
Factoring RSA keys from certified smart cards:
Coppersmith in the wild

Daniel J. Bernstein1,2, Yun-An Chang3, Chen-Mou Cheng3, Li-Ping Chou4,
Nadia Heninger5, Tanja Lange2, and Nicko van Someren6

1 Department of Computer Science, University of Illinois at Chicago, USA
djb@cr.yp.to

2 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, the Netherlands

tanja@hyperelliptic.org
3 Research Center for Information Technology Innovation

Academia Sinica, Taipei, Taiwan
{ghfjdksl,doug}@crypto.tw

4 Department of Computer Science and Information Engineering
Chinese Culture University, Taipei, Taiwan

randomalg@gmail.com
5 Department of Computer and Information Science, University of Pennsylvania

nadiah@cis.upenn.edu
6 Good Technology Inc.

nicko@good.com

Abstract. This paper explains how an attacker can efficiently factor 184
distinct RSA keys out of more than two million 1024-bit RSA keys down-
loaded from Taiwan’s national “Citizen Digital Certificate” database.
These keys were generated by government-issued smart cards that have
built-in hardware random-number generators and that are advertised as
having passed FIPS 140-2 Level 2 certification.

These 184 keys include 103 keys that share primes and that are efficiently
factored by a batch-GCD computation. This is the same type of com-
putation that was used last year by two independent teams (USENIX
Security 2012: Heninger, Durumeric, Wustrow, Halderman; Crypto 2012:
Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter) to factor tens of thou-
sands of cryptographic keys on the Internet.

The remaining 81 keys do not share primes. Factoring these 81 keys re-
quires taking deeper advantage of randomness-generation failures: first
using the shared primes as a springboard to characterize the failures,
and then using Coppersmith-type partial-key-recovery attacks. This is
the first successful public application of Coppersmith-type attacks to
keys found in the wild.

Keywords: RSA, smart cards, factorization, Coppersmith, lattices

This work was supported by NSF (U.S.) under grant 1018836, by NWO (Nether-
lands) under grants 639.073.005 and 040.09.003, and by NSC (Taiwan) under grant
101-2915-I-001-019. Cheng worked on this project while at Technische Universität
Darmstadt under the support of Alexander von Humboldt-Stiftung. Heninger worked
on this project while at Microsoft Research New England. Permanent ID of this doc-
ument: 278505a8b16015f4fd8acae818080edd. Date: 2013.09.16.

2 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

1 Introduction

In 2003, Taiwan introduced an e-government initiative to provide a national
public-key infrastructure for all citizens. This national certificate service allows
citizens to use “smart” ID cards to digitally authenticate themselves to govern-
ment services, such as filing income taxes and modifying car registrations online,
as well as to a growing number of non-government services. RSA keys are gen-
erated by the cards, digitally signed by a government authority, and placed into
an online repository of “Citizen Digital Certificates”.

On some of these smart cards, unfortunately, the random-number generators
used for key generation are fatally flawed, and have generated real certificates
containing keys that provide no security whatsoever. This paper explains how
we have computed the secret keys for 184 different certificates.

Public-key
database

batch GCD

##

batch trial division

))

batch trial division

--
univariate

Coppersmith

..
bivariate

Coppersmith

..

103
secret keys

include

��

inspect repeated primes,
observe patterns,

generalize

��
164 patterns

primes

qq

speculatively
generalize

further

��

primes
oo

primes
qq

121
secret keys

include

��
125

secret keys

include

��

668 patterns

primes

aa

172
secret keys

include

��
184

secret keys

Fig. 1. Retrospective summary of the data flow leading to successful factorizations.
After successfully factoring keys using a batch GCD algorithm, we characterized the
failures, and used trial division to check for broader classes of specified primes (input
on the right) as exact divisors. We then extended the attack and applied Coppersmith’s
method to check for the specified primes as approximate divisors.

Factoring RSA keys from certified smart cards: Coppersmith in the wild 3

1.1 Factorization techniques

Bad randomness is not new. Last year two independent research teams [13,17]
exploited bad randomness to break tens of thousands of keys of SSL certificates
on the Internet, a similar number of SSH host keys, and a few PGP keys.

Our starting point in this work is the same basic attack used in those papers
against poorly generated RSA keys, namely scanning for pairs of distinct keys
that share a common divisor (see Section 3). The basic GCD attack, applied to
the entire database of Citizen Digital Certificates, shows that 103 keys factor
into 119 different primes.

We go beyond this attack in several ways. First, the shared primes provide
enough data to build a model of the prime-generation procedure. It is surprising
to see visible patterns of non-randomness in the primes generated by these smart
cards, much more blatant non-randomness than the SSL key-generation failures
identified by [13,17]. One expects smart cards to be controlled environments with
built-in random-number generators, typically certified to meet various standards
and practically guaranteed to avoid such obvious patterns. For comparison, the
SSL keys factored last year were typically keys generated by low-power networked
devices such as routers and firewalls running the Linux operating system while
providing none of the sources of random input that Linux expects.

The next step is extrapolation from these prime factors: we hypothesize a
particular model of randomness-generation failures consistent with 18 of the
common divisors. The same model is actually capable of generating 164 different
primes, and testing all of those primes using batch trial division successfully
factors further keys. One might also speculate that the cards can generate primes
fitting a somewhat broader model; this speculation turns out to be correct,
factoring a few additional keys and bringing the total to 125. See Section 4 for
a description of the patterns in these primes.

There are also several prime factors that are similar to the 164 patterns
but that contain sporadic errors: some bits flipped here and there, or short
sequences of altered bits. We therefore mount several Coppersmith-style lattice-
based partial-key-recovery attacks to efficiently find prime divisors close to the
patterns. The univariate attacks (Section 5) allow an arbitrary stretch of er-
rors covering the bottom 40% of the bits of the prime. The bivariate attacks
(Section 6) allow two separate stretches of errors. The internal structure of the
patterns makes them particularly susceptible to these attacks. These attacks
produce dozens of additional factorizations, raising the total to 184.

In the end nearly half of the keys that we factored did not share any common
divisors with other keys; most of these were factored by the Coppersmith-style
attacks. This is, to our knowledge, the first publicly described instance of a
Coppersmith-style attack breaking keys in the wild.

1.2 Certification

The flawed keys were generated by government-issued smart cards that both the
certification authority and manufacturer advertise as having passed stringent
standards certifications. See Section 2.1.

4 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

It is clear from their externally visible behavior, as shown in this paper, that
the random-number generators used to generate the vulnerable keys actually fall
far short of these standards. This demonstrates a failure of the underlying hard-
ware and the card’s operating system, both of which are covered by certification.

1.3 Response to vulnerabilities

When we reported the common-divisor vulnerabilities to government authorities,
their response was to revoke exactly the certificates sharing common factors and
to issue new cards only to those users. See Section 7 for more details.

Our further factorizations demonstrate how dangerous this type of response
is. Randomness-generation failures sometimes manifest themselves as primes ap-
pearing twice, but sometimes manifest themselves as primes that appear only
once, such as the primes that we found by Coppersmith-type attacks. Both cases
are vulnerable to attackers with adequate models of the randomness-generation
process, while only the first case is caught by central testing for repeated primes.

We endorse the idea of centrally testing RSA moduli for common divisors as
a mechanism to detect some types of randomness-generation failures. We em-
phasize that finding repeated primes is much more than an indication that those
particular RSA keys are vulnerable: it shows that the underlying randomness-
generation system is malfunctioning. The correct response is not merely to elim-
inate those RSA keys but to revoke all keys generated with that generation of
hardware and throw away the entire randomness-generation system, replacing it
with a properly engineered system.

We also emphasize that an absence of common divisors is not an indication
of security. If the primes generated by these smart cards had been modified to
include a card serial number as their top bits then the keys would have avoided
common divisors but the primes would still have been reasonably predictable to
attackers. Our work illustrates several methods of translating different types of
malfunctioning behavior into concrete vulnerabilities. There are many potential
vulnerabilities resulting from bad randomness; it is important to thoroughly test
every component of a random-number generator, not merely to look for certain
types of extreme failures.

2 Background

2.1 The Taiwan Citizen Digital Certificate program

Taiwan’s Citizen Digital Certificates (CDCs) are a standard means of authenti-
cation whenever Taiwanese citizens want to do business over the Internet with
the government and an increasing number of private companies.

CDCs are issued by the Ministry of Interior Certificate Authority (MOICA),
a level 1 subordinate CA of the Taiwanese governmental PKI. Since the pro-
gram’s launch in 2003, more than 3.5 million CDCs have been issued, providing
public key certificate and attribute certificate services. These digital certificates

Factoring RSA keys from certified smart cards: Coppersmith in the wild 5

form a basis for the Taiwanese government’s plan to migrate to electronic cer-
tificates from existing paper certificates for a range of applications including na-
tional and other identification cards, driver’s licenses, and various professional
technician licenses.

Today, Taiwanese citizens can already use the CDC to authenticate them-
selves over the Internet in a number of important government applications, e.g.,
to file personal income taxes, update car registration, and make transactions
with government agencies such as property registries, national labor insurance,
public safety, and immigration. In addition, the CDC is accepted as a means
of authentication by a variety of organizations such as the National Science
Council, several local governments, and recently some private companies such
as Chunghwa Telecom. Overall, the CDC program appears quite successful as a
two-sided network, as it has attracted an increasing number of both applications
and subscribers.

Certificate registration: In order to generate CDCs, citizens bring their (paper)
ID cards to a government registration office. A government official places the
(smart) ID card into a registration device. The device prompts the card to gener-
ate a new cryptographic key, and the public key is incorporated into a certificate
to be signed by MOICA. The certificate is made available in a database online
for authentication purposes. In general, an individual will have two certificates:
one for signing, and one for encryption, each with distinct keys.

Standards certifications: MOICA states that these cards are “high security”,
and “have been accredited to FIPS 140-1 level 2”, and also that “A private
key is created inside and the private key can’t export from IC card after key
created”. (See [20] or search for “FIPS” on MOICA’s website http://moica.

nat.gov.tw/html/en/index.htm.) For comparison, the SSL keys factored last
year were generated by software-hardware combinations that had never claimed
to be evaluated for cryptographic security, such as Linux running on a home
router.

2.2 Collecting certificates

In March 2012, inspired by the results of [13] and [17], we retrieved 3002273
CDCs from the MOICA LDAP directory at ldap://moica.nat.gov.tw. Out
of these CDCs, 2257569 have 1024-bit RSA keys, while the remaining, newer
744704 have 2048-bit RSA keys, as in 2010 MOICA migrated to 2048-bit RSA
and stopped issuing certificates of 1024-bit RSA keys.

The 1024-bit CDCs contain 2086177 distinct moduli, of which 171366 moduli
appear more than once. The repeated moduli appear to all be due to expired cer-
tificates still contained in the database, which contain the same keys as renewal
certificates issued to the same individuals.

http://moica.nat.gov.tw/html/en/index.htm
http://moica.nat.gov.tw/html/en/index.htm
ldap://moica.nat.gov.tw

6 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

2.3 Random number generation

While generating high-quality random numbers is critical to the security of cryp-
tographic systems, it is also notoriously difficult to do. Non-deterministic behav-
ior is considered to be a fault in almost every other component of a computer,
but it is a crucial component of generating random numbers that an attacker
cannot predict. Several national and international standards for random number
generation [22,1,11] specify correct behavior for these types of systems. In gen-
eral, software pseudo-random number generators require a significant amount of
entropy before their output is useful for cryptographic purposes.

As we will see later in the paper, the smart cards used in the PKI we examined
fail to follow many well-known best practices and standards in hardware random
number generation: they appear to utilize a source of randomness that is prone
to failing, they fail to perform any run-time testing before generating keys, and
they clearly do not apply any post-processing to the randomness stream. The
lack of testing or post-processing causes the initial randomness-generation failure
to be much more damaging than it would have been otherwise.

Analog RNG circuits: An analog circuit is the standard choice when hardware
designers have the luxury of designing dedicated circuits for random-number
generation. An analog circuit allows the designer to obtain randomness from
simple quantum effects. While the use of radioactive decay is rare in commercial
products, the quantum noise exhibited by a current through a suitably biased
diode can be amplified and sampled to deliver a high-quality entropy source.

On-chip RNG circuits: Mixing analog and digital circuits on the same die
is costly, so chip designers often seek other sources of unpredictability. These
sources can include variation in gate propagation delays or gate metastability,
which exhibit inherent randomness. Designers can explicitly harness gate-delay
variation by building sets of free-running ring oscillators and sampling the be-
havior at hopefully uncorrelated intervals. To take advantage of randomness in
gate metastability, designers build circuits that output bits based on the time it
takes for the circuit to settle to a steady state, a variable which should be hard
to predict. These designs are often tricky to get right, as the chip fabrication
process can reduce or eliminate these variations, and subtle on-chip effects such
as inductive coupling or charge coupling between components can cause free-
running oscillators to settle into synchronised patterns and metastable circuits
to predictably land one way or the other depending on other components nearby
on the chip.

Handling entropy sources: Even with a perfectly unpredictable source of ran-
domness, care needs to be taken to convert the raw signal into usable random
numbers. Generally, designers characterize circuits in advance to understand the
entropy density, test the signal from the entropy source at run time, and run the
output through a compression function such as a cryptographically secure hash
function. These practices are required by a number of security standards such
as FIPS 140 [21].

Factoring RSA keys from certified smart cards: Coppersmith in the wild 7

3 Batch GCD

This section reviews the approach of [13,17] for detecting common factors in a
collection of RSA keys, and reports the results of this approach applied to the
collection of Citizen Digital Certificates.

If there are two distinct RSA moduli N1 = pq1 and N2 = pq2 sharing exactly
one prime factor p, then the greatest common divisor of N1 and N2 will be p.
Computing this GCD is fast, and dividing it out of N1 and N2 produces the
other factors q1 and q2.

Of course, this type of vulnerability should never arise for properly generated
RSA keys. However, since [13,17] had observed weak random-number generators
producing keys with repeated factors in the wild, we began by checking whether
there were repeated factors among the Citizen Digital Certificates.

Instead of the naive quadratic-time method of doing this computation (check-
ing each N1 against each N2), we used a faster batch-GCD algorithm using
product and remainder trees described in [2,13]. We used the C implementation
available at https://factorable.net/resources.html.

We ran this implementation on the 3192962 distinct RSA moduli and found
that 103 moduli were factored due to nontrivial common factors. This computa-
tion, parallelized across four cores of a 3.1GHz AMD FX-8120, finished in just
45 minutes.

4 Attacking patterned factors

A properly functioning random number generator would never generate identi-
cal 512-bit primes, so the discovery of repeated prime factors described in the
previous section immediately indicates that the random-number-generation pro-
cess producing these keys is broken. This section analyzes the structure of the
repeated factors generated by the flawed random-number generator and designs
a targeted attack against this structure.

The 103 moduli with repeated factors show a remarkable distribution of the
shared factors; see Figure 2. The complete list of factors found using the GCD
approach is given in Appendix A.

One prime factor, p110, appears a total of 46 times with different second
primes. The hexadecimal representation of this factor is

0xc00

002f9

which is the next prime after 2511 + 2510.
The next most common factor, repeated 7 times, is

0xc92424922492924992494924492424922492924992494924492424922492924

992494924492424922492924992494924492424922492924992494924492424e5

which displays a remarkable periodic structure. The binary representation of this
integer, excluding a few most and least significant bits, is a repeated sequence
of the string 001 with a “hiccup” every 16 bits.

https://factorable.net/resources.html

8 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

p29

p101

p11

p92

p110
p117

p111

p3

p108

p71

p5
p65

p100

p78

p112

p17

p104

p35

p36

p49

p70

p12

p118

p57

p61

p76

p113

p40

p84

p99

p22

p107

p26

p34

p89

p80 p95

p90

p8

p37

p82

p85

p116

p43p97

p98

p38

p106

p47

p50

p64

p114

p23

p46

p60

p7

p16

p59

p66

p33

p94

p53

p27

p73

p115

p15

p58

p63

p69

p62
p19

p39

p83
p6

p102

p68

p77

p18

p42

p81

p103

p31

p72

p91

p88

p45

p96
p79

p75

p67

p86

p54

p2

p52

p48

p25

p1

p13

p9

p109

p24

p44

p56

p32

p74

p41p105

p0

p4

p93
p51 p87

p14

p30

p21

p28

p55

p20

p10

Fig. 2. Relationships between keys with shared factors. Each ellipse represents a prime;
edges connect prime factors dividing the same modulus.

Nearly all of the shared prime factors had a similar and immediately apparent
periodic structure. We hypothesized that nearly every repeated prime factor had
been generated using the following process:

1. Choose a bit pattern of length 1, 3, 5, or 7 bits, repeat it to cover more than
512 bits, and truncate to exactly 512 bits.

2. For every 32-bit word, swap the lower and upper 16 bits.

3. Fix the most significant two bits to 11.

4. Find the next prime greater than or equal to this number.

We generated the 164 distinct primes of this form corresponding to all pat-
terns of length 1, 3, 5, and 7 and tested divisibility with each modulus. This
factored a total of 105 moduli, including 18 previously unfactored moduli, for a
total of 121.

Factoring RSA keys from certified smart cards: Coppersmith in the wild 9

None of the repeated primes exhibit a (minimal) period of length 9 or larger.
On the other hand, the data for period lengths 1, 3, 5, 7 shows that patterns with
longer periods typically appear in fewer keys than patterns with shorter periods,
and are thus less likely to appear as divisors of two or more keys, raising the
question of whether there are primes with larger periods that appear in only one
key and that are thus not found by the batch-GCD computation. We therefore
extended this test to include length-9 periods and length-11 periods. The length-
9 periods factored 4 more keys but the length-11 periods did not factor any new
keys, leading us to speculate that 3, 5, and 7 are the only factors of the period
length. We then ran a complete test on all length-15 patterns but did not find
any further factors. The total number of certificates broken by these divisibility
tests, together with the initial batch-GCD computation, is 125.

Sporadic errors: The handful of shared prime factors in our sample of GCD-
factored keys that did not match the above form were differing from patterns in
very few positions. We experimented with finding more factors using brute-force
search starting from 0xc0...0 and found a few new factors, but these factors are
more systematically and efficiently found using LLL in Coppersmith’s method,
as described in the next section.

We also experimented with searching for sporadic errors in factors using
the techniques of Heninger and Shacham [14] and Paterson, Polychroniadou,
and Sibborn [23]. The main idea is to assume that both of the factors of a
weak modulus share nearly all bits in common with a known pattern, with only
sporadic errors in each. It is then possible to recover the primes by enumerating,
bit by bit, a search tree of all possible prime factors, and using depth- or breadth-
first search with pruning to find a low-Hamming weight path through the search
tree of all solutions.

Unfortunately, there are a few difficulties in applying this idea to the case at
hand. The first is that because the primes are generated by incrementing to the
next prime, a single sporadic error is likely to cause the least significant 9 bits of
each prime to appear random (except for the least significant bit which is set to
1), so generating a solution tree from the least significant bits necessarily begins
with that much brute forcing. Second, there is only a single constraint on the
solutions (the fact that pq = N), instead of four constraints, which results in
a lower probability of an incorrect solution being pruned than in the examples
considered by [14,23]. And finally, in order to apply the algorithms, we must
guess the underlying pattern, which in our case requires applying the algorithm
to 1642 possibilities for each modulus.

Applying this algorithm using only the all-zeros pattern for both factors to
the 45 moduli with 20 bits of consecutive zeros took 13 minutes and factored 5
moduli. All of these moduli were also factored by the GCD method or Copper-
smith methods described in the next section.

10 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

5 Univariate Coppersmith

Several of the factors computed via the GCD algorithm in Section 3 follow the
bit patterns described in Section 4, but are interrupted by what appear to be
sporadic errors. Coppersmith’s method [6,7] factors RSA moduli if the top bits
of the primes are known, which matches our situation if the errors appear in the
bottom few bits of a factor. The method uses lattice basis reduction to factor in
polynomial time if at least half of the most significant bits of a prime factor are
known; however, since the running time scales very poorly as one approaches this
bound, we will be more interested in less optimal parameters that are efficient
enough to apply speculatively to millions of keys.

This section presents this method following Howgrave-Graham [16] for lat-
tices of dimension 3 and 5 and gives an outlook of how more keys could be
factored using larger dimensions. The idea is as follows: we assume that some
prime factor p of N is of the form

p = a + r

where a is a known 512-bit integer (one of the bit patterns described in the
previous section) and r is a small integer error to account for a sequence of bit
errors (and incrementing to next prime) among the least significant bits of p.

In the Coppersmith/Howgrave-Graham method, we can write a polynomial

f(x) = a + x

and we would like to find a root r of f modulo a large divisor of N (of size
approximately N1/2 ≈ p). Let X be the bound on the size of the root we are
searching for. We will use lattice basis reduction to construct a new polynomial
g(x) where g(r) = 0 over the integers, and thus we can factor g to discover r.

Let L be the lattice generated by the rows of the basis matrixX2 Xa 0
0 X a
0 0 N


corresponding to the coefficients of the polynomials Xxf(Xx), f(Xx), N . Any
vector in L can be written as an integer combination of basis vectors, and,
after dividing by the appropriate power of X, corresponds to the coefficients
of a polynomial g(x) which is an integer combination of f and N , and is thus
divisible by p by construction. A prime p is found by this method if we can find
g such that g(ri) ≡ 0 mod p holds not only modulo p but over the integers. The
latter is ensured if the coefficients of g are sufficiently small, which corresponds
to finding a short vector in L.

To find such a short vector, we apply the LLL lattice basis reduction algo-
rithm [18]. To finish the algorithm, we regard the shortest vector in the reduced
basis as the coefficients of a polynomial g(Xx), compute the roots ri of g(x),
and check if a + ri divides N . If so, we have factored N .

Factoring RSA keys from certified smart cards: Coppersmith in the wild 11

The shortest vector v1 found by LLL is of length

|v1| ≤ 2(dimL−1)/4(detL)1/ dimL,

which must be smaller than p for the attack to succeed.
In our situation this translates to

21/2
(
X3N

)1/3
< N1/2 ⇔ X < 2−1/2N1/6,

so for N ≈ 21024 we can choose X as large as 2170, meaning that for a fast
attack using dimension-3 lattices up to the bottom third of a prime can deviate
from the pattern a. In the following we ignore the factor 2(dimL−1)/4 since all
lattices we deal with are of small dimension and the contribution compared to
N is negligible.

5.1 Experimental results

A straightforward implementation using Sage 5.8 took about one hour on one
CPU core to apply this method for one of the 164 patterns identified in Section 4.
Running it for all 164 patterns factored 160 keys, obviously including all 105 keys
derived from the patterns without error, and found 39 previously unfactored
keys.

It is worth noting that the 160 keys included all but 2 of the 103 keys factored
with the GCD method, showing that most of the weak primes are based on the
patterns we identified and that errors predominantly appeared in the bottom
third of the bits. The missing 2 keys are those divisible by 0xe0000...0f. In-
cluding 0xd0000...0, 0xe0000...0, 0xf0000...0 as additional bit patterns
did not reveal any factors beyond the known ones, ruling out the hypothesis that
the prime generation might set the top 4 bits rather than just 2. Instead this
prime must have received a bit error in the top part.

5.2 Handling more errors

Coppersmith’s method can find primes with errors in up to 1/2 of their bits using
lattices of higher dimension. Getting close to this bound is prohibitively expen-
sive, but trying somewhat larger dimensions than 3 is possible. For dimension 5
we used basis

{N2, Nf(xX), f2(xX), xXf2(xX), (xX)2f2(xX)}

which up to LLL constants handles X < N1/5, i.e. up to 204 erroneous bottom
bits in p for N of 1024 bits. The computation took about 2 hours per pattern
and revealed 6 more factors.

We did not use higher dimensions because the “error” patterns we observed
are very sparse making it more profitable to explore multivariate attacks (see
Section 6).

12 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

5.3 Errors in the top bits

The factor 0xe000...f (2511+2510+2509+15) appeared as a common factor after
taking GCDs but was not found by the lattice attacks described in this section
applied to the basic patterns described in Section 4. We can apply Coppersmith’s
attack to search for errors in higher bits of p by defining the polynomial f as
f(x) = a + 2tx. Here t is a bit offset giving the location of the errors we hope
to learn. The method and bounds described in this section apply as well to this
case.

However, since we hypothesize that the prime factors are generated by incre-
menting to the next prime after a sequence of bits output by the flawed RNG,
we will not know the least significant bits of a because they have been modified
in the prime generation process. This problem might speculatively be overcome
by brute forcing the m least significant bits of each pattern: for each application
of the algorithm to a single pattern a, we would apply the algorithm to the 2m−1

patterns generated by fixing a and varying the bottom m bits, with the least
significant bit always fixed to 1. This will find factors if finding the next prime
from the base string with errors did not require incrementing by more than those
bottom m bits.

The following rough analysis suggests that for this attack to have a 50%
chance of success, we need to apply the algorithm to 128 new patterns for every
old pattern. Recall that the chance that a number around z is prime is approx-
imately 1/ log z, where log is the natural logarithm. In particular, each number
around 2512 has about a 1/355 chance of being prime. Since 1− (1−1/355)256 ≈
0.5, trying 128 patterns for the bottom eight bits for odd patterns has a 50%
chance of covering a sufficiently large interval to find a prime. See [12] for more
precise estimates. Applying this to our 164 base patterns, our implementation
would require 20992 core hours, or close to 2.5 core years. It is fairly likely that
more factors would be found with this search but the method presented in the
following section is more efficient at handling errors in top and bottom positions
unless a very large portion of the top bits are erroneous.

6 Bivariate Coppersmith

The lattice attacks described in the previous section let us factor keys with un-
predictable bits occurring in the least significant bits of one of the factors, with
all of the remaining bits of the factor following a predictable pattern. In this sec-
tion, we describe how we extended this attack to factor keys with unpredictable
bits among the middle or most significant bits of one of the factors, without
resorting to brute-forcing the bottom bits.

In the basic setup of the problem, we assume that one of the factors p of N
has the form

p = a + 2ts + r

where a is a 512-bit integer with a predictable bit pattern (as described in
Section 4), t is a bit offset where a sequence of bit errors s deviating from the

Factoring RSA keys from certified smart cards: Coppersmith in the wild 13

predictable pattern in a occurred during key generation, and r is an error at the
least significant bits to account for the implementation incrementing to the next
prime.

To apply Coppersmith’s method, we can define an equation f(x, y) = a +
2tx + y and try to use lattice basis reduction to find new polynomials Qi(x, y)
with the property that if f(s, r) vanishes modulo a large unknown divisor p of
N and s and r are reasonably small, then Qi(s, r) = 0 over the integers. In that
case, we can attempt to find appropriate zeros of Qi. The most common method
to do this is to look at multiple distinct polynomials Qi and hope that their
common solution set is not too large.

These types of bivariate Coppersmith attacks have many cryptanalytic ap-
plications, perhaps most prominently Boneh and Durfee’s attack against RSA
private key d < N0.29 [3]. Our approach is very similar to that described by
Herrmann and May for factoring RSA moduli with bits known [15], although for
the application we describe here, we are less interested in optimal parameters,
and more in speed: we wish to find the keys most likely to be factored using very
low dimensional lattices.

Algebraic independence: Nearly all applications of multivariate Coppersmith
methods require a heuristic assumption that the attacker can obtain two (or sev-
eral) algebraically independent polynomial equations determined by the short
vectors in a LLL-reduced lattice; this allows the attacker to compute a finite
(polynomially-sized) set of common solutions. Most theorem statements in these
papers include this heuristic assumption of algebraic independence as a matter of
course, and note briefly (if at all) that it appears to be backed up experimentally.

Notably, in our experiments, this assumption did not hold in general. That is,
most of the time the equations we obtained after lattice basis reduction were not
algebraically independent, and in particular, the algebraic dependencies arose
because all of the short vectors in the lattice were polynomial multiples of a
single bivariate linear equation. This linear equation did in fact vanish at the
desired solution, but without further information, there are an infinite number
of additional solutions that we could not rule out. However, we were often able
to find the solution using a simple method that we describe below.

Herrmann and May [15] describe one case where the assumption of algebraic
independence did not hold in their experiments, namely when X and Y were
significantly larger than the values of s and r. Similar to our case they observed
that the polynomials of small norm shared a common factor but unlike in our
case this factor was the original polynomial f . Note that the linear polynomial
in our case vanishes over the integers at (s, r) while f vanishes only modulo p.

We experimented with running smaller dimensional lattice attacks in order
to generate this sublattice more directly. The attack worked with smaller degree
equations than theoretically required to obtain a result, but when we exper-
imented with lattices generated from linear equations, this sublattice did not
appear. Note that we specify a slightly different basis for the lattice, in terms
of monomial powers rather than powers of f , which may have an effect on the

14 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

output of the algorithm compared to the examples in [15] and might explain why
we find a useful linear equation in the sublattice instead of the useless factor f .

6.1 Implementation details

Lattice construction: Let X and Y be bounds on the size of the roots at x
and y we wish to find. Our lattice is constructed using polynomial multiples of
f(x, y) = a+ 2txX + yY and N up to degree k vanishing to degree 1 modulo p.
Our lattice basis consists of the coefficient vectors of the set of polynomials

{(Y y)h(Xx)if jN ` | j + ` = 1, 0 ≤ h + i + j ≤ k}
= {N, xXN, f, (xX)2N, (xX)f, . . . , (yY)k−2(xX)f, (yY)k−1f},

using coefficients of the monomials {1, x, y, x2, . . . , yk−1x, yk}. The determinant
of this lattice is

detL = Nk+1(XY)(
k+2
3).

and the dimension is
(
k+2
2

)
. Omitting the approximation factor of LLL, we want

to ensure that

(detL)1/ dimL < p(
Nk+1(XY)(

k+2
3)
)1/(k+2

2)
< N1/2.

So for N ≈ 21024, setting k = 3 should let us find XY < 2102 and k = 4
should let us find XY < 2128. The parameter choice k = 2 results in a theoretical
bound XY < 1, but we also experimented with this choice; see below.

Solving for solutions: After running LLL on our lattice, we needed to solve the
system of equations it generated over the integers to find our desired roots. The
usual method of doing this in bivariate Coppersmith applications is to hope
that the two shortest vectors in the reduced basis correspond to algebraically
independent polynomials, and use resultants or Gröbner bases to compute the
set of solutions. Unfortunately, in nearly all of our experiments, this condition
did not hold, and thus there were an infinite number of possible solutions.

However, a simple method sufficed to compute these solutions in our experi-
ments. In general, the algebraic dependencies arose because the short vectors in
the reduced basis corresponded to a sublattice of multiples of the same degree-
one equation, with seemingly random coefficients, which vanished at the desired
roots. (The coefficient vectors were linearly independent, but the underlying
polynomials were not algebraically independent.) The other polynomial factors
of these short polynomials did not vanish at these roots. This linear equation
has an infinite number of solutions, but in our experiments our desired roots cor-
responded to the smallest integer solution, which we could obtain by rounding.

Let
ux + vy − w = 0

Factoring RSA keys from certified smart cards: Coppersmith in the wild 15

be an equation we want to solve for x and y. If u and v are relatively prime,
then we can write c1u + c2v = 1, and parametrize an integer family of solutions

x = c1w + vz

y = c2w − uz

with z = c2x− c1y.
In experiments with the already-factored moduli, we observed that the solu-

tion was often the minimum integer value of x or y among the solution family.
So we searched for z among the rounded values of −c1w/v and c2w/u. This solu-
tion successfully factored the moduli in our dataset whenever the shortest-vector
polynomial returned by lattice basis reduction was not irreducible.

For the handful of cases where the lattice did result in independent equations,
we computed the solutions using a Gröbner basis generated by the two shortest
vectors.

6.2 Experimental results

We ran our experiments using Sage 5.8 [24] parallelized across eight cores on
a 3.1GHz AMD FX-8120 processor. We used fpLLL [4] for lattice basis reduc-
tion, and Singular [8] to factor polynomials and compute Gröbner bases. For
each lattice, we attempted to solve the system of equations either by factoring
the polynomial into linear factors and looking for small solutions of the linear
equations as described above or using Gröbner bases.

We attempted to factor each of the 2,086,171 1024-bit moduli using several
different parameter settings. For k = 3, we had 10-dimensional lattices, and
attempted to factor each modulus with the base pattern a = 0 using Y = 230,
X = 270, and t = 442. We then experimented with k = 4, Y = 228, and
X = 2100, which gave us 15-dimensional lattices, and experimented with a base
pattern a = 2511 + 2510 and five different error offsets: t = 0 with Y = 2128 and
X = 1, and t = 128, t = 228, t = 328, and t = 428 with Y = 228 and X = 2100.
Finally, we experimented with the choice k = 2, X = 4, Y = 4 and the choices
of t and a used in the k = 4 experiments, which used 6-dimensional lattices and
theoretically should not have produced output, but in fact turned out to produce
nearly all of the same factorizations as the choices above. We ran one very large
experiment, using k = 2, t = 1, Y = 228, X = 274, t = 438, and running against
all 164 patterns, which produced 155 factored keys, including two previously
undiscovered factorizations. The choice k = 1 with the same parameter choices
as k = 2 did not produce results.

6.3 Handling more errors

From these experimental settings, it seems likely that many more keys could
be factored by different choices of parameters and initial pattern values; one
is limited merely by time and computational resources. We experimented with
iterating over all patterns, but the computation quickly becomes very expensive.

16 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

k log2(XY) # t # patterns # factored keys # alg. indep. eqns. running time

2 4 5 1 104 3 4.3 hours
2 4 1 164 154 21 195 hours
3 100 1 1 112 - 2 hours
4 128 5 1 108 4 20 hours

Table 1. Experimental results from factoring keys using a bivariate Coppersmith ap-
proach, using the parameters listed in the text. Where we collected data, we noted
the very small number of cases where the lattice produced algebraically independent
polynomials; all of the other cases were solved via the heuristic methods described
above.

Patterned factors: Mysteriously, using the base patterns a = 0 and a = 2511 +
2510, the algorithm produced factorizations of keys with other patterned factor-
izations. This is because the product of the bit pattern of the relevant factor
multiplied with a small factor produced an integer of the form we searched for,
but we are as yet unable to characterize this behavior in general.

Higher powers of p: Similar to the univariate case we can construct higher-
dimensional lattices in which each vector is divisible by higher powers of p, e.g.
using multiples of N2, Nf , and f2 for divisibility by p2. However, this approach
is successful in covering larger ranges of XY only for lattices of dimension at
least 28, which would incur a significantly greater computational cost to run over
the entire data set of millions of keys.

More variables: More isolated errors can be handled by writing p = a+
∑c

i=1 2tisi
with appropriate bounds on the si < Xi so that the intervals do not overlap. The
asymptotically optimal case is described in [15] and reaches similar bounds for∏c

i=1 Xi as in the univariate and bivariate case. However, the lattice dimension
increases significantly with c. For c = 3, i.e. two patches of errors together with
changed bottom bits to generate a prime, the condition (detL)dim 1/L < p holds
only for lattices of dimension at least 35 at which point X1X2X3 < N1/14 can
be found. A lattice of dimension 20 leads to the condition X1X2X3 < 1. A
sufficiently motivated attacker can run LLL on lattices of these dimensions but
we decided that factors found thus far were sufficient to prove our point that the
smart cards are fatally flawed.

6.4 Extension to implicit factoring

Ritzenhofen and May [19] and Faugère, Marinier, and Renault [9] give algorithms
to factor RSA moduli when it is known that two or more moduli have prime
factors that share large numbers of bits in common. Unfortunately, these results
seem to apply only when the moduli have prime factors of unbalanced size,
whereas in our case, both prime factors have 512 bits.

Factoring RSA keys from certified smart cards: Coppersmith in the wild 17

7 Hardware details, disclosure, and response

Around 2006–2007, MOICA switched card platforms from their initial supplier
and began to use Chunghwa Telecom’s HiCOS PKI smart cards, specifically
Chunghwa Telecom HD65145C1 cards (see [5]), using the Renesas AE45C1 smart
card microcontroller (see [10]). We have confirmed these details with MOICA.

Unfortunately, the hardware random-number generator on the AE45C1 smart
card microcontroller sometimes fails, as demonstrated by our results. These fail-
ures are so extreme that they should have been caught by standard health tests,
and in fact the AE45C1 does offer such tests. However, as our results show,
those tests were not enabled on some cards. This has now also been confirmed
by MOICA. MOICA’s estimate is that about 10000 cards were issued without
these tests, and that subsequent cards used a “FIPS mode” (see below) that
enabled these tests.

The random numbers generated by the batch of problematic cards obviously
do not meet even minimal standards for collecting and processing entropy. This
is a fatal flaw, and it can be expected to continue causing problems until all of
the vulnerable cards are replaced.

The AE45C1 chip was certified conformant with Protection Profile BSI-PP-
0002-2001 at CC assurance level EAL4+ [10]. The HD65145C1 card and HICOS
operating system were accredited to FIPS 140-2 Level 2 [5]. The CC certifi-
cation stated “The TOE software for random number postprocessing shall be
implemented by the embedded software developer”, and the FIPS certification
was limited to “FIPS mode” (see http://www.cryptsoft.com/fips140/out/

cert/614.html). However, neither certification prevented the same card from
also offering a non-FIPS mode, and neither certification caught the underlying
RNG failures. We recommend that industry move to stronger certifications that
prohibit error-prone APIs and that include assessments of RNG quality.

In April 2012 we shared with MOICA our preliminary list of 103 certifi-
cates compromised by GCD. We announced these results in a talk in Taiwan in
July 2012. We provided an extended list of compromised certificates to MOICA
and Chunghwa Telecom in June 2013, along with an early draft of this paper.
MOICA and Chunghwa Telecom subsequently confirmed our results; asked the
cardholders to come in for replacement cards; revoked the compromised certifi-
cates; and initiated the task of contacting 408 registration offices across Taiwan
to manually trace and replace all of the vulnerable cards from the same batch.

8 Acknowedgements

We thank J. Alex Halderman and Mark Wooding for discussion during this
project. We also thank Kenny Paterson and the anonymous reviewers for helpful
comments and suggestions, and in particular the encouragement to experiment
with sparse key recovery methods.

http://www.cryptsoft.com/fips140/out/cert/614.html
http://www.cryptsoft.com/fips140/out/cert/614.html

18 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

References

1. ANSI. ANSI X9.31:1998: Digital Signatures Using Reversible Public Key Cryptog-
raphy for the Financial Services Industry (rDSA). American National Standards
Institute, 1998.

2. Daniel J. Bernstein. How to find the smooth parts of integers, May 2004. http:

//cr.yp.to/papers.html#smoothparts.
3. Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less than

n0.292. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 1–11. Springer, 1999.

4. David Cadé, Xavier Pujol, and Damien Stehlé. fpLLL, 2013. http://perso.

ens-lyon.fr/damien.stehle/fplll/.
5. Ltd. Chunghwa Telecom Co. Hicos pki smart card security policy, 2006. http:

//www.cryptsoft.com/fips140/vendors/140sp614.pdf.
6. Don Coppersmith. Finding a small root of a bivariate integer equation; factoring

with high bits known. In Ueli M. Maurer, editor, EUROCRYPT, volume 1070 of
Lecture Notes in Computer Science, pages 178–189. Springer, 1996.

7. Don Coppersmith. Small solutions to polynomial equations, and low exponent
RSA vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

8. W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 —
A computer algebra system for polynomial computations, 2012. http://www.

singular.uni-kl.de.
9. Jean-Charles Faugère, Raphaël Marinier, and Guénaël Renault. Implicit factoring

with shared most significant and middle bits. In Phong Q. Nguyen and David
Pointcheval, editors, Public Key Cryptography, volume 6056 of Lecture Notes in
Computer Science, pages 70–87. Springer, 2010.

10. Bundesamt für Sicherheit in der Informationstechnik. Certification report BSI-
DSZ-CC-0212-2004 for Renesas AE45C1 (HD65145C1) smartcard integrated cir-
cuit version 01, 2004. https://www.bsi.bund.de/SharedDocs/Downloads/DE/

BSI/Zertifizierung/Reporte02/0212a_pdf.pdf?__blob=publicationFile.
11. Bundesamt für Sicherheit in der Informationstechnik. Evaluation of random num-

ber generators, 2013. https://www.bsi.bund.de/SharedDocs/Downloads/

EN/BSI/Zertifierung/Interpretation/Evaluation_of_random_number_

generators.pdf?__blob=publicationFile and https://www.bsi.bund.de/

DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/

AnwendungshinweiseundInterpretationen/AISCC/ais_cc.html.
12. Andrew Granville. Harald Cramér and the distribution of prime numbers. Scand.

Actuarial J., 1995(1):12–28, 1995.
13. Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J. Alex Halderman. Min-

ing your Ps and Qs: Detection of widespread weak keys in network devices. In
Proceedings of the 21st USENIX Security Symposium, August 2012.

14. Nadia Heninger and Hovav Shacham. Reconstructing rsa private keys from ran-
dom key bits. In Shai Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2009.

15. Mathias Herrmann and Alexander May. Solving linear equations modulo divisors:
On factoring given any bits. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350
of Lecture Notes in Computer Science, pages 406–424. Springer, 2008.

16. Nick Howgrave-Graham. Approximate integer common divisors. In Joseph H.
Silverman, editor, CaLC, volume 2146 of Lecture Notes in Computer Science, pages
51–66. Springer, 2001.

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#smoothparts
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://perso.ens-lyon.fr/damien.stehle/fplll/
http://www.cryptsoft.com/fips140/vendors/140sp614.pdf
http://www.cryptsoft.com/fips140/vendors/140sp614.pdf
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte02/0212a_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Reporte02/0212a_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Zertifierung/Interpretation/Evaluation_of_random_number_generators.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Zertifierung/Interpretation/Evaluation_of_random_number_generators.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Zertifierung/Interpretation/Evaluation_of_random_number_generators.pdf?__blob=publicationFile
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/AnwendungshinweiseundInterpretationen/AISCC/ais_cc.html
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/AnwendungshinweiseundInterpretationen/AISCC/ais_cc.html
https://www.bsi.bund.de/DE/Themen/ZertifizierungundAnerkennung/ZertifizierungnachCCundITSEC/AnwendungshinweiseundInterpretationen/AISCC/ais_cc.html

Factoring RSA keys from certified smart cards: Coppersmith in the wild 19

17. Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten
Kleinjung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Sci-
ence, pages 626–642. Springer, 2012.

18. Arjen K. Lenstra, Hendrik W. Lenstra jun., and László Lovász. Factoring polyno-
mials with rational coefficients. Math. Ann., 261:515–534, 1982.

19. Alexander May and Maike Ritzenhofen. Implicit factoring: On polynomial time
factoring given only an implicit hint. In Stanislaw Jarecki and Gene Tsudik, editors,
Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science, pages
1–14. Springer, 2009.

20. MOICA. Safety questions, 2013. http://moica.nat.gov.tw/html/en_T2/

faq22-066-090.htm.
21. National Institute of Standards and Technology (NIST). Security requirements

for cryptographic modules. Federal Information Processing Standards Publi-
cation (FIPS PUB) 140-2, May 2001. http://csrc.nist.gov/publications/

fips/fips140-2/fips1402.pdf, updated 2002-12-03. See http://csrc.nist.

gov/publications/nistpubs/800-29/sp800-29.pdf for differences between this
and FIPS-140-1.

22. National Institute of Standards and Technology (NIST). Recommendation for ran-
dom number generation using deterministic random bit generators. NIST Special
Publication (NIST SP) 800-90A, January 2012.

23. Kenneth G. Paterson, Antigoni Polychroniadou, and Dale L. Sibborn. A coding-
theoretic approach to recovering noisy RSA keys. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer Science,
pages 386–403. Springer, 2012.

24. William A. Stein et al. Sage Mathematics Software (Version 5.8). The Sage
Development Team, 2013. http://www.sagemath.org.

A Appendix: Raw data

The following data presents all primes found using the GCD method (Section 3);
the initial number indicates how often that particular prime was found.

46, 0xc002f9

7, 0xc92424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424e5

7, 0xc00101ff

6, 0xd24949244924249224929249924949244924249224929249924949244924249224929249924949244924249224929249924949244924249224929249924949d7

4, 0xf6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdbc1

4, 0xdb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6c6e23

4, 0xedb6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b867

3, 0xd0840842421021080842842121081084842142101084084242102108084284212108108484214210108408424210210808428421210810848421421010840985

2, 0xe00f

2, 0xf5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5ad6d6b56b5a5ad6ad6b6b5ab5adad6bd6b5b5ad5d39

2, 0xc28550a128500a14850aa14250a114280a144285a14228501428850a428550a128500a14850aa14250a114280a144285a14228501428850a428550a128500a6f

2, 0xfdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefe0b1

2, 0xd2494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992494924492424922492924992484a0f

2, 0xe94a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294b9af5

2, 0xdb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d7015

2, 0xca52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a529294a94a5a529529494a54a525294294a4a52a601

2, 0xc002030b

2, 0xd8c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c69107

2, 0xf18c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c1907

2, 0xf7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd8289

2, 0xc4214210108408424210210808428421210810848421421010840842421021080842842121081084842142101084084242102108084284212108108484214369

2, 0xef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf7bdbdefdef7f7bd7bdedef7ef7b7bdebdefef7bf969

1, 0xd4e682e94f1d6018a02056c0db850a74b3591b0f840514ce4017b2f5d25925ba2429a66e384b5be96e6a0a03d4a11eba10416018de3b3e354477250037b6f813

1, 0xcac05be5c1eabf0c21f8e95ce5d3c0777904282d1fd0c1738d727e197a0a32fda4cc59cc50b99d29f7fa8d07c972402ab88573e255db6bab05505812c73c2911

1, 0xcf052499061243cd82cd1b2059446c963487834d929ac929d92b259245254c7828ed3e92259292c924d24947d4896d1545f4001029b3b265d0ea4d144e242dbd

1, 0xfa94a972e2dcff068ee1257e228b53e9b9fcf46877f07daaa4d13c2bedf132d07730f549f4691f68553f84be8ff405f16a663d8fb8f82987bd9e073a8108edc3

1, 0xef7befbdbdef9ef6f7bd7bde9ef7ef7b7bdd9dcfef7b37bd9feddef7b7bd7bdedee6ef3b5bde3de7ed7bfa99adebdef7b7bd77d7cff1ee7b7bdebdeeef79f8ab

1, 0xeeb2919e1dc9ce33c2a0d9e190465b164a53c7c03e9a3d009ecf8fd6bdf743e04444332b7ff4a0e8f53b5123a5422563a06a487cd6cb5f36cd5411f0ae4dbc69

1, 0xf51576e530188d59bbc5f4f6ec9e824d7a9e70142952b11c49a6f38188ad9dbe3d29d1d9498b7aeffc4d9b0420f71895f62e2a7b79d4887e45b6227e0b84fb97

1, 0xd83f22a49af67d7f196df580d514464d6dbb880b03bea50ddcc1f931ef7f09af2f880de26d88cbf24567302a0d6eed7c8eab859aa0c1cc18bd8efacdce194c13

http://moica.nat.gov.tw/html/en_T2/faq22-066-090.htm
http://moica.nat.gov.tw/html/en_T2/faq22-066-090.htm
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/nistpubs/800-29/sp800-29.pdf
http://csrc.nist.gov/publications/nistpubs/800-29/sp800-29.pdf
http://www.sagemath.org

20 Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren

1, 0xc1df3e8db5f7b7f456edc1f60d23f60360536565836ce37af6f02e55de24a8dc373f3c5d49c93ba6fee0d44d08bc5fb0655781adee5c05777fd4da2bcd803d0f

1, 0xe279872638463a0a32a1412b13efccfa5ed68db44963c7f6955a3816bcaa33f94794c8b75298ddf4a8664e485ef99e6d9469f5187939e395cb1f09e666786741

1, 0xce73e73939ce9ce7e738739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73ead7

1, 0xd92ae5c6453efec55c5614207827de2b77bf3ef027f4230f8aac1fd9b0d69fdc61934132766f8dd1d8cb22ec38d834037eff6d9dd3535b9e582fbdd2327c9ce5

1, 0xc080002001003f

1, 0xfff7fffffefffffffffffffffffffffe7ffffff7fffffffffffffffffffffd7ffffffbffffff7bfffbfcffff7fffffffffbf00000000000000000000000000c1

1, 0xeb6f80ff65b4a6d462cfa5961f542f25e207667752b0482f5ac9dc091f4dc854de9c73b288aaa5da5298a33928f7b2920f89b81e3635932bc9db99a34e52b82b

1, 0xfdf7b9bffbffdebeb28592b76f69bbffbffdafaeffd9f7bdf1ee7bfa6e2f33bb67d5a5b5676d2bf6a1de3626f06be367ffde73db1e01f5d3855f21f0eda8b4db

1, 0xe643203b22b4048427210bd390d45a3a62ac132c0063990067686123d50128812e09411f27098400c841e09183400431018100a2b1cc0954c0405026420e8c7f

1, 0xffefef7ffde6ffff7fffffbfffffffbffeffbffdfffffffffffffffffffffffffffffffff1fcffffef46fffdfdfff7fffffffffffffffffffffeefefeceffe8d

1, 0xf6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66b37b6db019a4697

1, 0xc000b80006800251

1, 0xccc5ebfea2f4beb8b62dfef5429f97f06af0af8d08159d21df4540a0197ffdb8386c8ebb18bd70b0f46c9615d2fcd0ea38a2cadb522cf79f2c3ab27d9564a197

1, 0xedb6b6dbb6dbdb6ddb6d6db66db6b6dbb6dbdb6ddb6d6db66db6b6dbb6dadb6d9b6f6db66da6b6fbf6cb9b7ddb656d9e6d36a7dbb673ba6ddb6f6db66df6b5e5

1, 0xe7fa15ab6c3d2c3d13960f598cd2bbf74a688580e5fdc70064563a10558f1dfd36d5e8aec88897c79d73ebdcbec1b5f0121175c8aae69e3a31a63f9e66e0bfc5

1, 0xffb308867fee16267feb2b1af212ffefffffe4308866fff5fffefe13ffcf869aff4bf907ff1f9393fff0fff3fffcfff7ff3ef703ffaa8c7ffffe491affeff3b1

1, 0xc010208a48c18021210810848421423010a4084242006309ca468d2123081084a520431000c40a425210210a084a8ce1290810cc84204a9011ac2842401022e1

1, 0xe739729c9ce7ce73539c29cec126e7383b8e89bd2207faed08428421318c1084c410631858c68c63e31035cc8c63ce31318810c64331231818c60e63623b32a3

1, 0xfeb1b9efa29f64ed53628a10a924b5268163dd887f653a6b82edb063b6874c2039e4938018ab949a3c28cdc785fe2be58872c0c8a9ec5171e37ea6a82d5d46d7

1, 0xc0100000000000000000000000009000004260400c000000000018000000000040208000000000202000010800000000000000000000000000028000000002f3

1, 0xf9d5834f918b673e1f7eaae3cc5d97dd2706dd8de9c5b2fbef679b2c196933fe30f62ac3f7fcc1c593fb63a0bbb8838b8486eac959cc3949ea9182c46396fbcb

1, 0xdac45d37aadacfec73b3184ef43d52d6314754abd38414dde03ade396bd809aa2811047f015c9c71f0cbb0a91028190adeacc36165b0e0e6fce64549f947e0d5

1, 0xf49808713746a41a331625a7cb389611eaa3905984245f99e828f17f867413cfae91230478715024db5ead44beb20fbc73a23a271d627a11747b5823f753eb03

1, 0xd67a7b111c0401971f57806a2be12a174b8923fd3972ec64fe3de3ee96594a14207831d12f16f545851cad6356bb16221bee68eb2fee9427e0da0ca5f98e5861

1, 0xe83071df5288c373a5bc43fb20309e25e99fd85b61a9a4e6f3f71511b98f7ec87047fb32520d94cd7753dbe173304445ca648231f601dd19d3cd40c74190c71d

1, 0xed4294b5a529529c94250ad35394214a4a52a569a94a94a5e56b52948ca74a52529429524a5aa529294a9ca5e1295294d4a74a727394696a4a13a529236a968d

1, 0xd621eb6e5ab7992c6efba5f34a7b7b28026fc93138998c113831dbaaaca1a15738a7b7a9d191bcd77955b92b75263ad9f6bbd4ce0b4edca1efd5f3e24b3a2889

1, 0xd9a43ff058df6b8d55085028eac413a7439e1dc89e5d6e8b5de09e7bc7483d762788ff9e36527ff67c39360cfc0d2a75986b7fb35614027cffb932ee1112ee8d

1, 0xe492924992494924492524922492924992494924492424922492924992494924492424922492924992494925492424922492924992494925492524922492938f

1, 0xf9cf9b29d767edb655b2f6bf964bce697f652fb669b322eb63dffb6e7a6c69bb798396d284d85169883d42a6ec96b292761d6dcd7ab595b2ad0a9a5d7e97fe41

1, 0xfffefffefffffffffffefffefffefffefffffffefffffffefffefffefffffffffffefffefffefffefffefffeffffffff000000000000000000000000000000bd

1, 0xf9ce9ce7e738738c9ce7ce73739cb9cece73e738398e9ce7e719739c9ce7ce7373dc39cece73e53839ce9ce7e7b9739c9ce7ce73739c39cece73e73839ce9d63

1, 0xd53bd2f169ab7fb38abb7f05cb1550e200914674b65ce176001ffeb29dbd1e90c21a77e28c6dbfd6e6a782baaba532e2a98eff9ed8e924986af702c48504d0d1

1, 0xc36e8f2addb602d9d18b2b040bc7a00bc7046b2030c2d3e91c4c161ed562a31d2d056afc759042a46c28e218e25e7c7882fb1cb2d66039ed961dace5ea69c5d7

1, 0xed15cb0fde1567b278ef2422ee01ed658173594b0bcb71594a18df455fc75ca7c5b529bb6b9ec229be6ba977773eca917ac08a1e9f557adf079ab8bceb2bc01b

1, 0xd00b0dd78fd35c88db31806803799deab89b8b36c39dc0321574801fb936f90e2920f3dd65400ddc00be90ebcefdd62d5c5c062c200bdb04aa6a5acf697e2a0d

1, 0xd0054c94020831e800450e05811840282088a906825002d9a0c340938dc0b20628072f800334102c08010309c020800710200c04a604083700aa440088411987

1, 0xc7592d7dc9ee1031dcd3d30f43028858305ac46ac981cafa164a8000a9c6eeb698181505242ac9dfee9e51c92460b987dbc8161def71863d35ac18fa1235a903

1, 0xfffbfcf7f7ffdf3dfffef5ffffffbfffff9ffffffffdff7dffffff9ffffffef7dffffffffbfffdfffeffbffffffffffffff77fffdfffffffffff1fffffffff35

1, 0xf5eb05d73ad4df3cdaf4fd2eaf41e8e405952b7a327479147fffa33eb829039e77ff116f9e4958a3f604743ed2c55ba67b47631842905dbc2f12c66fb6c4e40f

1, 0xc3ff4d30474f40df0e7ffffdfa92ffff11d59d35d214ffff85c357c5c85ed72acaf1fb7d43f76d85ee6b4fb3ffdd60d5095ef1f290df4ff888e7e37efe4f9e8f

1, 0xcc7b18295347824ccb395bed351993c598c7cf7f4e32dcb9ab7a5d7e0baa7626d1b8dc651b34f5e4f5d3f2530b52fb9bd10e75259b36d774f059141bf9ede911

1, 0xe675a7059b1e6df20198f8a75a0ab28123fff79a67f59c7049fd37d48128f3b3a9b69475b902f4bc854ca1deecbce73cdab89b17ae3c6401a9d43594775a926b

1, 0xef7b77bd3defdef7f7b47bdedef76f7b7bdebdefef7bf7bdbdee7ef7b73d7b9edef7ef7b7b9e3deeef7bf7b9bdefd6ffffb97bdedef7ef7b7b9ebdafef3bf845

1, 0xfd23b110962000d598488c43407369898cd0086df780826dcfa14784f38388874362851b7711dc13564441351335c71fbd7c564d5d5008f5de20d43f2476d715

1, 0xe918f1658790911a71a9ae1895cfe56dbed767816e337e2f950462affb3280d8a8dcb1240620ec8f1d19c3750afcfe295c58cca117b36632414cd9e114fdb097

1, 0xffffaa55ffffffffff3cd9fe3ffff676fffffffffffe009d

1, 0xc02100004804100000100010008001ce2064004242c812186250154c00000088ba78008a43a9713bc0abb849220e8362cc838b53cf88fcdbdd7fca83c8df8145

1, 0xe318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c636318318c8c63c631318c18c6c631631818c68c63631831d3

1, 0xd501973162d4017f4e3b3c9d6803d4cc46a1d457c91feb5b6c2ae77423ba41c9cfbd5f4b9235667874507e9cafb4123e1992d1c5ae75ee295087011a822a6ccf

1, 0xe28ecce1de7a0326423076465160c1b03f8e721181e046ef4860ae94d7802a082f9f6007c0011f20056de200677aa7d8a47118e6692ee4b3f862c24e04b543b5

1, 0xda2f36d74bc2dc29de4de92f4b37b03942173e15a2dfb67e8f09e790ed1656af5a8aadef14b696426f1e929699da0ee3ad9f21a9f66ede57d945fc165b27d217

1, 0xd28550a3a8520a1c850aa14250a114ba0a144285a14228501428850a428550e128400a14850aa14250a114080a144285a14228511428852a4685d0a128500a2d

1, 0xe79082499b094b2459266493608a9249b2410d3409242692a490824d934941254935265a341086119449d824691524922697926bb24949044027108a8c939a5d

1, 0xedfc373f783ffbfff7fefed3fffafffefffd5fffffdefff5ffdffff3ff5ffffefefd3fef7fbf5dfff613bb59f9fb5f5bd52aefd78ebddfe6edeeffe3f3fb3df5

1, 0xfff71fb6fbfffefffffffeeffffeefffef7fffebfffeffffffffefff9fffffcbfdbff0faffffdfff7f7edffee7adfffafffbfb7effffdffde7fadfdef63e806b

1, 0xcaf67d473c10f4e73d6678d4a27e4eb04a743925d12c31f97efa510ca68558b2c56d839acecbe75e935f86cec7dae7c95aa0b93065a3aa924594fdfb9f521535

1, 0xf6b43e3bd52841756d1a27f22a8590a8a1c43c1c36b95cc72d0102f26b6da1b238236856f7c6e6faa83cc70e84f2db44088487fd94a175f22a0d990cc1afea6b

1, 0xd2a20d1b986de2152b9d93cf60bf98f68e9f9e050feb9820b006e5dc581f17a82f35a78d23fb34fab3962ae95bcf3a1e442eb5b1d72cd6956fa599483eee38c1

1, 0xe52e529494a54a535294294a4a51a509294a96a5a529529494a54a52529d29ea4a52a522298a94a5a522529494a44a525294294a4842a52e294af4a5a52f554b

1, 0xc942c4644b1169461581e0713ba400570237a55c9ae69e3fe58d189aa751d218208421934f2132a888e796bc1f0914a8c9b4f116358cca22c69c35596bd961e5

1, 0xed7f7e78afc7d3735fc1dfb0d13887cddcd715c9fe530530e0efceaa4bcaffbaebac9e601623db36fffef47fffffefffffff00000000000000000000000003ed

1, 0xf6db9b6dda6d29b61dfe73dbba5bdb6ddead69beedf6a6dbf7dadb6ddf6c6cb66db6f6d3b6db9b64997c6dbe6cb4364b96dbdb6ddb6c67be6da4b7cbaedadf35

1, 0xc080a1003008000880000002608020010120004408001004202080000800000050000000100000000900e1

1, 0xe5335f76a97c5e29d4557170cd9ef3ed53efc819fda87a566a5efe247ef102b85c7ad90c484ade030c7ebc23455e0dcbca2cec6afdf0e8c978cb6fbed5733fa5

1, 0xc0004000000000000000000000000000000000000400000000000000000000000000000165

1, 0xc924249324929249b2cf49244924649264921a4892494936593320b93f9292e992497d1449242492229293499249492449262493248e96fff3c9104432f4cdbb

1, 0xc9242492249292499249492449242492249292499249492449242492249292499249492449242492249292499249492449242492249292499249492449342b29

1, 0xc00100000177

1, 0xc00000041002400005080008021000049000000100000002080000000001021005180000000000000000210080600040082000400000183001000000200020f1

1, 0xcad0ca7166b2aaf6c82b0eadfeb13409da7c2679517d4fd96f89719659133e0492d209da600753dc5c2570ce128cf985332f944143204b706bf6e990c0e43dcb

1, 0xe739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e739739c9ce7ce73739c39cece73e73939ce9ce7e73973df

1, 0xe0929249924949244924249a249292499249492449242493249292499a494924493424922492924992494924492424922492b24992494924492424922482926f

1, 0xc000100100802000cb0040908809180008c8000000010c00012101b20000000002ad

1, 0xcec727009ef07418dc89e2c96e796d44bc2244d88a0bb8ca90b4d661736b486b6e1d8352822a4697cdd0702a3d8b7c4b23ada2285a2af09234a71346ba141795

1, 0xc8dce72c0e38ecaf2e3e11aef07326e3431a92ad87ef296d3d0b5d4b3d00646bebd7b3af6c9e424e074e1486d186d26997a4d9c131acb524881aecace287c057

1, 0xee09f0be62014c7299e188527ab8cd004809c631f1fd50a20013331678ccad20631879842b8a122569eb18c4b1dd5e4b11bce7a14f4ae76973debf4ca768c4bd

1, 0xd66cdaeef275bfd3d1ee65df430dd7ae015bd0e9a5e43890e7835e2a2a0fb702703d6c3fd50d5917f3ba77aeb851c016d26135d754c114adf303d091500462bd

1, 0xfa147ea58cddaaabe6dfa04ff891009db3ff37e1272d573b7a3da5334f24f9512fda7ff4f163a72482a0edffa9140001aae21f5a64fd330f93e819a968acafb7

1, 0xf718c0bc8c57cc318c99fa15236191a531828a95856d6ac833a7e3a2110dded25226ea4344cabbb2fe19de14863b8c46e31b44038c87e8ce4aea42a10afabf91

1, 0xd86d99e183ba3c0870238db37f1d3f673cdec3112196acfaa1239657bcb3a3a7f6749f3229f550d5097510e5a5df0626a641e2112112f95080c5629973b1c975

1, 0xfc1fc95ee7482142bccb7f0bc5cd674ad82edca61fe2653c78622ee673485cc11c993aaeeb15f77d90dfe1c6a945e239ab47e5ca3eb2aeb702f2de36626858db

1, 0xf7c6bf218fcfadcba926ac5efdf60f97aeba8d5f70ceb27eff0f5d57e763bfe86dc7a86ee76b8ba9d076bf1a8f4a7fcfb0297a96c6c5a70ea7e5e3c38326ff83

1, 0xc594391e8e8c24c8a7fe971d78db784d43c96ba3384f02acf71fc2506736c65f7c44ef6c3bbf7b05659b954c6b9ce96f648c900b56c5f3ca01e47384ad4de577

1, 0xda975410693d3120b32997c8c728f09d09610f5fef089a7cf63ff1dcf673ffffb493c19c64167e0457646aaba4f3409f9648ff7c390c25d4a8a3d7c9b2f16b2d

1, 0xf16fead9af03cfcb36571b8b3fe3cf24e313aece858b7d4e800838329c9b729ecc6d691df4ee8547a9fdb18debbca338af8214fa1e03ad53f8e3a0503bfb6735

1, 0xddf3b56a7bb556afa1476addb54aa95e569c94ab62d5fa95c054af04b5a3b56adff55e2dbb466ed1b56aad5a1629c5a93ad55bf5ad1e3ba4e5ab9722daf5d7bd

1, 0xd9958fe30334b89c8c02ac210c4dc8e6e610d1c958cb4d436e11aede0f72e3b8a88e18b7c663533218c68ed560b031ad4ce38aa13bbc10b6c73fe3911acc8de1

1, 0xfcb0663ef5e3c922936834039fd787a0de9fdd178017021129cfb592570fd3c5e60787fc59128bce5bfcb38be0c064b08c087fd8fe6b960207c93ca4cf3c5add

	Factoring RSA keys from certified smart cards: Coppersmith in the wild

