (This is a standard
technique to randomly shuffle a target list—see, e.g., [75, Section 5, first
answer to Exercise 11, or Exercise 13 in the next edition]—plus the extra
constraint of selecting a constant-time sorting algorithm.)
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This is theoretically perfect when the numbers do not collide.

We generate 32-bit random numbers, replace the bottom 2 bits with the
target list, sort the numbers, and extract the bottom 2 bits. This produces 30-
bit collisions once every few thousand ciphertexts, making smaller coefficients
marginally more likely to appear closer to the beginning of the list. We could
check for these collisions and restart if they occur, but the information leak is
negligible.

Modern stream ciphers take only a few thousand cycles to generate 761 ran-
dom 32-bit numbers. See Appendix S for the cost of sorting those numbers.

T.2. Inversion inside key generation. Key generation for Quotient NTRU
involves computing a reciprocal (unless randomized projective coordinates are
used; see Appendix R). In particular, key generation for Streamlined NTRU
Prime involves computing 1/f in R/q = (Z/q)[x]/(xp − x − 1) and computing
1/g in R/3 = (Z/3)[x]/(xp − x− 1).

In NTRU Prime, Z/q and R/q are fields of size q and qp respectively, so
inversion is the same as computing (q − 2)nd powers and (qp − 2)nd powers
respectively by Fermat’s little theorem. Standard exponentiation algorithms take
constant time when the underlying multiplication algorithms take constant time.
Similar comments apply to R/3: the ring R/3 is not necessarily a field, but one
can still find an appropriate exponent, or invert separately modulo each factor
of xp − x− 1.

We instead use Stevin’s 16th-century gcd algorithm (see, e.g., [84]), the poly-
nomial version of Euclid’s gcd algorithm. “Extended” gcd computations are the
textbook method to compute modular reciprocals. A variant of Stevin’s gcd al-
gorithm often used for NTRU is the “almost-inverse” gcd algorithm (see, e.g.,
[111]), the polynomial version of Stein’s binary gcd algorithm [115], which focuses
on eliminating low bits rather than high bits.

Each of these gcd algorithms is naturally expressed as a series of divisions. In
particular, Stevin’s algorithm is a series of divisions. Each division, implemented
in the textbook way, is a series of single-coefficient division steps. The number
of division steps inside the division is a variable, the degree of the quotient.

As in [49], we replace the two-level series of series of division steps with
a single-level series of division steps. The point of [49] is that the resulting
algorithm—applied to the special case where one input is a power of x, and stop-
ping with a “half-gcd”—is, aside from labeling, exactly the Berlekamp–Massey
algorithm [89] for detecting linear recurrences.

Each conditional branch in the Berlekamp–Massey algorithm is a simple in-
put selection, which can be efficiently simulated by constant-time arithmetic.
There are also multiplications by variable powers of x, which at low cost can be
absorbed into constant-time multiplications by x in earlier steps. A constant-
time version of the Berlekamp–Massey algorithm was used in [21].

A generalized constant-time version of Stevin’s algorithm is surprisingly sim-
ple when the details are chosen carefully. The algorithm state consists of two
integers d, e; a polynomial f of constant degree p; and a polynomial g of de-



52 D.J. Bernstein, C. Chuengsatiansup, T. Lange & C. van Vredendaal

gree at most p. These polynomials are, respectively, xp−d and xp−e times two
remainders appearing in Stevin’s algorithm. The main loop has three steps:

– Subtract a multiple of f from g to clear the coefficient of xp in g.

– Multiply g by x, while subtracting 1 from e.

– If e < d and the coefficient of xp in g is nonzero, swap (d, f) with (e, g).

For the extended version of the algorithm one also keeps track of f and g as
multiples of the original g modulo the original f .

Our current key-generation software uses about 6 million cycles. With more
effort one can eliminate most of these cycles, but our current key-generation cost
is already negligible. Specifically:

– The standard design goal of IND-CCA2 security means that it is safe to
generate a key once and use the key any number of times. The New Hope
situation [5] is completely different: New Hope is not designed to resist, and
does not resist, chosen-ciphertext attacks, so it generates a new key for every
ciphertext, so its key-generation time is important.

– Forward secrecy (see generally Appendix E) does not require constant gener-
ation of new keys. A typical quad-core 3GHz server generating a new short-
term key every minute is using under 1/100000 of its CPU time on key
generation with our current software.

– A user who (for some reason) wants to generate many keys more quickly than
this can use Montgomery’s trick to batch the inversions. Montgomery’s trick
replaces (e.g.) 1000 inversions with 2997 multiplications and just 1 inversion.
This reduces the cost of generating each key below 300000 cycles.

– If, despite all of the above, a user still notices the cost of our inversion soft-
ware: “Fast gcd” techniques incorporate subquadratic-time multiplication
methods such as Karatsuba’s method, and are compatible with constant-
time computations.

Our software is analogous to the original Curve25519 software [17], which em-
phasized encryption/decryption speed and did not bother speeding up occasional
key-generation computations.

T.3. Product-form polynomials. NTRU papers starting with [66] have used
“product-form polynomials”, i.e., polynomials of the form AB + C. The weight
of AB + C is generally higher than the total weight of A,B,C (since the terms
of A and B cross-multiply), and a rather small total weight of A,B,C maintains
security against all known attacks. To multiply by AB + C one can multiply
by A, then multiply by B, then multiply the original input by C. This saves
time for non-constant-time sparse-polynomial-multiplication algorithms, but it
loses time for constant-time algorithms, so we ignore this idea. Even with this
idea, the best speeds for NTRU using sparse polynomial multiplication are not
competitive with our speeds.
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Z Sage script (reference implementation)

Our reference implementation of Streamlined NTRU Prime 4591761 is the Sage
script in Figures Z.1 and Z.2 (subsequent pages).

We also have a portable C reference implementation. Unlike the Sage script,
the C reference implementation allows “benign malleability” of ciphertexts, as
defined in [109]. Specifically, each 32-bit ciphertext word encodes three integers
between 0 and 1530; if larger integers appear then they are silently reduced
modulo 1531. Similar comments apply to public keys.

Except for this malleability, the reference implementations are intended to
produce identical results. The Sage script is more concise, so any discrepancy
should be presumed to be a bug in the C implementation. We have checked that
the two implementations produce identical outputs in a series of tests where the
underlying random32 functions are synchronized. Further auditing is of course
required before deployment of the software.
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p = 761; q61 = 765; q = 6*q61+1; t = 143
Zx.<x> = ZZ[]; R.<xp> = Zx.quotient(x^p-x-1)
Fq = GF(q); Fqx.<xq> = Fq[]; Rq.<xqp> = Fqx.quotient(x^p-x-1)
F3 = GF(3); F3x.<x3> = F3[]; R3.<x3p> = F3x.quotient(x^p-x-1)

import hashlib
def hash(s): h = hashlib.sha512(); h.update(s); return h.digest()

def random32(): return randrange(-2^31,2^31)
def random32even(): return random32() & (-2)
def random321mod4(): return (random32() & (-3)) | 1
def randomrange3(): return ((random32() & 0x3fffffff) * 3) >> 30

import itertools
def concat(lists): return list(itertools.chain.from_iterable(lists))

def nicelift(u):
  return lift(u + q//2) - q//2

def nicemod3(u): # r in {0,1,-1} with u-r in {...,-3,0,3,...}
  return u - 3*round(u/3)

def int2str(u,bytes):
  return ''.join(chr((u//256^i)%256) for i in range(bytes))

def str2int(s):
  return sum(ord(s[i])*256^i for i in range(len(s)))

def seq2str(u,radix,batch,bytes): # radix^batch <= 256^bytes
  return ''.join(int2str(sum(u[i+t]*radix^t for t in range(batch)),bytes)
                 for i in range(0,len(u),batch))

def str2seq(s,radix,batch,bytes):
  u = [str2int(s[i:i+bytes]) for i in range(0,len(s),bytes)]
  return concat([(u[i]//radix^j)%radix for j in range(batch)] for i in range(len(u)))

def encodeZx(m): # assumes coefficients in range {-1,0,1}
  m = [m[i]+1 for i in range(p)] + [0]*(-p % 4)
  return seq2str(m,4,4,1)

def decodeZx(mstr):
  m = str2seq(mstr,4,4,1)
  return Zx([m[i]-1 for i in range(p)])

def encodeRq(h):
  h = [q//2 + nicelift(h[i]) for i in range(p)] + [0]*(-p % 5)
  return seq2str(h,6144,5,8)[:1218]

def decodeRq(hstr):
  h = str2seq(hstr,6144,5,8)
  if max(h) >= q: raise Exception("pk out of range")
  return Rq([h[i]-q//2 for i in range(p)])

def encoderoundedRq(c):
  c = [q61 + nicelift(c[i]/3) for i in range(p)] + [0]*(-p % 6)
  return seq2str(c,1536,3,4)[:1015]

def decoderoundedRq(cstr):
  c = str2seq(cstr,1536,3,4)
  if max(c) > q61*2: raise Exception("c out of range")
  return 3*Rq([c[i]-q61 for i in range(p)])

Fig. Z.1. Complete non-constant-time reference implementation of Streamlined NTRU
Prime 4591761 using the Sage computer-algebra system, part 1: auxiliary functions for
encoding and decoding of polynomials as byte strings.
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def randomR(): # R element with 2t coeffs +-1
  L = [random32even() for i in range(2*t)]
  L += [random321mod4() for i in range(p-2*t)]
  L.sort()
  L = [(L[i]%4)-1 for i in range(p)]
  return Zx(L)

def keygen():
  while True:
    g = Zx([randomrange3()-1 for i in range(p)])
    if R3(g).is_unit(): break
  grecip = [nicemod3(lift(gri)) for gri in list(1/R3(g))]
  f = randomR()
  h = Rq(g)/(3*Rq(f))
  pk = encodeRq(h)
  return pk,encodeZx(f) + encodeZx(grecip) + pk

def encapsulate(pk):
  h = decodeRq(pk)
  r = randomR()
  hr = h * Rq(r)
  m = Zx([-nicemod3(nicelift(hr[i])) for i in range(p)])
  c = Rq(m) + hr
  fullkey = hash(encodeZx(r))
  return fullkey[:32] + encoderoundedRq(c),fullkey[32:]

def decapsulate(cstr,sk):
  f,ginv,h = decodeZx(sk[:191]),decodeZx(sk[191:382]),decodeRq(sk[382:])
  confirm,c = cstr[:32],decoderoundedRq(cstr[32:])
  f3mgr = Rq(3*f) * c
  f3mgr = [nicelift(f3mgr[i]) for i in range(p)]
  r = R3(ginv) * R3(f3mgr)
  r = Zx([nicemod3(lift(r[i])) for i in range(p)])
  hr = h * Rq(r)
  m = Zx([-nicemod3(nicelift(hr[i])) for i in range(p)])
  checkc = Rq(m) + hr
  fullkey = hash(encodeZx(r))
  if sum(r[i]==0 for i in range(p)) != p-2*t: return False
  if checkc != c: return False
  if fullkey[:32] != confirm: return False
  return fullkey[32:]

for keys in range(5):
  pk,sk = keygen()
  for ciphertexts in range(5):
    c,k = encapsulate(pk)
    assert decapsulate(c,sk) == k

print len(pk),'bytes in public key'
print len(sk),'bytes in secret key'
print len(c),'bytes in ciphertext'
print len(k),'bytes in shared secret'

Fig. Z.2. Complete non-constant-time reference implementation of Streamlined NTRU
Prime 4591761 using the Sage computer-algebra system, part 2: key generation, encap-
sulation, decapsulation, tests.
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