

Complimentary Energy Conservation Audit Cases in FY2016



The Energy Conservation Center, Japan

CONTENTS

CASE 1	Foodstuffs:	Ichinokura Co., Ltd
		Japanese Sake
CASE 2	Metals:	Company A Machined Components
CASE 3	Chemistry:	Company A Chemical Treatment Agents
CASE 4	Chemistry:	Company H Plastic Products
CASE 5	Machinery:	Maruyoshi Co., Ltd.
CASE 6	Electric and Electronic Devices:	TEC Corporation Optical Films, Liquid Crystal F
CASE 7	Electric and Electronic Devices:	Ketaka Electric Co., Ltd. Household Rice Cookers, etc
CASE 8	Printing:	iword Co., Ltd., Ishikari F Prints
CASE 9	Wood and Wooden Products:	Kitami Mokuzai Co., Ltd. Wooden Musical Instrument M
CASE10	Textile:	Kagawa Seamless Co., L Stockings
CASE11	Service:	Manseikaku Hotels Co., I Hot Spring Hotel
CASE12	Service:	Tendo Hotel Co., Ltd Hot Spring Hotel
CASE13	Social Welfare and Nursing Care:	Social welfare corporatio General Welfare Facilities
CASE14	Public:	Company K Welfare Center A and Culture
CASE15	Other Manufacturing:	Company A

()

	4
	6
	8
Kyushu 1	0
	2
stal Films and Electronic Parts	4
tdChugoku 1 , etc.	6
ari FactoryHokkaido 1	8
tdHokkaido 20 ent Members, Wood, etc.	0
o., LtdShikoku 2	2
o., LtdHokkaido 24	4
	6
ation, Kagayakinokai, IkiikinosatoTohoku 2	8
	0
Kanto 3	2

[Tohoku Area]

CASF 1

Case of Japanese Sake Manufacturer

Audit case of energy conservation/power-saving support services

Industry type: Foodstuffs Products: Japanese sake Company name: Ichinokura Co., Ltd. ■ No. of employees: Approx. 150

Conducting energy conservation activities such as introduction of the demand monitoring equipment, Ichinokura Co., Ltd. requested for an overall energy conservation audit this time. As a result of the audit, we proposed renewal of the air-conditioning system, adjustment of the boiler air ratios, enhanced thermal insulation of steam piping, introduction of inverters to the aeration blowers, higher-efficiency lighting and guide lights, conveyor operation control by sensors, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Reduction of standby electric power by shutting off the power during the no-use period of an outdoor unit

The compressor of the outdoor unit is equipped with a crank case heater that is always left energized. We proposed shutting off the power for the outdoor unit during the no-use period of an air-conditioner, thereby saving the power.

Boiler: Adjustment of the air ratio

Since the air ratios of two boilers are high (1.8 for the No. 1 boiler and 1.6 for the No. 2 boiler), we proposed lowering the ratios to the EC Guideline (1.3) based on the Act on the Rational Use of Energy, thereby reducing heavy oil consumption.

Compressor: Reduction of the discharge pressure

Since one of the compressors (multiple units) has a high discharge pressure, we proposed lowering it (from 0.80 to 0.65 Mpa) to reduce power consumption.

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equiva

Air-conditioning system: Renewal to the **H** high-efficiency air-conditioner

The air-conditioning system has been used for 20 years after installation and aged. The production of a refrigerant (R22) will be discontinued in 2020 as a global warming preventive measure. Accordingly, we proposed renewing to the latest high-efficiency air-conditioner to conserve energy. This time, we made a calculation on 4 air-conditioners in the office.

Steam piping: Enhanced thermal insulation of the Isteam piping

We proposed enhancing thermal insulation of the valves and flanges of the steam piping to decrease heat dissipation, thereby reducing the heavy oil consumption of the boilers.

Energy Saving: 3.1 kL/year Cost Saving: 181,000 yen/year CAPEX: 5,280,000 yen PP: Upon renewing the aged system Facility: 4 air-conditioners (cooling/heating capacity: 20/22.3 kW/unit, cooling/heating COP: 2.8/3.0 to 4.2/4.1)

Energy Saving: 0.6 kL/year

Cost Saving: 32,000 yen/year

Energy Saving: 10.4 kL/year

Energy Saving: 1.2 kL/year

Cost Saving: 71,000 yen/year

Facility: 1 compressor (7.5 kW)

Cost Saving: 676,000 yen/year

Facility: 25 outdoor units (crank case

Facility: 2 boilers (3 t/h/unit, total heavy oil

consumption: 318 kL/year)

heater: 40 W/unit)

Energy Saving: 3.5 kL/year Cost Saving: 228,000 yen/year CAPEX: 540,000 yen PP: 2.4 years Facility: Flange type globe valves (3 pcs. for 100A, 10 pcs. for 80A, and 1 pc. for 65A), flanges (1 pc. for 200A, 5 pcs. for 80A and 5 pcs. for 50A), etc.

Wastewater treatment system: Inverted-based aeration blower

Two aeration blowers are always operating, but a wastewater discharge volume decreases durin of using less water. Accordingly, we proposed introducing an inverter for the blower to reduce an on holidays and during the no-use time (frequency setting 60%), thereby promoting energy consi (Note) A further effect is obtained by attaching a DO meter (Dissolved Oxygen) to continuously n controlling an aeration roots blower by an inverter (rotation frequency control by a DO value, lower ai volume) so that the DO value will maintain a standard value

Lighting: Renewal to the higher-efficiency lighting and guide lights

We proposed renewing (1) the fluorescent lamps to the low-power cons (approx. 40% less), long-life (50,000 h.) and inexpensive cold-cathode the downlights (fluorescent lamps) at the entrance to LED lighting, and fluorescent guide lights to the LEDs, thereby reducing power consumpt

Status quo	Renewal plan	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) Fluorescent lamps (36 W/unit)	Cold-cathode fluorescent lamp (22 W/unit)	64	42	384	9.1
(2) Downlights (Compact fluorescent lamps, 13 W/unit)	LED lamps (6.9 W/unit)	17	6	136	22.7
(3) Fluorescent guide lights (15 W/unit)	LED guide lights (2.0 kW/unit)	125	050	4.007	47.0
Fluorescent guide lights (23 W/unit)	LED guide lights (2.7 kW/unit)	16	256	4,397	17.2
Total			304	4.917	16.2

Lighting: Dimming control of the staircase lighting **by** a motion detector

We proposed renewing the FLR fluorescent lamps to the Hf fluoresc lamps with motion detector/dimming control function to control the illuminance to 100% when someone passes the staircase and dim when no one passes, thereby reducing power consumption.

Production system: Conveyor operation contr sensors

The conveyors in a canning factory are running even when there is to convey. We proposed installing conveyed goods detection senso stop the conveyors when there is nothing to convey, thereby conser energy.

Transformer: Renewal to higher-efficiency U transformers and their integration

We proposed (1) renewing 18-year-old transformers to the high-effi ones and (2) integrating 3 transformers into 2 units, thereby reducin transformer losses.

Major efforts in energy conservation activities

- 1. Adjusting the boiler air ratios for operational improvement Concerning adjustment of the boiler air ratios, the setting of the operating requirements has been changed for the two boilers. Prior to the audit, they were not properly managed due to high air ratios, but energy conservation effects are now obtained by appropriately lowering air volumes.
- 2. Utilizing a subsidy to steadily implement an investment-required improvement proposal Enhanced thermal insulation of the steam piping and energy conservation of lighting by the motion detectors were implemented starting from what can be done. The inverter-based aeration blowers were materialized by initially installing a timer to intermittently operating them. Furthermore, since the air-conditioners, which control the temperature important for brewing, have been installed 20 years and the refrigerant used (R22) will go out of production in 2020, the subsidy was utilized to systematically renew the equipment, realizing energy conservation and stabilizing the product quality. For lighting, the subsidy was utilized to renew the fluorescent lamps and mercury lamps to the LED lamps, starting from those with longer lighting hours.
- 3. Continuing the energy conservation measures to deliver quality products After taking the energy conservation audit, an energy management organization was established to positively promote energy conservation activities. Presently, the boilers are being renewed (heavy oil \rightarrow gas). From now on, high-efficiency equipment will be continually introduced in line with facility improvement.

ng the period
n air feed rate
servation.
measure, and
/er air

Energy Saving: 11.4 kL/year Cost Saving: 665,000 yen/year CAPEX: 500,000 yen PP: 0.8 years Facility: 2 blowers (7.5 kW/unit)

	0
sumption	(
ones, (2)	
(3) the	
tion.	1
	f

Energy Saving: 5.2 kL/year Cost Saving: 304,000 yen/year CAPEX: 4,917,000 yen PP: Upon renewing the aged system Facility: Fluorescent lamps, downlights (fluorescent fluorescent lamps, LED lamps and LED guide lights

	Energy Saving: 0.8 kL/year
scent	Cost Saving: 44,000 yen/year CAPEX: 504,000 yen PP: 11.5 years
to 30%	Facility: FLR fluorescent lamps (6 units, 85 W/unit) \rightarrow Renewal to Hf fluorescent lamps with motion detector (6 units, 65 W/unit)
rol by	
-	Energy Saving: 1.9 kL/year
nothing ors to erving	Cost Saving: 108,000 yen/year CAPEX: 300,000 yen PP: 2.8 years Facility: 30 conveyors (0.25 kW/unit), 10 conveyed goods detection sensors (installed for every 3 conveyors)
	Energy Saving: 5.0 kL/year
iciency ng	Cost Saving: 291,000 yen/year CAPEX: 3,740,000 yen PP: 12.9 years Facility: (1) Renewal of the transformers (1 \emptyset : 1 unit, 200 \rightarrow 150 kVA), (2) Integration of the transformers (3 \emptyset : 3 units, 500 kVA/unit \rightarrow 2 units, \emptyset 500 kVA/unit)

CASE 2

Case of Machined **Components Manufacturer**

Audit case of energy conservation/power-saving support services

Industry type: Metals Products: Machined components ■ Company name: Company A ■ No. of employees: 130

Company A has been conducting energy conservation activities such as thinning out/turning off unnecessary lighting fixtures, introducing high-efficiency boilers and utilizing demand monitoring equipment. This time, they requested for an overall energy conservation audit, focusing on the machining facilities. As a result of the audit, we proposed a lower steam pressure fed to the machining line, utilization of inverter-based exhaust fans, thermal insulation of the steam piping and the outer periphery of the industrial furnaces, LED-based lighting in the office and the factory, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Easing of the air-conditioning setting temperature

The standard cooling/heating setting temperature is 28/18°C, but the setting temperature is not properly controlled for some part of the system. We proposed easing the cooling/heating setting temperature by 1°C (27/21°C \rightarrow 28/20°C) and strictly observing the standard values, thereby reducing power consumption.

Production system: Utilization of the inverter-based exhaust fans

The exhaust fans in the machining line are continuously running at ratings for 24 hours, but an air volume can be reduced during a non-production time. We proposed utilizing the inverters of the exhaust fans in the A- and B-product lines to reduce the air volume to 50% during the non-production time, thereby lowering power consumption. The effects were calculated assuming a production time to be 16 hours/day x 245 days.

Facility: Air-conditioners (total power consumption for cooling/heating: approx. 350,000/67,000 kWh/year)

Energy Saving: 10.8 kL/year

Cost Saving: 554,000 yen/year

Energy Saving: 41.6 kL/year Cost Saving: 2,137,000 yen/year Facility: 2 exhaust fans (18.5 and 22 kW)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivale

Steam-based system: Reduction of the steam

5 pressure fed to the machining line

The steam pressure 0.6 MPa fed to the machining line is high. We proposed attaching a reducing valve to reduce the steam pressure ($0.6 \rightarrow 0.30$ MPa, 0.30 MPa less), thereby reducing city gas consumption (by 4.1%).

Energy Saving: 35.3 kL/year Cost Saving: 3,175,000 yen/year CAPEX: 500,000 yen PP: 0.2 years Facility: Machining line boiler (13A city gas consumption: 430,000 m³/year)

Steam piping: Enhanced thermal insulation of the steam piping

We proposed enhancing thermal insulation of the steam piping of a boiler room and the machining line to reduce futile heat radiation, thereby reducing fuel (city gas) consumption of the boiler.

Energy Saving: 29.6 kL/year Cost Saving: 2,663,000 yen/year CAPEX: 500,000 yen PP: 0.2 years Facility: Flange type gate valves (2 pieces for 80A, 8 pcs. for 40A), flanges (10 pcs. for 40A, 182 pcs. for 25A), piping (6 pcs. for 40A), etc.

Industrial furnace: Enhanced thermal insulation of the outer periphery of the industrial furnace

(1) The average outer peripheral temperature of a reflow electric furnace is high at 80°C. (2) that of a steam dry furnace is high at 55°C, and (3) that of a refining furnace is high at 75°C. We proposed reducing a radiation heat loss by enhanced thermal insulation of the outer peripheries of the furnaces in (1), (2) and (3), thereby realizing energy conservation.

	Avg. outer peripheral temperature (°C)	Qty.	Total furnace surface area (m ²)	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) Reflow electric furnace	80	5	8.6	419	84	0.2
(2) Steam dry furnace	55	1	2.0	286	222	0.8
(3) Refining electric furnace	75	2	6.0	157	67	0.4
Total				862	373	0.4

Industrial furnace: Inverter-based dry furnace air feed fan

An air feed fan for the dry furnace (electric fan) throttles an air volume to 30% with a damper. Because a throttle resistance loss results from throttling with the damper, we proposed encouraging energy conservation by the fully opened damper plus inverter-based control.

Lighting: LED-based lighting in the office and the factory

We proposed renewing the (1) rapid start type fluorescent lamps in the factory and office to the straight-tube LEDs and (2) mercury lamps in the factory to the high-efficiency metal halide lamps, thereby realizing energy conservation.

Status quo	Renewal plan	Lighting hours (h./day)	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)	
(1) FLR fluorescent lamps (47 W/unit)	Straight-tube LED lamps (25 W/unit)	24	24	545			
FLR fluorescent lamps (115 W/unit)	Straight-tube LED lamps (50 W/unit)		67	2.323	7,135	3.1	
FLR fluorescent lamps (47 W/unit)	Straight-tube LED lamps (25 W/unit)	12	632	2,323		5.1	
FLR fluorescent lamps (115 W/unit)	Straight-tube LED lamps (50 W/unit)	12	58				
(2) Mercury lamps (400 W/unit)	Metal halide lamps (400 W/unit)	24	11→6	260	64	0.2	
Mercury lamps (400 W/unit)	Metal halide lamps (400 W/unit)	12	16→8 260		64	0.2	
Тс		1,302	2,583	7,199	2.8		

Demand control: Reduction of demand by **o** enhanced control

We proposed utilizing the present demand monitoring controller to introduce automatic demand load control for an air-conditioning load, etc., thereby reducing maximum power (contract demand) (1,301 to 1,171 kw, 130 kW less). The effects were calculated on the premise of 10% demand reduction from the present contract, including demand reduction (approx. 60 kW) by this energy conservation proposal.

Major efforts in energy conservation activities

- 1. Promoting energy conservation while assessing an effect on the quality and workability The inverters have been already utilized for seven of the nine exhaust fans in the machining line. For the remaining two, an effect on the working environment and the quality is being assessed. Thermal insulation has been firstly enhanced on the dryers, heaters and steam piping within the range of not affecting the product quality. Thermal insulation of the facilities having an effect on the quality is being carefully carried out.
- 2. Utilizing a subsidy to realize higher-efficiency air-conditioning and lighting and introduce the EMS The facilities with large investments were finished by utilizing the "Promotion Project Subsidy for Investments in Energy Conservation and Productivity Revolution of Small- and Medium-sized Businesses" and "Promotion Project for Smart Energy Introduction for Business Offices in Okayama City". The air-conditioners were renewed to the higher-efficiency ones, the fluorescent lamps and mercury lamps were replaced by LEDs, and the demand controller was introduced to control an air-conditioning load, etc. The renewal will be continued step by step.
- 3. Energy conservation and environmental activities participated by all the employees They have learned the concept of extracting the problems and the method of calculating cost-effectiveness through the energy conservation audit, and a field driving force and management (investments) started rolling together, achieving significant results. On the other hand, activities have been going on such as improved work uniforms and reduced industrial waste by thorough sorting, continuing to address new improvement items by the vitalized company and office.

Energy Saving: 14.5 kL/year Cost Saving: 862,000 yen/year CAPEX: 373,000 yen PP: 0.4 years Facility: Reflow furnace, dry furnace and refining furnace

Energy Saving: 2.0 kL/year Cost Saving: 101,000 yen/year CAPEX: 125,000 yen PP: 1.2 years Facility: 1 fan (3.7 kW)

Energy Saving: 50.4 kL/year Cost Saving: 2,583,000 yen/year CAPEX: 7,199,000 yen PP: 2.8 years Facility: Fluorescent lamps and mercury lamps \rightarrow LEDs and metal halide lamps

Maximum power: 130 kW less Cost Saving: 2,821,000 yen/year CAPEX: 1,000,000 yen PP: 0.4 years Facility: Demand monitoring equipment and automatic demand load controller

[Kinki Area]

CASE 3

Case of Manufacturer of Surface Treatment Agents and Adhesive Agents

Audit case of energy conservation/power-saving support services

Industry type: Chemistry Products: Chemical treatment agents ■ Company name: Company A ■ No. of employees: 50

Company A has been conducting energy conservation activities such as easing an air-conditioning setting temperature, thinning out/turning off unnecessary lighting fixtures, and utilizing the demand monitoring equipment. This time, they requested for an overall energy conservation audit. As a result of the audit, we proposed renewal to high-efficiency air-conditioners, lower steam pressure of the boilers, renewal to a high-efficiency inverter-controlled compressor, LED-based lighting in the office and the factory.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Boiler: Reduction of the steam pressure

Steam is used for reactors, etc. Since a reducing valve is used to reduce a pressure, we proposed lowering the steam pressure ($0.70 \rightarrow 0.60$ MPa, 0.1 MPa lower) to reduce bunker-A consumption. (Note) The boiler has been renewed in the year when the audit was conducted to change fuels (bunker A \rightarrow city gas). The effects were calculated with the bunker A because there are no actual fuel consumption data from the previous year

Compressor: Reduction of the discharge pressure

The factory consumes air for the reactor, dissolver's air cylinder, drum turnover machine, etc. The discharge pressure of the compressor is high at rated 0.69 MPa, seemingly reducible. We proposed lowering the discharge pressure by 0.05 MPa to reduce power consumption.

Air piping: Air leak prevention

It is difficult to detect a leak from the air piping or know a leak amount, but it is said that the leak amount accounts for 10 to 20% of the air usage of the factory. We proposed decreasing the leak amount from the air piping to reduce the power consumption of the compressor (the effects were calculated on the premise of a 10% leak rate and 80% improvement thereof).

Demand control: Inhibition of the maximum power by utilizing the demand monitoring equipment

We proposed utilizing the existing demand monitoring equipment to monitor a change of the maxim power, and inhibit the maximum power (210 \rightarrow 200 kW, 10 kW less) such as by stopping predetermined equipment (air-conditioner) and shifting operation of the production system when the maximum power approaches a setting value.

Automatic vending machine: Renewal to high-efficiency automatic vending machines

We proposed renewing automatic vending machines to the latest energy conservation type (peak-shift automatic vending machines) to reduce power consumption (58% less).

Energy Saving: 0.8 kL/year Cost Saving: 70,000 yen/year Facility: 2 boilers (0.8 t/h./unit, total bunker-A consumption: 52 kL/year)

Energy Saving: 0.3 kL/year Cost Saving: 28,000 yen/year Facility: 1 compressor (22.5 kW)

Energy Saving: 0.5 kL/year Cost Saving: 44,000 yen/year Facility: 1 compressor (22.5 kW)

Maximum power: 10 kW less Cost Saving: 139,000 yen/year Facility: Demand monitoring equipment

Energy Saving: 0.5 kL/year Cost Saving: 40,000 yen/year Facility: 2 automatic can/bottle vending machines (total power consumption: 3,300 kWh/year)

Making investments into	facilities with higher efficient	ciency	(Note) Energy conservatio	on effect is shown in ci	rude oil equivalent.	
6 Air-conditioning system	En	Energy Saving: 0.6 kL/year				
There are many air-conditioners and outdoors or on the verandas. We pro- solar radiation (with a reed blind, etc heat exchanger fins, etc. in summer thereby reducing the power consum	n CA Fac rate	Cost Saving: 47,000 yen/year CAPEX: 58,000 yen PP: 1.2 years Facility: 29 electric HP air-conditioners (total rated electric power: 97 kW, cooling/heating COP: 2.3 to 5.0/2.3 to 5.6)				
Steam piping: Enhance steam piping	d thermal insulation of the	En	ergy Saving: 6.2 k	L/year		
		CA Fac 50/	Cost Saving: 564,000 yen/year CAPEX: 1,040,000 yen PP: 1.8 years Facility: Flange type globe valves (2 pcs. for 50A), reducing valves (10 pcs. for 50A), and flanges (40 pcs. for 50A)			
Compressor: Renewal inverter-controlled com		En	ergy Saving: 3.5 k	Llwoor		
A constant-rate compressor is used to the electric power even during unloadi inverter-controlled compressor to redu (Note) Because the inverter-controlled com keep a constant pressure according to a dis as the air rate drops, having an energy cons	es Co CA Fac	Cost Saving: 284,000 yen/year CAPEX: 1,800,000 yen PP: 6.3 years Facility: 1 compressor (22.5 kW)				
Lighting: LED-based lig	hting in the office and the		ergy Saving: 3.3 k			
We proposed renewing the (1) FLR (2) mercury lamps of the factory to L power.	CA	st Saving: 272,000 PEX: 2,220,000 ye illity: FLR fluores lamps → LE	en PP: 8.2 yea cent lamps ar			
Status quo	Renewal plan	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)	
1) FLR fluorescent lamps (79 W/unit)	Straight-tube LED lamps (40 W/unit)	100	144	1,800	12.5	
2) Mercury lamps (310 W/unit)	LED lamps (79 W/unit)	6	128	420	3.3	
Tea dispenser: Suspe	106		2,220	8.2		
The automatic tea dispensers in the cafeteria and the office are continuously operating for 24 hours. We proposed using a schedule timer to turn them off during a nighttime period (8:00 p.m. to 8:00 a.m.) in which there are no users, thereby reducing power consumption.			ergy Saving: 0.3 k st Saving: 26,000 PEX: 24,000 yen ility: 2 tea dispen consumptio	yen/year PP: 0.9 years		

Major efforts in energy conservation activities

- 1. Implementing all the operation improvement proposals as proposed The operation improvement proposals of "Reduction of the steam pressure" and "Reduction of the discharge pressure of the compressor" were implemented as proposed. "Air leak prevention" is continually inspected by a monthly patrol. The maximum demand has been reduced by promoting "Utilization of the demand monitoring equipment", completely stopping the air-conditioning system at the time of alarm, and adopting a work shift system to avoid simultaneous operation of the large facilities. One of the two automatic vending machine was replaced by an energy conservation type high-efficiency machine.
- 2. Completed 4 of 5 investment-required improvements and planning to implement the remaining one "Thermal insulation of the steam piping" was enhanced as proposed. In order to "shield the outdoor units from solar radiation", their self-made solar radiation covers were attached. For "suspension of automatic tea dispensers at night", the dispensers were renewed to those with a timer to automate suspension at night. For "LED-based lighting", 100 fluorescent lamps and 6 mercury lamps were replaced by the LEDs. Since the mercury lamps will go out of production in 2020, the other factories will also replace them by the LEDs. Because "renewal of the compressor" is a costly investment, a public subsidy will be utilized to introduce an inverter-controlled compressor when renewing an aged one.
- 3. Developing the voluntary improvement activities other than the proposals The demand was greatly lowered by avoiding simultaneous operation of two raw material kneading rolls based on an on-site idea. The boiler fuel was changed (bunker A to gas) from an environmental viewpoint. The awareness of the employees has been enhanced by putting up an in-house notice, "A wall greening activity has started with bitter gourds, etc. as a heat island preventive measure and a power-saving measure in summer".

Tuning audit implemented

[Kyushu Area]

ΓΔSF /

Audit case of energy conservation/power-saving support services

Case of Plastic Products Manufacturer

Industry type: Chemistry Products: Plastic products ■ Company name: Company H ■ No. of employees: Approx. 50

Company H has been conducting energy conservation activities such as easing an air-conditioning setting temperature and thinning out/turning off unnecessary lighting fixtures. This time, they requested for an overall energy conservation audit. As a result of the audit, we proposed enhanced thermal insulation of steam piping, renewal to higher-efficiency lighting, reduction of discharge pressure and enhanced air leak prevention for compressors, utilization of demand monitoring equipment to lower the maximum power, and so on. Six months after the energy conservation audit (December 2014), they took our tuning audit "(1) Measurement of heat radiation from the steam piping system and (2) Measurement of a leak from the air piping" to confirm the current losses and improvement effects.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

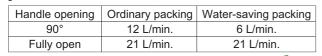
Boiler: Reduction of fuel consumption by a lower air ratio

When a burner's air ratio is higher than necessary, heat losses by exhaust gas increase. We proposed correcting an air volume to an appropriate value to lower the air ratio $(1.35 \rightarrow 1.30, 0.05 \text{ lower})$, thereby realizing energy conservation.

Compressor: Reduction of a discharge pressure

Five compressors are running. We proposed reducing the discharge pressure of one (37 kW) of them (0.75 \rightarrow 0.65 MPa, 0.1 MPa lower) to realize energy conservation. If the discharge pressure is reduced for all of them, there is the risk of producing defective products. This time, accordingly, the pressure was reduced for only one of them, to be followed by the rest sequentially (the effects were calculated on one unit).

Solution Air piping: Enhanced air leak prevention


We proposed enhancing an air leak prevention to realize energy conservation (the effects were calculated assuming that a 10% air leak rate is improved by 80%).

Demand control: Inhibition of the maximum power by utilizing the demand monitoring equipment

Since the maximum power was increased in last December, we proposed enhancing demand control to lower the maximum power ($367 \rightarrow 349$ kW, 18 kW less). This proposal includes a contribution of power-saving by renewal to higher-efficiency lighting (8 kW less, Proposal 7).

Sanitary equipment: Attachment of a water-saving **O** packing to a faucet

If a packing in a faucet is replaced by a water-saving packing, a flow rate is inhibited when a handle is half-opened, thereby saving water. We proposed attaching the water-saving packings to the faucets in a washroom, etc. to save water

Cost Saving: 200,000 yen/year Facility: 1 boiler (5 t/h., city gas 13A: 850,000 m³/year)

Energy Saving: 3.0 kL/year Cost Saving: 202,000 yen/year Facility: 1 compressor (37 kW)

Energy Saving: 2.4 kL/year

Energy Saving: 4.1 kL/year Cost Saving: 277,000 yen/year Facility: 5 compressors (totally 203 kW)

Maximum power: 18 kW less Cost Saving: 359,000 yen/year **Facility: Demand monitoring equipment**

Energy Saving: -Cost Saving: 30,000 yen/year Facility: 10 faucets

Making investments into	o facilities with h	nigher effic	iency	(Note) Energy co	onservation effect i	is shown in crude	oil equivalent.
6 Steam piping: Enhanc steam piping	ed thermal insula	tion of the			: 18.6 kL/ye		
We proposed enhancing thermal ir steam piping system to decrease f (city gas) consumption.	CA Fac	Cost Saving: 1,545,000 yen/year CAPEX: 644,000 yen PP: 0.4 years Facility: Flange type globe valves (11 pcs. for 65A), flanges (12 pcs. for 150A) and piping (44 m for 65A)					
7 Lighting: Renewal to h	igher-efficiency li	ghting			: 13.6 kL/ye		
We proposed (1) renewing the FLR fluorescent lamps in the factory and the office to the high-efficiency LED lamps, (2) replacing the FLR fluorescent lamps in a molding line, boiler room, etc. by the Hf fluorescent lamps, and (3) replacing the mercury lamps used in the factory and warehouse building and as outside lights by the high-efficiency ceramic metal halide lamps, thereby reducing power consumption.				PEX: 6,500, ility: FLR fl ps and Hf f	22,000 yen/ 000 yen PP uorescent l luorescent mic metal h	: 7.0 years amps → (L lamps), Me	.ED ercury
Status quo	Renewal pl	an	Qty.	Lighting hours (h./year)	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) FLR fluorescent lamps (40 W/2-lamp type, 85 W/uni) Straight-tube LED lamps (55 W/unit)	100	4,878	256	3,500	13.7
(2) FLR fluorescent lamps (40 W/2-lamp type, 85 W/uni) Hf fluorescent lamps (65 V	V/unit)	100	4,878	171	1,200	7.0
(3) Mercury lamps (415 W/unit)	Ceramic metal halide lamp	os (208 W/unit)	40	3,415	495	1,800	3.6
Total					922	6,500	7.0
8 Lighting: LED guide lights Conventional guide lights (fluorescent lamps) are inefficient because they use a copper or iron type ballast. We proposed renewing to high-efficiency LED guide lights to realize energy conservation.				st Saving: 2 PEX: 325,00 ility: Fluore	: 0.4 kL/yea 6,000 yen/y 00 yen PP: escent guide	ear 12.5 years	LED
Before renewal	After renewal	Qtv.		guide	lights		

(

Before renewal	After renewal	Qty.
Guide lights: Fluorescent lamps (15 W/unit)	LEDs (2.0 W/unit)	5
Guide lights: Fluorescent lamps (23 W/unit)	LEDs (2.7 W/unit)	5

	Results of tur
-	(1) Measurement of heat radiation from the s(2) Identification of the compressed air leaking
2. Target facilities	(1) Steam piping in the factory, (2) Air piping
	 Heat radiation from non-heat-retained pa equivalent (approx. 7.5% of fuel consumptio (2) Leak amount from the air piping: 7.8 kL/y amount of money, approx. 530,000 yen

Major efforts in energy conservation activities

1. Measures for the leak from the air piping and heat radiation from the steam piping in response to the results of the tuning audit

As a result of the tuning audit, it was found out that the air piping had 87 air leak spots, resulting in an air leak amount of 77 Nm³/h. The leak spots were immediately repaired. It was also found out that heat radiation from the steam piping accounted for approx. 7.5% of fuel consumption. Renewal of the piping, enhancement of thermal insulation, etc. are planned in line with renewal of a molding machine (steam-based) in the next term.

2. Improving four items in line with operation and investments (except for those associated with the tuning audit)

"Reduction of the compressor's discharge pressure" and "Reduction of fuel consumption by the lower air ratio" were conducted in consultation with the relevant manufacturers. Concerning "Replacement of the Hf mercury lamps by the ceramic metal halide lamps", a subsidy was utilized to renew many of them. The energy for the outside lights (mercury lamps) having short lighting hours was saved by shorting the lighting hours with a timer. Other fluorescent lamps and guide lights are also being renewed to LED lamps.

3. Developing the voluntary improvement activities other than the proposals After taking the energy conservation audit, a company-wide energy conservation promotion system was built, including a management level, to systematically address energy conservation such as making a medium-/long-term plan for energy conservation investments; the compressors have been already renewed to the inverter-based one.

ning audit

steam piping, valves and flanges (Proposal 6) (Proposal 3) ting spots and measurement of a leak amount (Proposal 3)

g in the factory

arts of the steam piping system: 73.3 kL/year in crude oil on), Saved amount of money, approx. 5,700,000 yen/year /year in crude oil equivalent (5.2% leak rate), Saved

[Tokai Area]

Case of Manufacturer of Various Automated Systems

Audit case of energy conservation/power-saving support services

Industry type: Machinery

Products: Development, design and construction of various automated systems. and provision of technical service

Company name: Maruyoshi Co., Ltd. No. of employees: Approx. 50

Maruyoshi Co., Ltd. has been taking energy conservation measures such as thinning out/turning off unnecessary lighting fixtures and renewing to high-efficiency lighting. This time, they requested for an overall energy conservation audit, focusing on air-conditioning and demand reduction. As a result of the audit, we proposed easing of the setting temperature of air-conditioners, lowering of a cooling load by affixing light-shielding sheets to the windows expose to strong solar radiation, replacement of fluorescent lamps by LED lamps, reduction of the maximum power by introducing a demand monitoring controller, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Easing of the setting temperature of air-conditioning

We proposed easing the cooling/heating setting temperature (25/22°C) in the office and the factory to a government-recommended value (28/20°C) to reduce power consumption.

Half the energy of the PC is consumed by the display. We proposed turning off the power of the display and setting the PC to the sleep mode when leaving your seat, thereby reducing power consumption.

Energy Saving: 1.9 kL/year Cost Saving: 180,000 yen/year Facility: 10 air-conditioners (totally 81 kW, cooling/heating power consumption: 16,000/20,000 kWh/year)

Energy Saving: 0.1 kL/year Cost Saving: 10,000 yen/year Facility: 12 desktop PCs, 3 notebook PCs

N					INCY (Note) Energy conservation effect is shown in crude oil equivalent.		
3		stem: Lowering of the c -shielding sheets to the	Energy Saving: 0.2 kL/year				
We proposed affixing the detachable light-shielding sheets to the windows exposed to strong solar radiation (factory: approx. 23 m ² without blind, office: approx. 16 m ² with blind) to lower the cooling load, thereby reducing power consumption.					Cost Saving: 20,000 yen/year CAPEX: 39,000 yen PP: 2.0 years Facility: 10 air-conditioners (totally 81 kW, cooling/heating power consumption: 16,000/20,000 kWh/year)		
4	Lighting: Renewal LED lamps	of the fluorescent lam	ne	Energy Saving: 1.2 kL/year Cost Saving: 118,000 yen/year			
		uorescent lamps of the ceiling c o reduce power consumption.	of the facto	ory	CAPEX: 846,000 yen PP: 7.2 years Facility: FLR fluorescent lamps → Straight-tube LED lamps		
	Before renewal	After renewal	Qty.				
	FLR fluorescent lamps (85 W/unit)	Straight-tube LED lamps (40 W/unit)	45]			
	FLR fluorescent lamps (43 W/unit)	Straight-tube LED lamps (20 W/unit)	17				
5		Reduction of the maxim demand monitoring e		Maximum power: 18 kW less			
		demand monitoring equipment			Cost Saving: 128,000 yen/year		
to (1) automatically stop predetermined equipment (machining center, etc.)				CAPEX: 400,000 yen PP: 3.1 years			
		er (contract demand) when it is e (55 \rightarrow 45 kW, 40 kW less) an			Facility: Demand monitoring equipment		
		$e (33 \rightarrow 43 \text{ kW}, 40 \text{ kW} less) and essential season by "visualization" of the$					
		er consumption throughout the		0.0			

5

Major efforts in energy conservation activities

- 1. Immediate implementation of operational improvement All the employees cooperated to immediately ease the temperature setting of the air-conditioners and reduce the standby power of the PCs.
- 2. Energy conservation by investment in the systems As a solar radiation control measure, the light-shielding sheets were affixed to the west windows to improve cooling effectiveness, bringing it home to ease the temperature setting of the air-conditioners. Utilization of a subsidy is being planned to renew the fluorescent lamps to the LED lamps.
- 3. Promoting a maximum power reduction measure The demand monitoring equipment was introduced to put demand control into practice according to a prepared preferential list of stopping the equipment. Demand analysis was started for further improvement.

Case of Manufacturer of Optical Films, **Liquid Crystal Films and Electronic Parts**

Audit case of energy conservation/power-saving support services

Industry type: Electric and electronic devices Products: Optical films, liquid crystal films and electronic parts ■ Company name: TEC Corporation ■ No. of employees: Approx. 80

TEC Corporation has been conducting energy conservation activities such as thinning out/turning off unnecessary lighting fixtures and introducing demand monitoring equipment. This time, they requested for an overall energy conservation audit, focusing on air-conditioners, etc. As a result of the audit, we proposed renewal to higher-efficiency packaged air-conditioners, inverter-based air-conditioning equipment, reduction of the discharge pressure and the feed pressure to pneumatic equipment for compressors, reduction of the maximum power by introducing an automatic demand load controller, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air piping: Enhanced air leak prevention from the air piping

Aged air piping and pneumatic systems were seen here and there. Air leak inspection is conducted, but there is generally a 10 to 20% air leak. We proposed enhancing an air leak control measure to realize energy conservation (the effects are calculated on the premise of a 10% leak rate and 80% improvement thereof).

Energy Saving: 9.0 kL/year Cost Saving: 489,000 yen/year Facility: 5 compressors (totally 67 kW)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivalent

Air-conditioning system: Renewal of the packaged air-conditioners

We proposed renewing the aged cooling/heating packaged air-conditioners in Building A to the higher-efficiency ones to reduce power consumption.

Energy Saving: 23.0 kL/year Cost Saving: 1,253,000 yen/year CAPEX: 6,000,000 yen PP: 4.8 years Facility: 3 air-conditioners (total capacity: 154 kW, cooling/heating COP: $2.1/2.4 \rightarrow 4.2/4.2$

Air-conditioning system: Inverted based AHU fans

A fan for an air handling unit (AHU) is continuously running at ratings throughout the year. Since a thermal load drops at night and on holidays (non-production time), we proposed fully opening a damper and introduce an inverter (20% less air volume by lowering a motor speed), thereby realizing energy conservation.

Air-conditioning system: Inverter-based cooling water pump

A cooling water pump for a chiller is continuously running. We proposed introducing an inverter to lower a flow rate during a low-load intermediate period and at night (50% less), thereby realizing energy conservation.

Energy Saving: 18.2 kL/year Cost Saving: 988,000 yen/year CAPEX: 675,000 yen PP: 0.7 years Facility: 3 fans (15 kW/unit)

Energy Saving: 11.8 kL/year Cost Saving: 644,000 yen/year CAPEX: 165,000 yen PP: 0.3 years Facility: 1 pump (11 kW)

Air-conditioning system: Introduction of an energy conservation belt for an AHU fan

The fan for the air handling unit (AHU) has a high motor capacity. We accordingly proposed remodeling the pulley of the existing system and introducing an energy conservation belt, thereby reducing power consumption (approx. 5% less). (Note) Since a V-belt with inside notches (energy conservation belt) reduces a "bending stress" when it is coiled around the pulley, it decreases losses caused by bending and improves power transmission efficiency from a motor to the drive side, saving the power.

Air-conditioning system: Energy conservation by sprinkling water on the roof

The roof of the clean room in Building C is lined with a heat-insulating material, but the rest of the roof is not. We proposed sprinkling water on the roof (reutilizing wastewater from a chiller) to reduce intrusion of heat through the roof (15% less), thereby reducing power consumption for air-conditioning.

Compressor, pneumatic equipment: Lower discharge pressure of the compressor and lower feed pressure to the pneumatic equipment

(1) Lower the discharge pressure of the compressor gradually, while checking the air-based system (0.63 to 0.65 MPa \rightarrow 0.5 MPa, 0.1 MPa less). (2) Since the air pressure of the pneumatic equipment is high, feed the air at an appropriate pressure (air blow: $0.6 \rightarrow 0.4$ MPa) by a reducing valve. We proposed adopting the measures (1) and (2) to realize energy conservation.

Item	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) Lower discharge pressure of the compressor (0.1 MPa less)	550	-	-
(2) Lower feed pressure to the pneumatic equipment (0.06 to 0.2 MPa less)	611	15	0.2
Total	1,161	15	-
Compressor: Utilization of the exh the compressors for heating	haust heat from	m Energy	Saving: 4

The exhaust heat from the compressors is discharged outside through duct piping. We proposed utilizing this exhaust heat for heating in E to decrease an air-conditioning load, thereby realizing energy cons

Lighting: Replacement of the fluorescent lamps by the LEDs

We proposed renewing the fluorescent lamps in a factory to higher-efficiency, longer-life LED lamps to realize energy conservation. It is expected to reduce replacement work of ceiling lighting owing to the longer-life (40,000 h.) LED lamps, but this is not included in the effects.

Status quo	Renewal plan	Rated life (h.)	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)	
(1) Hf fluorescent lamps (40-W 2-lamp type, 86 W/unit)	Straight-tube LED lamps (40 W/unit)	12,000	153	272	1,530	5.6	
(2) Hf fluorescent lamps (110-W 2-lamp type, 230 W/unit)	Straight-tube LED lamps (101 W/unit)	→40,000	48	201	960	4.8	
Total			201	473	2,490	5.3	
Domand control: Poduction of the maximum							

Demand control: Reduction of the maximum U power by an automatic demand load controller

We proposed utilizing a demand monitoring controller to control the air-conditioners, AHU fans, etc. through the automatic demand load controller, thereby reducing the maximum power (contract demand: $500 \rightarrow 450$ kW, 50 kW less). This proposal includes contributions to power-saving (approx. 43 kW) by replacement of the fluorescent lamps by the LEDs (13 kW, Proposal 9), renewal of the air-conditioners (10 kW, Proposal 2), improvement of the compressors (12 kW, Proposal 7), and so on.

Major efforts in energy conservation activities

1. Promoting the higher-efficiency air-conditioning related system To promote energy conservation, the greatest challenge was to realize the higher-efficiency of the air-conditioning related system, which accounted for 70% of the energy used by the business establishment. Utilizing the FY2014 Subsidy for Introduction of Energy Conservation Facilities for Local Factories, Small- and Medium-sized Businesses and other means, considerable energy conservation related to the air-conditioning system was realized by renewal of the air-conditioning chiller bodies and packaged air-conditioners, introduction of outdoor air-conditioners for reducing ventilation losses, and introduction of an inverter system for the air handling unit (AHU) fans and chiller cooling water pumps. In addition, thorough energy conservation was realized by changing heater-based heating of the air-conditioning system to the heat pump-based heating method, and changing a humidification system from steam to direct spray.

2. Replacing the fluorescent lamps by the LEDs to greatly reduce lighting power consumption Utilizing the same subsidy, the lighting fixtures of the entire building were renewed to the LEDs, halving lighting power consumption.

3. Further energy conservation activities Utilizing the introduced EMS, an optimum control method is being built, aiming at demand control which does not inhibit production and quality. It is also planned to take measures for the compressed air, which uses the second largest energy.

Energy Saving: 4.1 kL/year Cost Saving: 225,000 yen/year CAPEX: 400,000 yen PP: 1.8 years Facility: 3 fans (15 kW/unit)

Energy Saving: 0.6 kL/year

Cost Saving: 34,000 yen/year

(COP: 3.0)

CAPEX: 50,000 yen PP: 1.5 years

Energy Saving: 21.3 kL/year Cost Saving: 1,161,000 yen/year CAPEX: 150,000 yen PP: 0.1 years Facility: 5 compressors (totally 67 kW), 10 reducing valves

Facility: Roof area (200 m²), air-conditioner

ugh the
-
Building C
ervation.

kL/year Cost Saving: 268,000 yen/year CAPEX: 300,000 yen PP: 1.1 years Facility: 5 compressors (totally 67 kW), air-conditioner (capacity: 6 kW, COP: 3.0)

Energy Saving: 8.7 kL/year Cost Saving: 472,000 yen/year CAPEX: 2,490,000 yen PP: 5.3 years Facility: Hf fluorescent lamps \rightarrow Straight-tube LED lamps

Maximum power: 50 kW less Cost Saving: 1,085,000 yen/year CAPEX: 1,000,000 yen PP: 0.9 years Facility: Automatic demand load controller

Audit case of energy conservation/power-saving support services

Case of Manufacturer of Household Rice Cookers, etc.

Industry type: Electric and electronic devices Products: Household rice cookers, etc.

Company name: Ketaka Electric Co., Ltd. No. of employees: Approx. 280

Addressing energy conservation as part of management reform activities, Ketaka Electric Co., Ltd. has been taking various energy conservation measures in parallel with the activities such as preparing a list of energy-consuming devices and improving the wiring diagrams. This time, they requested for an overall energy conservation audit in order to upgrade the energy conservation activities. As a result of the audit, we proposed thermal insulation of the cylinders of the injection molding machines, introduction of inverters for hydraulic pumps, introduction of compressor numbers control, reduction of an air-conditioning area, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Appropriate setting temperature

We proposed managing an air-conditioning setting temperature control value (28°C in summer and 20°C in winter) in a reliable manner to reduce power consumption (the effects were calculated when the setting temperature is eased by 1°C).

Air-conditioning system: Thorough cleaning of the filters of the indoor units

Many filters of the air-conditioners were found clogged. We proposed cleaning them periodically to reduce power consumption.

5 Compressor: Lower discharge pressure

We proposed lowering a discharge pressure by 0.1 MPa (0.75 \rightarrow 0.65 MPa) through periodic cleaning of the filters, looping of air piping, and so on, to reduce the power consumption of the compressors.

Air piping: Air leak prevention

We proposed inspecting and repairing an air leak from the air piping to reduce the power consumption of the compressors (the effects were calculated assuming that a 10% air leak rate is improved by 80%).

Lighting: Thinning out of ceiling lighting

Task ambient lighting is used in an assembly factory, but ceiling lighting is excessive. We proposed thinning out lighting (30% less) to lower illuminance adequately, thereby reducing power consumption.

Energy Saving: 4.0 kL/year Cost Saving: 229,000 yen/year Facility: 31 air-conditioners (total rated power consumption: 200 kW)

Energy Saving: 1.8 kL/year Cost Saving: 103,000 yen/year Facility: 31 air-conditioners (total rated power consumption: 200 kW)

Energy Saving: 8.9 kL/year Cost Saving: 505,000 yen/year Facility: 10 compressors (totally 137 kW)

Energy Saving: 6.4 kL/year Cost Saving: 364,000 yen /year Facility: 10 compressors (totally 137 kW)

Energy Saving: 5.5 kL/year Cost Saving: 315,000 yen /year Facility: Fluorescent lamps (40 W/unit, 866 → 606 units)

Making investments into facilities with highe Air-conditioning system: Reduction of the ta

O area for air-conditioning There are multiple assembly lines of different work shifts on the fa

and the conditioned air flows into the areas of the suspended asse lines. We proposed installing partitions with sheets, etc. to lower the air-conditioning load of the operating lines, thereby reducing powe consumption.

Compressor: Introduction of numbers control

Five compressors keep running all the time under a low load of ap 50%. We proposed controlling the number of compressors operate according to the required load to increase efficiency, thereby reduc power consumption and decreasing the contract demand (10 kW

Production system: Introduction of the inver the hydraulic pumps

The hydraulic pumps for processing machinery always run at a constant speed. Dur maintenance and standby, the discharged oil from the pump returns to a tank from a We proposed introducing the inverters for the hydraulic pumps to decrease a discharge during pressure maintenance and standby, thereby reducing power consumption.

Production system: Thermal insulation of the cylinders of the injection molding machines

We proposed attaching a heat-retaining cover to the heater (220°C) installed cylinder surface of the injection molding machines to reduce the power cons the heater. An indoor environment is also improved by less radiation from th

Lighting: Replacement of the mercury lam U the metal halide lamps

We proposed renewing the mercury lamps in the factory to the high-efficiency metal halide lamps to reduce power consumption.

Demand control: Reduction of the maximu power by installing the watt-hour meters

We proposed installing the watt-hour meters for the 20-kW or high facilities and the compressors to understand and analyze actual p usage, thereby reducing the maximum power and decreasing the demand (869 \rightarrow 780 kW, 89 kW less).

Major efforts in energy conservation activities

- 1. Presenting the on-going waste and the results of efforts to improve the awareness of the employees — Make haste to implement energy conservation activities After the audit, the first implemented activity was to present "on-going waste" to the employees to make them understand that "the effects result from actions". Aiming at "reduction of the standby power", the waste of power usage on holidays was notified and it was encouraged to turn off the circuit breakers when leaving the office/factory for weekends. As a result, the power usage on holidays has been halved compared with before, awakening the employees' awareness that "they can do it."
- 2. Starting to build an energy conservation promotion structure and cultivate human resources to continue the activities

The scope of electric power management per department was clarified and an "energy conservation committee" was set up for auditing electric power, implementing improvements, presenting monthly reports, and so on. Utilizing a subsidy. 82 watt-hour meters and a data collection system were introduced to "visualize" the power usage status for each facility, making daily management and confirmation easier.


3. Energy conservation measures with investments which utilized a subsidy and were implemented systematically

Approx. 30% energy conservation was achieved by utilizing a subsidy to renew the injection molding machines. Making use of a surplus production capacity generated by high productivity of the new injection molding machines, further energy conservation effects were obtained by shifting production to the new facility.

ency (Note) Energy conservation effect is shown in crude oil equivalent.
Energy Saving: 1.4 kL/year
Cost Saving: 79,000 yen/year CAPEX: 200,000 yen PP: 2.5 years
Facility: Air-conditioner (totally 64 kW),
air-conditioning area (approx. 960 $ ightarrow$ 480 m ²)
Energy Saving: 2.4 kL/year
Cost Saving: 324,000 yen/year
CAPEX: 900,000 yen PP: 2.8 years
Facility: 5 compressors (totally 63 kW)
Energy Saving: 3.5 kL/year
Cost Saving: 200,000 yen/year
CAPEX: 1,200,000 yen PP: 6 years
Facility: 2 hydraulic pumps (21 kW)
Energy Saving: 28.6 kL/year
Cost Saving: 1,621,000 yen/year CAPEX: 2,000,000 yen PP: 1.2 years
Facility: 13 units (total surface area: 12.35 m ²)
rucinty. To units (total surface area. 12.00 m)
Energy Southers 2.2 kl /seer
Energy Saving: 3.2 kL/year Cost Saving: 180,000 yen/year
CAPEX: 560,000 yen PP: 3.1 years
Facility: 56 mercury lamps (300 W/unit) \rightarrow 56
metal halide lamps (200 W/unit)
Maximum power: 89 kW less
Maximum power: 89 kW less Cost Saving: 1,659,000 yen/year

	-	1.0	TC	DI
- T	7温	nE		10
-	/	-+ -	けたらすく	修理
工7課	れは取得	C9 : 30 -		
総要による 設立方法		エア県れ里 L/min	接失電力 138	個共業(197) 年間(2000時間) Ther14円
88	小田丁の田	02~03	0.002~0.000	90~130 420
0.3~0.5m	81- 1	1-2 2~3	0.01~0.02 0.02~0.03	420~940 840~1290 1,290~2,100
細れて		3~5	0.03~0.05 0.05~0.1 0.2	2.100~4.200 4.200~8.400

[Hokkaido Area]

Case of Printing Company

Audit case of energy conservation/power-saving support services

Industry type: Printing Products: Prints Company name: iword Co., Ltd., Ishikari Factory ■ No. of employees: Approx. 270

iword Co., Ltd., Ishikari Factory has been taking various energy conservation measures such as thinning out/turning off unnecessary lighting fixtures and stopping unnecessary devices. This time, they requested for an overall energy conservation audit, focusing on air-conditioning and lighting. As a result of the audit, we proposed suspension of night-time intake of the outside air, renewal to high-efficiency absorption type water coolers/heaters, replacement of the lighting fixtures with the LED lamps, turning off lighting based on subdivided lighting segments, renewal of the vacuum heaters, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Compressor: Cleaning of the compressor's filter

A contaminated filter adds to a suction resistance, increasing the power. We proposed cleaning a suction filter periodically to reduce pressure losses, thereby reducing power consumption (the effects were calculated assuming that the compressor is constantly operated at a load of 80%).

Energy Saving: 0.2 kL/year Cost Saving: 16,000 yen/year Facility: 1 compressor (37 kW)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equiv

Air-conditioning system: Suspension of night-time intake of the outside air

Air-conditioning energy is wasted in summer and winter, if an outside air intake volume is higher than necessary. We proposed suspending intake of the outside air (outside air intake volume: 17,300 m³/h.) from the midnight to the early morning (11:00 p.m. to 5:00 a.m., 2 months in summer and 5 months in winter), during which no problems seem to happen, to realize energy conservation.

Air-conditioning system: Renewal to the high-efficiency absorption type water coolers/heaters

Introduced 17 years ago, the gas absorption water cooler/heater has been aging. We proposed renewing it to the latest high-efficiency gas absorption water cooler/heater to realize energy conservation.

Energy Saving: 11.6 kL/year Cost Saving: 967,000 yen/year CAPEX: 500,000 yen PP: 0.5 years Facility: 2 absorption type water coolers/heater (LPG, cooling/heating COP: 0.9/0.8)

Energy Saving: 9.1 kL/year Cost Saving: 754,000 yen/year CAPEX: 24,000,000 yen PP: Upon renewing the aged system Facility: Absorption type water cooler/heater (LPG consumption: 70 t/year, cooling/heating capacity: 422/494 kW, cooling/heating COP: $0.8/0.8 \rightarrow 1.2/0.84$)

Water heating system: Renewal of a vacuum water heater

Installed 17 years ago, the vacuum water heater may have deteriorated in its efficiency. We proposed renewing to the high-efficiency model to reduce fuel consumption. Currently, one unit is in operation. In view of the heating load status and the capacity of the cooler/heater, however, it is also necessary to consider the idea of installing 2 half-capacity units.

Lighting: Renewal of lighting to the LED lamps and 5 turning off based on subdivided lighting segments

We proposed renewing the fluorescent lamps in the factory and the metal halide lamps on the ceiling of a cargo-handling room to LED lamps, and turning off unnecessary lamps based on the subdivided lighting segments of the bookbinding factory and the cargo-handling room, thereby realizing energy conservation. However, the effects have not been calculated on the subdivided lighting segments of the fluorescent lamps.

Status quo	Renewal plan	Lighting hours (h./day)	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) FLR fluorescent lamps (225 W/unit)	LED lamps (118 W/unit)	2,570	241	1,213	14,460	11.9
(2) Metal halide lamps (414 W/unit)	LED lamps (119 W/unit)	1,365→1,108	24	161	800	5.0
Total			265	1,374	15,260	11.1

Transformer: Integration of the transformers and renewal to higher efficiency

(1) Of the 5 power transformers, integrate 3 low-load units into one. (2) Renew an electric light transformer (1 unit: 1ø, 300 kVA) to the latest high-efficiency small transformer (1 unit: 1ø, 100 kVA) because a demand factor is low. We proposed reducing transformer losses by (1) and (2) to realize energy conservation.

Status quo	Renewal plan	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) 3 power transformers (3ø, 200 kVA x 1,300 kVA x 1,500 kVA x 1)	Integrated into 1 unit (3ø, 500 kVA)	167	450	2.7
(2) 1 electric light transformer (1ø, 300 kVA)	Renewed to 1 unit (1ø, 100 kVA)	67	900	13.4
Total			1.350	5.8

Demand control: Introduction of the demand monitoring equipment

We proposed introducing the demand monitoring equipment with a monitor to "visualize" the energy usage status, and inhibiting the maximum demand power by suspending predetermined devices or lowering the rotating speed of a printing machine, thereby decreasing the contract demand $(1,215 \rightarrow 1,190)$ kW, 25 kW less), when the maximum power is finely monitored on its change and comes close to a setting value. In addition, we proposed setting a target value for each season to reduce power consumption throughout the year.

Major efforts in energy conservation activities

1. Promoting the energy conservation measures, including utilization of the capital investment promotion tax system for productivity enhancement Two air-cooled chiller units were newly installed, which fall under the category of the advanced facilities (latest models, productivity enhancement) in the capital investment promotion tax system for productivity enhancement. Together with this, a series of energy conservation measures were taken such as improving the ventilation system of the factory, integrating the transformers as proposed in the energy conservation audit, and introducing the demand monitoring equipment.

- 2. Other energy conservation measures The fluorescent lamps in the factory were renewed to the LED lamps to not only conserve energy, but prevent the insects.
- 3. Further recognizing the necessity of energy conservation in the wake of the energy conservation audit
- Reliable demand control has been enabled by introduction of the demand monitoring equipment, leading to an enhanced energy conservation management structure.

Energy Saving: 5.4 kL/year Cost Saving: 448,000 yen/year **CAPEX:** – **PP:** Upon renewing the aged system Facility: 1 vacuum water heater (LPG consumption: 37 t/year, boiler efficiency: $80 \rightarrow 90\%$)

Energy Saving: 19.3 kL/year Cost Saving: 1,374,000 yen/year CAPEX: 15,260,000 yen PP: 11.1 years Facility: FLR fluorescent lamps and metal halide lamps \rightarrow LED lamps

Energy Saving: 3.3 kL/year Cost Saving: 234,000 yen/year CAPEX: 1,350,000 yen PP: 5.8 years Facility: Integration of the power transformers (3 units: totally 1,000 kVA→ 1 unit: 500 kVA), renewal of the electric light transformer (1 unit: 1ø, 300 kVA \rightarrow 1 unit: 1ø, 100 kVA)

Maximum power: 25 kW less Cost Saving: 438,000 yen/year CAPEX: 400,000 yen PP: 0.9 years Facility: Demand monitoring equipment

Tuning audit implemented

[Hokkaido Area]

conservation/power-saving

support services

Case of Manufacturer of Wooden Musical Instrument Members and Wood

Industry type: Wood and wooden products manufacturing industry
 Products: Wooden musical instrument members, wood, etc.
 Company name: Kitami Mokuzai Co., Ltd. No. of employees: Approx. 120

Kitami Mokuzai Co., Ltd. has been conducting energy conservation activities such as introducing the demand monitoring equipment and turning off unnecessary lighting fixtures. This time, they requested for an overall energy conservation audit. As a result of the audit, we proposed lowering a compressor's discharge pressure, thermal insulation of the steam piping, and renewal to high-efficiency lighting and high-efficiency transformers. Approximately 2 years after the energy conservation audit (Oct. 2015), they took our tuning audit "Lower discharge pressure of the compressor" to tune two of three compressors and confirm their tuning method and energy conservation effects.

• Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Compressor: Lower discharge pressure

The discharge pressure (0.69 MPa) is higher than the pressure required (0.4 to 0.5 MPa) for an air cylinder, etc. We proposed lowering the discharge pressure by about 0.1 MPa to reduce the power consumption of the compressors (9% less).

Energy Saving: 4.5 kL/year Cost Saving: 323,000 yen/year Facility: 20 compressors (totally 103 kW)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivalent

2 Steam piping: Enhanced thermal insulation of the steam piping (Reduction of waste wood for boiler fuel)

We proposed enhancing thermal insulation of the steam piping and the valves to inhibit radiation losses, thereby reducing a purchase volume of waste wood for boiler fuel (104 t/year less, 4.1% less).

Energy Saving: 45.6 kL/year Cost Saving: 256,000 yen/year CAPEX: 900,000 yen PP: 3.5 years Facility: Flange type globe valves (10 pcs. for 50 A, 51 pcs. for 32A), flanges (4 pcs. for 200A, 98 pcs. for 50A), piping (7 m for 32A), etc.

3 Lighting: Renewal to high-efficiency lighting

We proposed renewing the (1) ceiling mercury lamps to the ceramic metal halide lamps, (2) outside mercury lamps to the high-pressure sodium lamps, and (3) FLR fluorescent lamps to the Hf fluorescent lamps, thereby reducing energy conservation.

Status quo	Renewal plan	Qty.	Money saved (in ¥1,000)	Investment (in ¥1,000)	Payback period (in years)
(1) Mercury lamps (415 W/unit)	Ceramic metal halide lamps (208 W/unit)	7	63	228	3.6
(2) Mercury lamps (310 W/unit)	High-pressure sodium lamps (195 W/unit)	6	56	130	2.3
(3) FLR fluorescent lamps (40-W 2-lamp type, 85 W/unit)	Hf fluorescent lamps (32-W 2-lamp type, 65 W/unit)	149	117	1,490	12.7
Tc	tal	162	236	1,848	7.8

Transformer: Renewal to the high-efficiency transformers

We proposed renewing the aged transformers in a power-receiving cubicle to the high-efficiency amorphous transformers to reduce power losses.

	Results of tur
1. Topics	Lower discharge pressure of the compresso
2. Target facilities	Compressors (15 kW x 3 units, discharge pr
	A discharge pressure setting value was lowe and no problems were confirmed. Energy conservation effect, No. 1 unit: Powe No 3 unit: Reserved Reason for the reserving one unit: Impossib greatly when blowing the air to remove polis other pneumatic devices. A possible measure sure compressor to feed the air.
4. Expected results	No. 1 unit: 48,000 yen/year, No. 2 unit: 46,0

Major efforts in energy conservation activities

1. Energy conservation by lowering the setting pressure of the air compressors (including the tuning audit activities)

After the audit, 5 of 20 units were suspended by rationalization to realize energy conservation. The tuning audit was conducted on 3 of 4 screw type units, whose output exceeds 15 kW. Based on actual values such as the air pressure and compressor power, the pressure was lowered by 0.1 MPa on 2 units to realize energy conservation. An additional measure is being considered as to a system showing an instantaneous decompression by air blow.

2. Energy conservation by renewal to the high-efficiency high-voltage power-receiving system and the high-efficiency lighting system

The power-receiving system was renewed to the high-efficiency type. For the lighting system, 12 ceiling mercury lamps, 6 outside mercury lamps and 33 fluorescent lamps with relatively long lighting hours were renewed to the LEDs. In addition, the fluorescent lamp pull switches were installed at the 256 positions so as to manually turn off the unnecessary fluorescent lamps, thereby realizing thorough energy conservation.

3. Promoting energy conservation of the waste wood-fired boiler

According to the audit, thermal insulation of the steam piping and the valves of the waste wood-fired boiler was systematically implemented, reducing the fuel consumption of the boiler by a little more than 7% from the previous year.

20

Energy Saving: 3.3 kl/year Cost Saving: 236,000 yen/year CAPEX: 1,848,000 yen PP: 7.8 years Facility: FLR fluorescent lamps \rightarrow (LED lamps, Hf fluorescent lamps), mercury lamps \rightarrow ceramic metal halide lamps

Energy Saving: 11.0 kl/year Cost Saving: 786,000 yen/year CAPEX: - PP: -Facility: Transformers (3ø: 8 units, totally 1,425 kVA, 1ø: 6 units, totally 200 kVA) → Transformers (3ø: 3 units, totally 1,500 kVA, 1ø: 2 units, totally 200 kVA)

ning audit

ors (Proposal 1)

pressure: 0.69 MPa), 3 of 20 compressors

vered (0.69 \rightarrow 0.59 MPa) on two of three compressors,

ver reduced by 7.5%, No. 2 unit: Power reduced by 5.0%,

ble in the present situation because the pressure drops ishing abrasive grains, resulting in unstable operation of ure is to branch the piping for air blow from the low-pres-

000 yen/year

[Shikoku Area]

CASE10

Audit case of energy conservation/power-saving support services

Case of Stockings Manufacturer

Industry type: Textile industry Products: Stockings Company name: Kagawa Seamless Co., Ltd. ■ No. of employees: 160 in the main office/factory, 48 in the Dokigawa Factory

Kagawa Seamless Co., Ltd. requested for an energy conservation audit, focusing on the air-conditioners and lighting in the main office/factory, and we proposed enhancing utilization of outside air cooling, controlling the number of compressors, renewing to high-efficiency lighting, and so on. Three years later, they requested for another energy conservation audit, focusing on waste heat recovery and the air-conditioners in the Dokigawa Factory, and we proposed heating of boiler feed water by waste heat recovery from steam drain and hot wastewater, renewal of the air-conditioners, renewal of the compressors, inverter-based aeration blowers, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system (Main office): Enhanced utilization of outside air cooling in the intermediate period

Because a formulation room has high indoor heat generation, it is cooled except for January and February. On the other hand, an outside air inlet valve is fully closed in summer, fully opened in January and February, and manually adjusted as to its opening in the intermediate period. We proposed increasing an outside air inlet volume in the intermediate period to lower a cooling load.

Energy Saving: 5.0 kL/year Cost Saving: 276,000 yen/year Facility: Air-conditioner (COP: 4.3, capacity: 447 kW)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivalen

Air-conditioning system (Main office): Renewal to the high-efficiency refrigerators

Of the two air-conditioning refrigerators in the formulation room, we

proposed renewing one of them with lower COP to the high-efficiency type to reduce power consumption.

Air-conditioning system (Dokigawa): Renewal to a **3** high-efficiency packaged air-conditioner

Installed 28 years ago, a packaged air-conditioner for Rooms A and B has aged. Heating is done with steam, but the thermal efficiency of steam is lower than that of a heat pump (HP). We proposed renewing to the latest high-efficiency packaged cooling/heating air-conditioner to realize energy conservation. Power consumption increases because of steam heating through the electric heat pump, but there will be no fuel (LPG) consumption, resulting in energy conservation as a whole.

Boiler (Dokigawa): Heating of boiler feed water by recovering the waste heat from overflowing hot water

Well water is heated by the waste heat of hot wastewater from a dyeing machine and stored in a hot water tank to be reused by a heater for the dyeing machine, but surplus water is discharged (overflow). We proposed utilizing this overflowing hot water to heat boiler feed water (27 \rightarrow 43°C) to reduce the boiler fuel (1.9% less).

Energy Saving: 26.7 kL/year Cost Saving: 1,471,000 yen/year CAPEX: 8,000,000 yen PP: 5.4 years Facility: Refrigerators (119 kW, COP: 2.9 \rightarrow 6.0)

Energy Saving: 3.5 kL/year

Cost Saving: 232,000 yen/year (431,000 yen/year less for LPG, 199,000 yen/year more for electric power) CAPEX: 3,000,000 yen PP: 12.9 years Facility: 1 air-conditioner (capacity: 52 kW, cooling COP: 2.9, boiler steam used for heating) \rightarrow 1 air-conditioner (capacity: 52 kW, cooling/heating COP: 3.3/3.4)

Energy Saving: 12.7 kL/year Cost Saving: 915,000 yen/year CAPEX: 1,000,000 yen PP: 1.1 years Facility: 3 boilers (2.5 t/h./unit)

Steam-based system (Dokigawa): Heating of boiler feed water by recovering the waste heat from the steam drain Energy Saving: 16.1 kL/year Cost Saving: 1,167,000 yen/year We proposed recovering the waste heat from the steam drain of the dyeing machine to heat boiler feed water ($27 \rightarrow 49^{\circ}$ C), thereby reducing the boiler fuel (2.4% less). In this CAPEX: 5,000,000 yen PP: 4.3 years Facility: 3 boilers (2.5 t/h./unit) prevent a dye from contaminating boiler feed water when opening the heater. Energy Saving: 31.8 kL/year Cost Saving: 1,754,000 yen/year As an air source for automatic sewing machines, automatic knitting machines, and so on, four constant-speed compressors are used to feed air. Since the sewing machines stop at night, air CAPEX: 500,000 yen PP: 0.3 years Facility: 5 compressors (totally 37 kW/unit) Compressor (Dokigawa): Renewal to an Energy Saving: 3.5 kL/year Cost Saving: 276,000 yen/year One screw compressor and two reciprocating compressors are estimated to have CAPEX: 2,000,000 yen PP: 7.2 years aged because they were introduced approx. 30 years ago. We proposed renewing Facility: 1 screw compressor (22 kW, to the latest high-efficiency inverter-controlled screw compressor to reduce power loading/unloading control), 2 reciprocating (Note) A conventional suction valve throttling compressor does not reduce much power consumption compressors (7.5 kW/unit, on/off control) \rightarrow 1 inverter-controlled screw compressor (22 kW) maintain the constant discharge pressure according to a flow rate, power consumption decreases according to the flow rate, having greater energy conservation effects than the conventional type. Wastewater treatment system (Dokigawa): Inverted-based aeration blowers Energy Saving: 4.4 kL/year Cost Saving: 355,000 yen/year Two aeration blowers at a wastewater treatment plant are continuously operating for 24 hours by turns regardless of a treatment volume. We proposed introducing CAPEX: 300,000 yen PP: 0.8 years inverters to operate the blowers according to the treatment volume (working days) Facility: 2 roots blowers (15 kW/unit) (lower air volume on holidays: 30% less), thereby reducing power consumption. (Note) Substantial energy conservation is expected by continuously measuring the DO (Dissolved Oxygen) value of contaminated water in an aeration tank and controlling the rotation frequency of the blowers based on that numerical value Production system (Dokigawa): Introduction of a heat Energy Saving: 7.1 kL/year Cost Saving: 661,000 yen/year A heater for the dyeing machine heats feed water (well water \rightarrow 45°C) with CAPEX: 7,500,000 yen PP: 11.3 years overflowing hot water. We proposed introducing a heat pump (HP) into this Facility: Heat pump (heating capacity: 65 feed water heater to further heat hot water (45 \rightarrow 60°C), thereby reducing kW, COP: 3.9)

case, wastewater is fed to a wastewater treatment system after waste heat recovery to Compressor (Main office): Numbers control consumption decreases, resulting in unloading operation. We proposed controlling the number of compressors to automatically stop the compressors at night, thereby reducing energy consumption. inverter-controlled screw compressor consumption. After renewal, the existing machine will be used a spare unit. because if an air volume decreases and a discharge pressure increases, it throttles the suction valve to control the pressure. Since the inverter-controlled type controls a rotation frequency so as to pump into a feed water heater by waste heat recovery

steam consumption for heating.

Lighting (Main office): Renewal to high-efficiency U lighting (LEDs)

We proposed renewing the fluorescent lamps in the formulation room to high-efficiency LED lighting to reduce power consumption. Heat generation decreases along with energy conservation of the lighting fixtures, lowering an air-conditioning load.

Major efforts in energy conservation activities

- 1. Addressing energy conservation in the main office/factory Conventional activities have included introduction of the inverters into the pumps and the fans, and introduction of the demand monitoring equipment. Along with the proposals in the energy conservation audit, the 236 fluorescent lamps in the formulation room have been replaced by the LED lamps, and "Enhanced utilization of outside air cooling in the intermediate period" and "Renewal to the high-efficiency refrigerators" are examined. In addition. the pull switches (string) have been attached to the lighting fixtures to frequently turn off unnecessary ones. The fans are also effectively utilized to lower a feeling temperature during cooling and stir the air during heating.
- 2. Addressing energy conservation in the Dokigawa Factory Conventional activities have included renewal to the high-efficiency boilers, introduction of the waste heat recovery equipment, and so on. In response to the proposal "Renewal to the high-efficiency packaged air-conditioner (PAC)", the PAC has been renewed to obtain energy conservation effects. In addition, the production processes have been reviewed and improved to not only reduce water and steam consumptions, but enhance manufacturability.

Energy Saving: 20.8 kL/year Cost Saving: 1,151,000 yen/year CAPEX: 6,000,000 yen PP: 5.2 years Facility: 236 fluorescent lamps (88 W/unit) → 236 LED lamps (46 W/unit)

[Hokkaido Area]

Case of Hot Spring Hotel

Industry type: Service industry Products: Hot spring hotel Company name: Manseikaku Hotels Co., Ltd No. of guests: 600

The hotel run by Manseikaku Hotels Co., Ltd. has been conducting the energy conservation activities such as thinning out/turning off unnecessary lighting fixtures, renewing to high-efficiency lighting, and introducing and utilizing the demand monitoring equipment. This time, they requested for an overall energy conservation audit. As a result of the audit, we proposed an inverter-based cold/hot water pump for air-conditioning, cleaning of the heat exchangers of the air-conditioning indoor units for the guest rooms, lower air ratio of vacuum water heaters, enhanced thermal insulation of the hot water piping, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Hot water system: Lower air ratio of the vacuum water heaters

Two vacuum water heaters are alternately operating to supply hot water. Since both of them have a high air ratio, we proposed adjusting it to the standard value provided by the Act on the Rational Use of Energy $(1.9 \rightarrow 1.3)$ to realize energy conservation.

Automatic vending machine: Renewal to the high-efficiency automatic vending machines

We proposed renewing automatic vending machines of beverages (canned and bottled) to the high-efficiency ones to reduce energy consumption (36% less)

Energy Saving: 12.8 kL/year Cost Saving: 1,019,000 yen/year Facility: 2 vacuum water heaters (total bunker-A consumption: 360 kl/year)

Energy Saving: 3.2 kL/year Cost Saving: 213,000 yen/year Facility: 39 air-conditioners (total power consumption: 35,000 kWh/year)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivale

Air-conditioning system: Inverter-based cold/hot water pump

A cold/hot water pump for air-conditioning a banquet hall is adjusting a flow rate by throttling with a valve. We proposed fully opening the valve and controlling the pump with an inverter (lower a rotation frequency to the required flow rate) to reduce power consumption. In this case, as it is necessary to generate a pressure for an actual pump head, and so on, the effects were calculated under the condition that the pump head is lowered to 1/2.

Energy Saving: 32.7 kL/year Cost Saving: 2,160,000 yen/year CAPEX: 2,500,000 yen PP: 1.2 years Facility: 1 pump (30 kW)

Air-conditioning system: Cleaning of the heat exchangers of the air-conditioning indoor units for the guest rooms

The heat exchangers of the air-conditioning indoor units (FCU: Fan Coil Units) for the quest rooms are contaminated here and there. We proposed recovering heat exchange efficiency by cleaning to reduce fuel consumption. The effects were calculated assuming a 5% energy conservation rate by cleaning.

Energy Saving: 9.1 kL/year Cost Saving: 729,000 yen/year CAPEX: 3,180,000 yen PP: 4.4 years Facility: Indoor units (FCU: 318 units, total heat quantity of cooling/heating: 550/960 kW)

Air-conditioning system: Installation of the curta the window glasses of a restaurant and a lounge

In a restaurant and a lounge, heating is suspended at night during the winter (outsid business hours), and the heat is radiated and lost from the window glasses due to temperature. Because an overnight radiation amount cools down a building and is heating load next day, we proposed installing the curtains over the window glasses lowering of the room temperature, thereby reducing bunker-A consumption for heat

Air-conditioning system: Adoption of an energy conservation belt for an air-conditioning fan

Since an air-conditioner's fan in a main kitchen is continuously run throughout the year, we proposed replacing it by an energy conse belt to reduce power consumption. The effects do not include redu maintenance expenses due to enhanced durability. (Note) Because a V-belt with inside notches (energy conservation belt) reduces

stress" when it is coiled around a pulley, it decreases losses by bending and imp transmission efficiency from a motor to the drive side, saving the power

Hot water swimming pool: Reduction of heat disa from the surface of a hot water swimming pool

We proposed installing simple heat-retaining sheets on the water su hot water swimming pool at night during the winter to inhibit evapora water content and lowering a water temperature, thereby reducing the consumption of a boiler. Specific measures include spreading foami sheets, insulating boards, etc. on the surface of the indoor swimmin

Hot water piping: Enhanced thermal insulation hot water piping system

We proposed enhancing thermal insulation of a hot water piping s machine room to decrease radiation losses, thereby reducing the consumption of the hot water boiler.

Lighting: Renewal of the fluorescent guide light the LED lamps

The fluorescent guide lights consume less power, but has high an power consumption because they are left turned on for 24 hours. proposed replacing them by the high-efficiency LED guide lights to power consumption.

Electric outlet load: Power-off of the quest U refrigerators when the rooms are not occu

We proposed installing the electric outlets with switch to turn off th small refrigerators when the rooms are not occupied, thereby redu power consumption resulting from futile operation.

Major efforts in energy conservation activities

- 1. Implementing all two operational improvement proposals The air ratio of the vacuum water heaters was adjusted and two automatic vending machines were integrated into one high-efficiency model.
- 2. Utilizing a subsidy to implement the proposed investment-required improvements, obtaining substantial energy conservation effects

The proposal "Inverter-based cold/hot water pump" was expanded to all 12 units by utilizing the 2014 Subsidy for Introduction of Energy Conservation Facilities for Local Factories, Small- and Medium-sized Businesses, obtaining substantial effects. "Cleaning of the heat exchangers of the air-conditioning indoor units for the guest rooms", "closing of the gaps of the restaurant and lounge doors (prevention of entry of the outside air)" and "enhanced thermal insulation of the hot water piping" were also implemented. "Renewal of the guide lights to the LED lamps" is being sequentially implemented, beginning with the burnt-out ones. 3. Developing the improvement activities other than the proposals

A cold/hot water generator was renewed by adopting a combination of a hot spring heat-based heat pump (heating) and a cooling tower (cooling), intended for utilization of the hot spring heat, and utilizing the 2014 Subsidy for Introduction of Energy Conservation Facilities for Local Factories, Small- and Medium-sized Businesses, including primary heating of hot water feed by the hot spring heat, thereby greatly reducing the fuel heavy oil.

ains over e	Energy Saving: 0.7 kL/year			
ide the a high room added to a s to prevent sting.	Cost Saving: 52,000 yen/year CAPEX: 1,000,000 yen PP: Upon renewing the aged system Facility: Window glasses (area: 225 m², room temperature at night: 22°C, outside air: 1°C)			
ergy	Energy Saving: 0.4 kL/year			
inning ervation luction of	Cost Saving: 25,000 yen/year CAPEX: 17,000 yen PP: 0.4 years Facility: 1 exhaust fan (22 kW)			
s a "bending proves power				
ssipation	Energy Saving: 4.1 kL/year Cost Saving: 330,000 yen /year			
urface of a ration of the the fuel ning resin ng pool.	CAPEX: 200,000 yen PP: 0.6 years Facility: Hot water swimming pool (surface area: 100 m ² , water temperature: 31°C, ambient temperature: 28°C)			
ion of a	Energy Saving: 1.9 kL/year			
system in a e bunker-A	Cost Saving: 151,000 yen/year CAPEX: 380,000 yen PP: 2.5 years Facility: Flange type globe valves (3 pcs. for 150A), flanges (3 pcs. for 150A, 14 pcs. for 80A, 6 pcs. for 65A), piping (1 m for 80A, 1 m for 50A), and so on			
ights to	Francisco da la la la com			
nnual We to reduce	Energy Saving: 1.8 kL/year Cost Saving: 121,000 yen/year CAPEX: 1,368,000 yen PP: 11.3 years Facility: 40 fluorescent guide lights (23 W/unit) → 40 LED guide lights (2.7 W/unit)			
st-room	Engenny Serviney 2.0 kt/segen			
upied he indoor lucing	Energy Saving: 2.8 kL/year Cost Saving: 185,000 yen/year CAPEX: 10,000 yen PP: 0.1 years Facility: 320 small refrigerators (17 kWh/month/unit)			

[Tohoku Area]

support services

Case of Hot Spring Hotel

Industry type: Service industry Products: Hot spring hotel Company name: Tendo Hotel Co., Ltd. ■ No. of guests: Approx. 210 on weekdays and 300 on holidays

Tendo Hotel Co., Ltd. has been conducting the energy conservation activities such as suspending the air-conditioners during the intermediate period, replacing the lighting fixtures by the LEDs, and educating the employees about energy conservation. This time, they requested for an overall energy conservation audit. As a result of the audit, we proposed water-saving in the washrooms and bathrooms, inverter-based pumps for an air-conditioning system, adjustment of a boiler's air ratio, reduction of the maximum power by introduction of the demand monitoring equipment, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Freezer/refrigerator: Consolidation of the prefabricated refrigerators and freezers for kitchen

Many refrigerators and freezers are installed for kitchen use, but the utilization factors of individual units seem low and there is room for consolidation of the numbers. The refrigerators and freezers consume the power not only for the compressors, but for ancillary facilities such as frozen door preventive heaters, defrosting heaters and internal lighting. We proposed consolidating the number of working units to realize energy conservation.

Sanitary system: Adjustment of the hot water volume in the washrooms

Since a face-washing hot water discharge rate is high, we proposed (1) using a stop cock for a hand-washing faucet to reduce by 75% and (2) introducing a super water-saving shower to save water and reduce the bunker-A consumption of the boiler.

Energy Saving: 1.5 kL/year Cost Saving: 101,000 yen/year Facility: Reduction of the refrigerators and freezers (3 units, 2.2 kW/unit)

Energy Saving: 22.2 kL/year

Cost Saving: 2,806,000 yen/year Facility: Hot water reduced by 3,300 m³/year, hand-washing water reduced by 2,200 m³/year

J Lighting: Power-saving of the fluorescent lamps

We proposed replacing the FLR fluorescent lamps in the backyard such as an office and a kitchen by the power-saving fluorescent lamps to reduce power consumption.

Energy Saving: 0.7 kL/year Cost Saving: 49,000 yen/year Facility: 180 FLR fluorescent lamps (40 W/unit) → 180 fluorescent lamps (36 W/unit)

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equivale

Air-conditioning system: Renewal to a high-efficiency inverter-controlled freezing machine

Installed about 28 years ago, a water-cooled chiller has aged. We proposed renewing it to a high-efficiency inverter-controlled freezing machine to reduce power consumption.

Air-conditioning system: Inverter-based secondary hot water pumps

Two secondary hot water pumps (No. 2 and No. 3) in the new building have an excessive capacity and are operated by throttling with a valve. (35% for No. 2 and 70% for No. 3). We proposed fully opening the valve and control them with inverters (lower flow rate by controlling a motor speed) to reduce power consumption.

Energy Saving: 4.9 kL/year Cost Saving: 329,000 yen/year CAPEX: 27,650,000 yen **PP:** Upon renewing the aged system Facility: 1 water-cooled chiller (cooling capacity: 247 kW, COP: $4.1 \rightarrow 5.1$)

Energy Saving: 4.2 kL/year Cost Saving: 283,000 yen/year CAPEX: 600,000 yen PP: 2.1 years Facility: 2 pumps (11 kW, 3.7 kW)

Boiler: Reduction of fuel consumption by lowering **6** the air ratio

The air ratio of individual boilers has not been measured and understood, but are estimated high. We proposed adjusting it $(1.8 \rightarrow 1.3)$ to reduce bunker-A consumption.

Steam piping: Enhanced thermal insulation of the steam piping

We proposed enhancing thermal insulation of the steam piping and valves to reduce the heavy oil consumption of the boilers (feasible by thermal insulation work by the employees).

Water heating system: Introduction of exclusive small pumps for midnight use into a bathtub filtration system

Two bathtub filtration pumps (5.5 kW/unit) are running. Since contamination is less at midnight, we proposed installing exclusive small filtration pumps and switching them over with a timer to reduce power consumption. Since the number of filtration pumps is added to, they will be a backup in the case of failure. (Note) It is also possible to detect free residual chlorine concentration in bathtub water to control the filtration pump with an inverter, allowing further energy conservation.

Sanitary system: Replacement of the shower heads in the bathrooms by the water-saving type

We proposed changing the shower heads in the bathrooms from the conventional type to the water-saving type to save water and reduce bunker-A consumption.

Lighting: Introduction of the motion detectors for **U** lighting in the restrooms

There are many lighting fixtures in the restrooms in the public areas, but effective lighting control cannot be easily done by manual flashing. We proposed installing the motion detectors to turn off lighting when there is nobody, thereby reducing power consumption.

Lighting: Replacement of the fluorescent guide 1 lights by the LED lamps

We proposed renewing the fluorescent guide lights to the LED lamps with low power consumption to reduce power consumption. (Note) When renewing to the LED guide lights, it is necessary to notify to a competent fire station in advance

Category	Power cons	umption (W)	Qty.		
Category	Fluorescent lamp	LED	Fluorescent lamp	LED	
(1) Class-A guide lights (40 W)	49	10.5	22	40	
(2) Class-A guide lights (35 W)	44	10.5	26	48	
(3) Class-B guide lights (Class BH)	25	3.6	90	91	
(4) Class-C guide lights (20 W)	25	2.0	1	1	
(5) Class-C guide lights (10 W)	13	2.0	57	56	
Total			196	196	

Demand control: Introduction of the demand monitoring equipment

We proposed introducing the demand monitoring equipment to monitor the change of the maxim power, and suspending operation of the premeditated systems when the maximum power approaches a setting value, thereby inhibiting the maximum power (contract demand: 720 → 693 kW, 27 kW less). The systems to be suspended include kitchen equipment (convection oven, dish washing machine), sauna. change of the defrosting time of the freezers and refrigerators, electric water heaters, and so on.

Electric outlet load: Power-off of the quest-room refrigerators when the rooms are not occupied

The refrigerators are installed in the guest rooms. They are left turned on all the time, consuming the standby power. We proposed utilizing extension cords with switch, etc. to turn off the power when the rooms are not occupied, thereby realizing energy conservation.

Major efforts in energy conservation activities

- 1. Implementing the management proposals requiring no investments in advance "Adjustment of the hot water volume in the washrooms" has been put into practice and is being promoted because it brings about great effects. For "Power-saving of the fluorescent lamps", the employees have been voluntarily replacing the burnt-out fluorescent lamps by the power-saving type.
- 2. Implementing easily practicable investment-required proposals in advance The deteriorated bathroom faucets were renewed according to the proposal. When this was done, 20 shower heads were replaced by the latest water-saving type capable of lowering a water rate without changing a pressure, thereby substantially reducing water-heating energy.
- 3. Utilizing a subsidy to replace the guide lights by the LED lamps The Subsidy for Eco-Renovation Promotion Model Project in Yamagata Prefecture was utilized to replace all fluorescent guide lights by the LED lamps, which had been left turned on all the time

80A), flanges (50 pcs. for 100A, 50 pcs. for 65A) Energy Saving: 2.2 kL/year Cost Saving: 151,000 yen/year CAPEX: 240,000 yen PP: 1.6 years Facility: Two pumps (2.2 kW/unit) added to

Facility: Flange type globe valves (15 pcs. for

the existing two pumps (5.5 kW/unit)

Energy Saving: 7.2 kL/year

Energy Saving: 3.3 kL/year

Cost Saving: 250,000 yen/year

CAPEX: 1,300,000 yen PP: 5.2 years

Cost Saving: 550,000 yen/year

CAPEX: 400.000 ven PP: 0.7 vears

Facility: 4 boilers (0.9 t/h./unit, total heavy

oil consumption: 176 kl/year)

Energy Saving: 6.0 kL/year Cost Saving: 810,000 yen/year CAPEX: 2,800,000 yen PP: 3.5 years Facility: 40 shower heads

Energy Saving: 0.6 kL/year Cost Saving: 39,000 yen/year CAPEX: 176,000 yen PP: 4.5 years Facility: 8 restrooms, fluorescent lamps (27 W/unit: 14 units, 12 W/unit: 8 units), 8 motion detectors (1 master device + 2 slave devices/location)

Energy Saving: 9.7 kL/year Cost Saving: 654,000 yen/year CAPEX: 8,500,000 yen PP: 13 years **Facility: Fluorescent guide lights** \rightarrow **LED** guide lights

Maximum power: 27 kW less Cost Saving: 437,000 yen/year CAPEX: 400,000 yen PP: 0.9 years Facility: Demand monitoring equipment

Energy Saving: 2.8 kL/year Cost Saving: 191,000 yen/year CAPEX: 116,000 yen PP: 0.6 years Facility: 116 small refrigerators (180 kWh/unit·year)

[Tohoku Area]

Case of General Welfare Facilities

Audit case of energy conservation/power-saving support services

ASF13

Industry type: Social welfare and nursing care Products: General welfare facilities Company name: Social welfare corporation, Kagayakinokai, Ikiikinosato ■ No. of users: 500

Ikiikinosato has been taking the energy conservation measures such as thinning out/turning off unnecessary lighting fixtures and changing a cooling/heating setting temperature. This time, they requested for an overall energy conservation audit, focusing on reduction of a boiler fuel. As a result of the audit, we proposed the lower air ratio of a cold/hot water generator for air-conditioning, a measure to control heat radiation from the surface of the baths and a swimming pool when they are not in use, enhanced thermal insulation of hot water piping and a tank, power-saving of an antifreeze heater, integration of transformers, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Reduction of fuel consumption (LPG) by the lower air ratio

We proposed lowering the air ratio of the cold/hot water generator for air-conditioning (1.60 \rightarrow 1.30) to decrease heat losses by an exhaust gas, thereby realizing energy consumption.

Air-conditioning system: Power-off of the air-conditioners during their non-operating period

Since the air-conditioners are left turned on all the time, the crank case heaters consume the standby power when air-conditioning is not used (4 months/year). We proposed turning off the circuit breakers during that period to realize energy conservation. (Note) The crank case heater is a facility to prevent mixture of a refrigerant and a lubricant and does not need to be energized when the air-conditioners are not operating. Its manufacturer recommends turning on the main power a couple of hours before using the air-conditioners.

Plumbing equipment: Power-saving of the antifreeze heater

We proposed (1) adjusting the setting temperature of the piping antifreeze panel heater for a fire-fighting system ($20 \rightarrow 5^{\circ}$ C) and (2) removing the power wiring of the incorporated antifreeze heater of an electric valve because there is no fear of freezing of the piping (hot water) of a filtration pump, thereby reducing power-saving.

Demand control: Utilization of the demand **H** monitoring equipment

A possible cause for higher maximum power (demand) is heater operation for the vaporizers (3 LPG vaporizers, totally 78 kW) and the tableware storages (2 units, totally 27 kW). We proposed utilizing the demand monitoring equipment to monitor the change of the maximum power, and stop the predetermined devices (vaporizers, etc.) to inhibit the maximum power (221 \rightarrow 180 kW, 41 kW less) when it approaches a setting value.

Automatic vending machine: Renewal to the energy conservation type

Specified as the specially designated secondary device of the Act on the Rational Use of Energy, the automatic beverage vending machines have enhanced the energy conservation performance year fter year. We proposed renewing them to the energy conservation type to reduce power consumption Energy Saving: 2.5 kL/year Cost Saving: 236,000 yen/year Facility: 2 absorption type cold/hot water generators (cooling/heating capacity: 633/736 kW/unit, LPG consumption: 100 t/year)

Energy Saving: 1.1 kL/year Cost Saving: 83,000 yen/year Facility: 50 air-conditioners (crank case heater: 30 W/unit)

Energy Saving: 0.8 kL/year Cost Saving: 58,000 yen/year Facility: 1 panel heater (1.0 kW/unit), 4 electric valves (15 W/unit)

Maximum power: 41 kW less Cost Saving: 685,000 yen/year **Facility: Demand monitoring equipment**

Energy Saving: 0.3 kL/year Cost Saving: 24,000 yen/year Facility: 2 automatic vending machines (totally 3,020 \rightarrow 1,754 kW/year)

Making	investments into facilities	with higher efficie	ICCY (Note) Energy conservation effect is shown in crude oil equivalent.		
	er heating system: Enhanced ne valves, flanges and a filtra		Energy Saving: 9.2 kL/year		
We proposed enhancing thermal insulation of the valves and the flanges of the hot water feed/heating piping, and the filtration tank to decrease heat dissipation, thereby realizing energy conservation.		Cost Saving: 866,000 yen/year CAPEX: 413,000 yen PP: 0.5 years Facility: Flange type gate valves (10 pcs. for 80A, 10 pcs. for 65A, 20 pcs. for 50A), flange (20 pcs. for 80A, 20 pcs. 65A, 40 pcs. for 50 A), 1 filtration tank (ø1.5 m, 3.0 m high)			
	er heating system: Inverter-b ulation pump	ased hot spring	Energy Saving: 0.9 kL/year		
Since the valve of a hot spring circulation pump is narrowed, a required flow rate is lower than the rated flow rate of the equipment. Accordingly, we proposed fully opening the valve and controlling the pump by an inverter to adjust the flow rate, thereby reducing power consumption.			Cost Saving: 70,000 yen/year CAPEX: 70,000 yen PP: 1.0 year Facility: 1 pump (2.2 kW)		
	r facilities: Measure to control heat ra e baths and the swimming pool when	Energy Saving: 68.6 kL/year			
We proposed covering the water surface with a simple heat-retaining sheet (3-layer bubble wrap, foamed polyethylene sheet, etc.) to inhibit moisture evaporation and a water temperature fall during a time period (14 h./day x 365 days) when the indoor baths, outdoor bath and hot water swimming pool are not used, thereby reducing boiler fuel consumption.			Cost Saving: 6,459,000 yen/year CAPEX: 2,900,000 yen PP: 0.4 years Facility: 2 indoor baths (total surface area: 101 m ² , 40°C), outdoor bath (23 m ² , 40°C), hot water swimming pool (approx. 200 m ² , 30°C)		
9. Ligi	nting: Higher-efficiency merc	ury lamps	Energy Saving: 0.3 kL/year		
We proposed renewing the outside mercury lamps (lighting hours: 3.5 h./day x 365 days) to the high-efficiency ceramic metal halide lamps (with an exclusive stabilizer) to realize energy conservation.			Cost Saving: 26,000 yen/year CAPEX: 350,000 yen PP: 13.5 years Facility: 7 mercury lamps (400 W/unit) \rightarrow 7 ceramic metal halide lamps (250 W/unit, with stabilizer)		
10. ^T	ransformer: Integration of the wo electrical rooms	e transformers in	Energy Saving: 3.5 kL/year		
Five transformers in two electrical rooms are lightly loaded. We proposed integrating them into two transformers in the first electrical room (suspension of 3 units and removal of the primary-side wiring) to decrease transformer losses, thereby realizing energy conservation. In this case, cabling is required from the first to the second electrical room.		Cost Saving: 260,000 yen/year CAPEX: 1,000,000 yen PP: 3.8 years Facility: 3ø transformers (2 units,300 kVA + 200 kVA \rightarrow 1 unit, 300 kVA), 1ø transformer (3 units, 200 kVA/unit \rightarrow 1 unit)			
	Status quo	Renewal plan			
1st electrical room 2nd electrical room	3ø transformer (1 unit: 300 kVA) 1ø transformer (2 units: 200 kVA/unit) 3ø transformer (1 unit: 200 kVA) 1ø transformer (1 nit: 200 kVA)	Integrate into; - 3ø transformer (1 unit: 300 k - 1ø transformer (1 unit: 200 k in the 1st electrical room.	,		

Major efforts in energy conservation activities

- 1. Implementing four operational improvement proposals requiring no investments Energy conservation activities were immediately put into practice for operational improvement, such as lowering the air ratio of the cold/hot water generators for air-conditioning and the gas type water boiler, suspending surplus antifreeze heaters, renewing to the energy-conserving automatic vending machines, and utilizing the existing demand monitoring equipment to inhibit the maximum power.
- 2. Implementing two relatively easy investment improvement proposals for management Thermal insulation of the valves and flanges for the hot water piping, and the filtration tank was enhanced, and the mercury lamps for the indoor hot water swimming pool were renewed to the high-efficiency lighting fixtures to obtain the energy conservation effects.
- 3. Enhancing the energy conservation management structure and promoting their own measures Having understood the necessity of the management structure after the audit, an organizational structure was established with a managing director at the top plus mangers and their subordinates to continuously promote energy conservation. In addition, a water-saving tool was introduced, small humidifiers were renewed to large ones (mist fans), and one vaporizer was suspended as their voluntary measures to realize energy conservation. Also, it is planned to renew two hot water boilers by utilizing the Promotion Project Subsidy for Investments in Energy Conservation and Productivity Revolution of Small- and Medium-sized Businesses of the FY2015 supplementary budget.

CASF14

Audit case of energy conservation/power-saving support services

Case of Welfare Center and Culture Center

Industry type: Public Products: Welfare center, culture center Company name: Company K ■ Total floor area: 4.056 m² for the welfare center A, 6,700 m² for the culture center B

Company K has been taking the energy conservation measures such as thinning out unnecessary lighting fixtures and suspending unnecessary air-conditioning at the welfare center A and culture center B which are the designated administrator facilities. This time, they requested for an overall energy conservation audit, focusing on air-conditioning and lighting. As a result of the audit, we proposed easing the setting temperature of air-conditioning, controlling an air-handling unit for air-conditioning and a pump through an inverter, lowering an outside air inlet volume, renewing to high-efficiency lighting, and so on.

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system (Culture center): Lower outside air inlet volume for an atrium and a hot water swimming pool

(1) Since a CO₂ concentration (490 ppm) in the atrium is low and the outside air inlet volume is too high, lower the outside air inlet volume to a control value (900 ppm). (2) The CO₂ concentration of the hot water swimming pool has not been measured. Lower the outside air inlet volume to the required volume at the CO₂ concentration control value (900 ppm) obtained from the number of users at the peak time. We proposed reducing power consumption for air-conditioning by taking the measures (1) and (2).

Energy Saving: 7.3 kL/year Cost Saving: 806,000 yen/year Facility: Air-conditioner (cooling/heating COP: 2.6/3.3)

Item	Energy conservation effect	Cost reduction
(1) Lower outside air inlet volume for the atrium	17,073 kWh/year	487,000 yen/year
(2) Lower outside air inlet volume for the hot water swimming pool	11,210 kWh/year	319,000 yen/year
Total	28,283 kWh/year	806,000 yen/year

Air-conditioning system (Welfare center): Easing of the setting temperature of air-conditioning

We proposed easing the setting temperature of (1) a GHP air-conditioner for a public area and (2) an EHP air-conditioner for tenants (cooling/heating: $24/24^{\circ}C \rightarrow 26/22^{\circ}C$) to realize energy conservation.

Air-conditioning system (Welfare center): Delayed air-conditioner start time at the front entrance

Two indoor units for the front entrance are activated 1 hour earlier than other 6 outdoor units. We proposed delaying their start time to the same time as the other units to reduce fuel consumption and power consumption for the GHP.

Ventilation system (Welfare center): Change of the exhaust 4 fan setting temperature of an elevator machine room

The Enforcement Order of the Building Standards Act and the JIS "Inspection Standards for Elevators" stipulate that the temperature of the machine room should be maintained at 40°C or lower as a rule. We proposed easing the exhaust fan setting temperature 20°C (during the audit to 35°C to save the power.

Energy Saving: 5.6 kL/year Cost Saving: 487,000 yen/year Facility: GHP air-conditioner (city gas consumption: 12,000 m³/year), EHP air-conditioner (power consumption: 57,000 kWh/year)

Energy Saving: 2.4 kL/year Cost Saving: 224,000 yen/year Facility: GHP air-conditioner (city gas consumption during cooling/heating: 44.3/43.8 m³/h.)

Energy Saving: 0.3 kL/year Cost Saving: 22,000 yen/year Facility: 1 exhaust fan (250 W/unit)

Lighting (Welfare center): Thinning out of lighting of the corridor in the public area

Lighting of the corridor in the public area has been already thinned out, but illuminance was 150 to 250 lx at the time of audit (3rd floor), brighter than the JIS illuminance standard 100 lx. We proposed thinning out lighting on the 3rd and 4th floors to realize energy conservation.

Making investments into facilities with higher efficiency

Air-conditioning system (Welfare center): Power by installing the sunshades for the outdoor unit

The outdoor units for the air-conditioners are installed on the west side of the floors and on the rooftop, and subjected to the direct sunshine. We proposed shades for the outdoor units with "reed screens", etc. to block solar insolation lowering the temperature of the outdoor units (condensers) to save the power

Air-conditioning system, hot water swimming pool center): Inverter-based AHU, cold/hot water pump,

(1) The fans of the air-handling units (AHUs) for air-conditioning throttles opening to 50% to adjust an air volume. The secondary cold/hot water p air-conditioning and the secondary hot water pumps throttle the dischard to about 30% opening. By fully opening the damper and introducing an i accordingly, reduce the motor speed to lower the air volume/flow rate. (2 circulation pump for the swimming pool keeps running at a constant spe after business hours. Introduce an inverter to lower the pump rotation fre during the less contaminating nighttime, thereby reducing a circulation w (70% less). We proposed saving the power by taking the measures (1) a

Hot water swimming pool (Culture center): Improvem jacuzzi pump operating method and water-saving of

(1) A jacuzzi pump is continuously running while the hot water swimming pool is the utilization frequency of the pump seems low. We proposed running it only du of the jacuzzi to reduce power consumption. Specifically, have users turn on the of the jacuzzi pump and use a timer to stop the pump automatically, or install a detector at the upper part of the jacuzzi to run the pump automatically. (2) We pr replacing the conventional shower heads in a shower room with the water-savin save water and reduce the power consumption of a hot water heat pump chiller.

Lighting (Culture center, welfare center): Ren high-efficiency lighting

(1) We proposed renewing the (1) downlights in the restrooms (incandescent lamps), (2) mercury lamps in a gymnastic meeting i multi-halogen lamps in the atrium, and (4) fluorescent guide lights to the high-efficiency models to reduce power consumption.

Status quo	Renewal plan	Lighting hours (h./year)	Qty.	Money saved (in 1,000 yen)		Payback period (in years)
(1) Downlights (incandescent lamps, 40 W/unit)	LED lamps (5.2 W/unit)	4,485	20	66	50	0.8
(2) Mercury lamps (300 W/unit)	Ceramic halide lamps (190 W/unit)	828	20→15	55	675	12.3
(3) Multi-halogen lamps (430 W/unit)	Ceramic halide lamps (250 W/unit)	3,926	8	161	280	1.7
(4) Fluorescent guide lights (98 W/unit)	LED guide lights (3.5 W/unit)	8.760	11	244	952	3.9
Fluorescent guide lights (49 W/unit)	LED guide lights (3.5 W/unit)	0,700	6			
Total			45	526	1,957	3.7

Demand control (Welfare center): Introduction of U the demand monitoring equipment

We proposed introducing the demand monitoring equipment to moni changes of the maximum power, and suspend the air-conditioning sy thin out lighting as set in advance when approaching a setting value inhibiting the maximum demand power (142 \rightarrow 130 kW, 12 kW less)

Major efforts in energy conservation activities

- 1. Purpose of utilizing the complimentary energy conservation audit at the public facilities Under the stern financial circumstances, Company K has been making efforts for efficient management of the designated administrator facilities. In the meantime, they have utilized the complimentary energy conservation audit system to consider the energy conservation measures for the welfare center A and the culture center B. and steadily implemented them, focusing on the operational improvement proposals requiring no investments.
- 2. Implementing the investment-required improvements On the other hand, the investment-required improvements cannot be easily implemented by the designated administrator alone. Eyeing utilization of a national subsidy system, they have been deliberating with the related parties so as to implement them in a municipal mid-term plan. They have already renewed to high-efficiency lighting.

Energy Saving: 0.4 kL/year Cost Saving: 33,000 yen/year Facility: Fluorescent lamps (4 units, 40 W paired lamps/unit)

erenicie	(Note) Energy conservation effect is shown in crude oil equivalent.
er-saving ts	Energy Saving: 0.8 kL/year
ne 1 st and 2 nd ed making on, thereby /er. I (Culture	Cost Saving: 64,000 yen/year CAPEX: 400,000 yen PP: 6.3 years Facility: 10 air-conditioners (compressors: 65 kW in total)
etc.	Energy Saving: 20.7 kL/year
es damper pump for rge valves inverter, 2) A water eed at night requency water rate and (2).	Cost Saving: 2,300,000 yen/year CAPEX: 2,138,000 yen PP: 0.9 years Facility: 4 AHU fans (totally 37 kW), 1 cold/hot water pump (5.5 kW), 2 secondary hot water pumps (2.2 kW/unit), 3 circulation pumps (totally 10.5 kW)
nent of a	
showers	Energy Saving: 1.7 kL/year
s utilized, but luring usage e start switch motion	Cost Saving: 302,000 yen/year CAPEX: 270,000 yen PP: 0.9 years Facility: 1 pump (2.2 kW), 8 shower heads
proposed ng type to r.	
newal to	Energy Saving: 6.0 kL/year
room, (3)	Cost Saving: 526,000 yen/year CAPEX: 1,957,000 yen PP: 3.7 years Facility: Incandescent lamps → LED lamps;

Facility: Incandescent lamps \rightarrow LED lamps Mercury lamps, halogen lamps → Ceramic halide lamps; Fluorescent guide lights → LED guide lights

itor	
ystem or	
, thereby	
).	

Maximum power: 12 kW less Cost Saving: 253,000 yen/year CAPEX: 400,000 yen PP: 1.6 years Facility: Demand monitoring equipment

[Kanto Area]

CASE15

Audit case of energy conservation/power-saving support services

Case of City Gas Manufacturing and Supply Company

Industry type: Other manufacturing Products: City gas Company name: Company A ■ No. of employees: Approx. 200 on weekdays and approx. 30 on holidays

Company A has been conducting the energy conservation activities such as thinning out/turning off unnecessary lighting fixtures and renewing them to high-efficiency ones at the main office building. This time, they requested for an overall energy conservation audit, including an absorption type water cooler/heater. As a result of the audit, we proposed easing a cooling start time and a cooling setting temperature, easing the cold water temperature of the absorption type water cooler/heater, utilizing an inverter for a cooling water pump, replacing mercury lamps and guide lamps by high-efficiency lamps, turning off lighting thoroughly outside the business hours, and so on. Half a year after the energy conservation audit (Dec. 2014), they had our tuning audit to measure various data and confirmed a tuning method and energy conservation effect as to "full opening of the flow rate control valve of the cooling water pump and tuning by inverter control".

Effects of the measures (Audit)

Proposals requiring no cost (Note) Energy conservation effect is shown in crude oil equivalent.

Air-conditioning system: Easing of a cooling start-up time

It is estimated that cooling starts at 6:00 a.m. during summer. We proposed delaying the start-up time by one hour to realize energy conservation because there is an enough time before the working hours.

Air-conditioning system: Easing of the cooling setting temperature (GHP)

We proposed easing the cooling setting temperature of a new building by $1^{\circ}C (26 \rightarrow 27^{\circ}C \text{ on the average})$ to realize energy conservation.

Air-conditioning system: Easing of the cold water temperature of the absorption type water cooler/heater

Because a load is low during a cooling period (June, half of September, and October) except during the maximum load, we proposed raising the cold water temperature from the water cooler/heater (7 \rightarrow 9°C) to enhance the efficiency of the water cooler/heater, thereby improving fuel (city gas 13A) consumption efficiency.

Air-conditioning system: Utilization of the inverter for the cooling water pump

The discharge valve of the cooling water pump (CWP-1) is opened approximately 50%. We proposed fully opening the valve and adjusting inverter setting (already installed, lower pump rotation frequency) to reduce pump power.

Lighting: Thinning out of lighting

The illuminance (1,100 to 1,200 lx) of the 2nd and 3rd office floors of the new building is high, leaving room for reduction with respect to the JIS standard (750 lx). We proposed thinning out lighting to reduce the lighting power

Energy Saving: 1.7 kL/year Cost Saving: 143,000 yen/year Facility: 5 GHP air-conditioners (total capacity: 256 kW, cooling COP: 1.2)

Energy Saving: 1.2 kL/year Cost Saving: 101,000 yen/year Facility: 5 GHP air-conditioners (total capacity: 256 kW, cooling COP: 1.2)

Energy Saving: 0.4 kL/year Cost Saving: 37,000 yen/year Facility: Absorption type water cooler/heater (city gas consumption during the target period: 6,500 m³/year)

Energy Saving: 0.5 kL/year Cost Saving: 51,000 yen/year Facility: 1 pump (5.5 kW)

Energy Saving: 0.4 kL/year Cost Saving: 39,000 yen/year Facility: Hf fluorescent lamps (65 W/unit, 46 →37 units)

Lighting: Thorough lights out outside the business hours

A power monitor tells that lighting of the 2nd and 3rd floors of the new building has been turned on from an early time before the business hours. We proposed turning it off outside the business hours to reduce the lighting power except when it is inevitable.

Making investments into facilities with higher efficiency (Note) Energy conservation effect is shown in crude oil equiv

Linkting, Densional of the measure langue of a

7 Lighting: Renewal of the mercury lamps of a parking lot to the high-efficiency lamps			y Saving: 0.2 kL/year								
high-efficiency ceramic metal halide lamps to reduce the lighting power.			Cost Saving: 15,000 yen/year CAPEX: 90,000 yen PP: 6.0 years Facility: Mercury lamps (2 units, 210 W/unit) → Ceramic metal halide lamps (2								
									units, 128 W/unit)		
						Lighting: Renewal of the guide lights to the LED					
8 lamps			Energy Saving: 0.2 kL/year Cost Saving: 14,000 yen/year CAPEX: 130,000 yen PP: 9.3 years Facility: Fluorescent guide lights → LED guide lights								
The guide lights of the new building are all LED lamps, but those of the main building are almost fluorescent lamps. We proposed replacing the guide lights by the LED lamps at the timing of their renewal to reduce power consumption. When renewing to the LED guide lights, it is necessary to notify a competent fire station in advance.											
Before renewal	After renewal	Qty.									
Guide lights: Fluorescent lamps (15 W/unit)	LED lamps (2.0 W/unit)	2									
Guide lights: Fluorescent lamps (23 W/unit) LED lamps (2.7 W/unit)											

Results of tuning audit

. Topics	Tuning by fully opening the flow rate control valve o
. Target facilities	Gas-fired absorption type water cooler/heater (cooli
. Results	We confirmed the methods for measuring the coolir water volume and pump power. We confirmed the effects of full opening of the valve conditions to conventional throttling of the discharge Power consumption: 8.8% less, Crude oil equivalen We confirmed the effects, assuming that an inverter Hz during the intermediate period when the outside summer). Power consumption: 38% less, Crude oil equivalent

Major efforts in energy conservation activities

1. Utilizing the inverter to realize energy conservation (including the tuning audit activities) In order to utilize the inverter for the cooling water pump as proposed, they had a tuning audit after the energy conservation audit to learn a method to collect the data for preparing the relationship diagrams of "frequency vs. flow chart" and "frequency vs. electric power". After that, they voluntarily applied it to not only the measured cooling water pump, but a cold/hot water circulation pump to obtain more energy conservation effect.

2. Implementing the six operational improvement proposals requiring and not requiring investments (other than those related to the tuning audit)

For the improvement proposals not requiring investments, they implemented "easing of the cooling setting temperature $(26 \rightarrow 28^{\circ}C)$ " and "easing of the cold water temperature of the absorption type water cooler/heater $(7 \rightarrow 9^{\circ}C)$ ". For the improvement proposals requiring investments, they invested in the sensors, LEDs and LEDs with sensor to respond to the proposals, "thinning out of lighting" and "thorough lights out outside the business hours". For the "mercury lamps of the parking lot" and "guide lights", they are renewing them to the LED lamps successively.

3. Developing the voluntary improvement activities other than the proposals They have utilized the waste heat by cogeneration, renewed the air-conditioners and introduced solar power generation (subsidy utilized) to realize 15% energy conservation across the building.

Energy Saving: 0.04 kL/year Cost Saving: 4,000 yen/year Facility: Hf fluorescent lamps (10 units, lighting hours outside the business hours: 65 W/unit x 1 h./day)

of the cooling water pump and adjusting the inverter (Proposal 4)

ling/heating: 352/329 kW), cooling water pump (1 unit, 5.5 kW)

ng water inlet/outlet pressure of the water cooler/heater, cooling

e and inverter adjustment (48 Hz) under the equivalent e valve (50% opening).

nt: 0.2 kL/year, Effects: 21,000 yen/year

er frequency is 48 Hz during summer (same as the above) and 35 e temperature is low (cooling water volume: 30% less than the

t: 1.0 kL/year, Effects: 91,000 yen/year

Complimentary Energy Conservation Audit Cases in FY2016

The Energy Conservation Center, Japan

Energy Audit Department/Energy Audit Technology Department

Igarashi Building, 2-11-5 Shibaura, Minato-ku, Tokyo 108-0023 Phone: +81-3-5439-9732 Fax: +81-3-5439-9738 E-mail: ene@eccj.or.jp

http://shoene-portal.jp/

Unauthorized reproduction prohibited, all rights reserved. The Energy Conservation Center, Japan * This project is subsidized by the Ministry of Economy, Trade and Industry, Agency for Natural Resources and Energy.

2016.10 6K