ERRATA SHEET FOR ANSI/ASHRAE STANDARD 84-2020 Method of Testing Air-to-Air Heat/Energy Exchangers

July 1, 2021

The corrections listed in this errata sheet apply to the first printing of ANSI/ASHRAE Standard 84-2020. The outside back cover marking identifying the first printing is "Product code: 86220 4/20".

Page Erratum

Equations (8) and (9). Add the terms for flow rates for Equations 8 and 9 as shown below. (*Note: Additions are shown in <u>underline.</u>)*

where

 h_n = enthalpy at Station n, kJ/kg

 Δp_s and Δp_e = pressure drops across the supply and exhaust sides of the exchanger, respectively, Pa

 Q_2 and Q_3 = supply and exhaust side volume flow rates, respectively, m³/s where $Q_2 = m_2/\rho_2$ and $Q_3 = m_3/\rho_3$, respectively,

 $\underline{\dot{m}_2}$ = mass flow rate at station 2, kg/s

 \dot{m}_3 = mass flow rate at station 3, kg/s

 η_{fs} and η_{fe} = supply and exhaust air fan and drive total efficiencies, respectively, ratio

 q_{aux} = auxiliary total power input to the exchanger, kW [*Informative Note:* The power used to rotate a regenerative wheel is one example of q_{aux} .]

 ρ_2 and ρ_3 = supply and exhaust air dry-air density, respectively, kg/m³

6, 7 Equations (10) and (11). Add the terms for flow rates for Equations 10 and 11 as shown below.

(Note: Additions are shown in underline.)

where

 h_n = enthalpy at Station n, Btu/lb_m

 Δp_s and Δp_e = air friction pressure drops across the supply and exhaust sides of the exchanger, respectively, in. of water

 Q_2 and Q_3 = supply and exhaust side volume flow rates, <u>respectively</u>, ft³/min <u>where</u> $Q_2 = m_2/\rho_2$ and $Q_3 = m_3/\rho_3$, respectively,

 \dot{m}_2 = mass flow rate at station 2, ft³/min

 $\underline{\dot{m}}_3$ = mass flow rate at station 3, ft³/min

 η_{fs} and η_{fe} = supply and exhaust air fan and drive total efficiencies, ratio

 q_{aux} = auxiliary total power input to the exchanger, kW [*Informative Note:* The power used to rotate a regenerative wheel is one example of q_{aux} .]

 ρ_2 and ρ_3 = supply and exhaust air dry-air density, respectively, lb_m/ft^3

10 Equation (23). Add the missing term "< 0.20" to Equation 23 so it reads as shown below.

$$\frac{\left|\dot{m}_{1}c_{p,1}t_{1} - \dot{m}_{2}c_{p,2}t_{2} + \dot{m}_{3}c_{p,3}t_{3} - \dot{m}_{4}c_{p,4}t_{4}\right|}{\left(\dot{m}\cdot c_{p}\right)_{minimum}|t_{1} - t_{3}|} < 0.20$$

Equation (25). Revise the terms for Equation 25 as shown below. (*Note: Additions are shown in underline and deletions are shown in strikethrough.*)

where

$$Q_{condensate} = m_{condensate} [C_p t_{condensate}]$$

$$\underline{Q_{condensate}} = m_{condensate}[c_{p,condensate} \cdot t_{condensate}]$$

 $\underline{c_{p,condensate}}$ = specific heat of liquid water, kJ/(kg·K) [BTU/(lb_m·°F)]

 $\dot{m}_{\rm condensate}$ = measured condensate flow rate at steady-state conditions during the test, kg/s [lb/hr]

 $\dot{m}_{1.2.3.4}$ = mass flow rate at stations 1 through 4, kg/s [lb/hr]

 $t_{condensate}$ = measured temperature of the condensate °C [°F]

19 **11.1 Symbols (SI [I-P]).** Add c_p , condensate to Section 11.1 symbols as shown below. (*Note: Additions are shown in underline.*)

 $\underline{c_{p,condensate}}$ = specific heat of liquid water, kJ/(kg·K) [BTU/(lb_m·°F)]