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ABSTRACT
Discovering tables from poorly maintained data lakes is a signifi-

cant challenge in data management. Two key tasks are identifying

joinable and unionable tables, crucial for data integration, analysis,

and machine learning. However, there’s a lack of a comprehensive

benchmark for evaluating existing methods. To address this, we

introduce LakeBench, a large-scale table discovery benchmark. It

evaluates effectiveness, efficiency, and scalability of table join &

union search methods. With over 16 million real tables, LakeBench
is 1,600X larger than existing datasets and 100X larger in storage

size. It includes synthesized and real queries with ground truth,

totaling more than 10 thousand queries – 10X more than used in

any existing evaluation. We spent over 7,500 human hours label-

ing these queries and constructing diverse query categories for

thorough evaluation. Our benchmark thoroughly evaluates state-

of-the-art table discovery methods, providing insights into their

performance and highlighting research opportunities.
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1 INTRODUCTION

Many governments have acknowledged the importance of pro-

viding open access to their data for the public good [30]. However,

these open datasets are typically published in formats like image

or JSON that don’t fit neatly into relational databases. To make

sense of this poorly maintained data, data scientists have to go

through a pipeline of data curation tasks to discover, merge, and

clean data [5, 9–11, 31]. As the first step of this pipeline, data dis-

covery that finds relevant tables is critical for data scientists to

effectively and efficiently conduct their work.
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Figure 1: Table Discovery in Data Lake.

Table discovery from data lakes can be generally classified into

two categories: keyword-based search [4, 16, 19, 20, 40] and table-

based search [3, 13, 14, 17, 24, 32, 45, 46]. Keyword-based search over
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tables often relies on the metadata of tables in the lake to identify

tables or tuples relevant to the given keywords. However, in the data

lake scenario, the metadata is often poorly maintained compared

to the database management system (DBMS). Consequently, the

incompleteness and inconsistency of metadata in the data lake

become bottlenecks for keyword-based search. Thus in this work,

we focus on the table-based search that can be further categorized

into table join search and table union search. Recently, table-based

search has attracted much attention in data management field to

augment data instances [7, 27, 43] or attributes [6, 8, 26, 28, 39]. This

benefits many downstream applications such as machine learning

based data analysis.

ExistingWorks. To the best of our knowledge, no work has specif-
ically focused on constructing a benchmark for the thorough eval-

uation of the existing table search methods. Although some works

that target inventing new table search methods have done a great

job in releasing their datasets and queries used in their evaluation,

the scale of their datasets, the number of queries, and the diver-

sity of the workload are not sufficient to evaluate the effectiveness,

scalability, and efficiency of the table search methods in diverse

scenarios. In particular, TUS [32] and Santos [24] evaluate their

table union search methods with 1,000 queries on small data lakes
which contain at most 11,090 tables – in total 11GB data, far from

being sufficient to evaluate the scalability of the search algorithms

and simulate the diverse real applications. Josie [45], targeting table
join search, releases 1,000 queries to evaluate if their method is

able to efficiently find the tables that have exact overlap with the

query tables. In this setting, they do not have to label their queries,

e.g., manually discover the tables joinable with the query tables.

Therefore, these queries cannot be used to evaluate the effective-

ness of other table join search methods that consider the semantic

similarity of the data.

Design Goals. To fill this gap, in this work we aim to construct a

comprehensive benchmark for table discovery, following the design

goals below:

(1) Scalability. To thoroughly evaluate the efficiency and scalability

of different methods, the benchmark has to involve data lakes of

various sizes, especially large-scale ones. The size of the data lake

is measured from two aspects: the storage size and the number

of total columns. The storage size is highly related to the average

table size and the number of tables. The number of total columns

matters as well because almost all table discovery algorithms index

and search over a large number of columns.

(2) Variety. The performance of table discovery largely relies on the

characteristics of the datasets and queries. In particular, one algo-

rithm might perform differently on different categories of queries.

For example, given a query, a semantic-aware algorithm will show

clear advantages if the table semantic matters the most in deter-

mining its unionable tables. Hence, plenty of diverse queries are

critical to thorough evaluation.

(3) Comprehensive comparison of solutions. Understanding the

pros/cons of existing table search methods and revealing research

opportunities, requires a reliable implementation of all these

methods, a thorough and fair experimental evaluation, and a deep

analysis of the results.

Our Proposal. Guided by the above three design goals, we con-

struct a benchmark, LakeBench– the first of its kind that supports

the thorough evaluation of table union & join methods.

To achieve the first design goal, we collect over 1TB data – 100X
larger than the data lakes used in existing works, and the number of

columns is up to 100 million, on which we evaluate different table

union/join search methods. Moreover, we label a sufficient number

of diverse queries (more than 10 thousand) – 10X more than any

other works. To this end, we organize a team of 25 graduate students

and spent more than 7,500 human hours on labeling the queries.

Because it is prohibitively expensive to manually identify tables

in the data lake that are joinable/unionable to a given query, we

design a candidate generation strategy to prune the tables that are

most unlikely to be the ground truth.

To meet the second design goal, we construct data lakes with

diverse characteristics by collecting tables from two data sources,

namely OpenData [1] and WebTable [2]. WebTable has a large

number of tables (more than 10
8
) but each table is small. In contrast,

OpenData consists of large tables (on average 1GB in size per table)

but has fewer tables than WebTable. Besides, we generate both

synthetic (splitting from large lake tables) and real queries (directly

sampling from the data lake), which have different properties. We

further categorize these queries at finer granularity w.r.t. the key

factors that determine the quality of table search.

For the third design goal, we implement many key techniques

such as column embeddings, approximate nearest neighbor (ANN)

search index, etc., which are the building blocks of these approaches,

ensuring that we are able to evaluate the scalability and accuracy

of various approaches on different datasets and mostly reuse the

code base. More importantly, we evaluate these approaches over

the aforementioned fine-grained query categories, so as to reveal

multiple insights w.r.t. the performance of different approaches

over different categories. In addition, our analysis of the time and

space complexity of the search algorithm connects the experiment

results to theory, guiding our discussions on the results. In short,

LakeBenchmakes it possible to thoroughly evaluate and understand

existing table search methods.

Contributions. We make the following contributions:

(1) We build a comprehensive benchmark, LakeBench, for table
discovery, featuring large-scale datasets and a sufficient number of

diverse queries. Besides, it addresses critical limitations in existing

benchmarking datasets. To be specific, 𝑖 .) The lack of a specific

dataset for joinable search with ground truth; 𝑖𝑖 .) The number of

ground truth tables for individual queries is small, particularly

notable in TUS and SANTOS, thus problematic in accurately assess-

ing recall; 𝑖𝑖𝑖 .) Relying heavily on automatically generated ground

truth, which may simplify the task and potentially miss ground

truth because of lacking sufficient human annotation.

(2) We collect real tables (more than 1 TB in size) from multiple

sources, which consist of 4 data lakes with various storage sizes

and different numbers of table columns.

(3) We create 10,000+ table queries covering different characteristics

and spend 7,500+ human hours on accurately labeling them.

(4) We thoroughly evaluate and analyze the state-of-the-art table

join/union search approaches using these created queries on the

benchmark datasets. Based on that, we reveal multiple insights

and research opportunities. For example, we observe that although
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the methods that fine-tune pre-trained language models in general

show an advantage over other methods, their accuracy is still not

very satisfactory in some cases. Therefore, designing better fine-

tune strategies or fine-tuning large language models (LLM) might

be a promising direction to go in the future.

2 PRELIMINARY
2.1 Problem Definition
We formally define the two table discovery tasks in a data lake.

Table Join Search. Suppose that a data lake T contains a large set

of tables T = {𝑇1,𝑇2, ...,𝑇𝑁 }, where each table 𝑇𝑖 , 𝑖 ∈ [1, 𝑁 ] has 𝑛𝑖
rows (tuples),𝑚𝑖 columns (attributes) and each cell value is denoted

by 𝑐𝑖 𝑗 . Given a query table𝑇
𝐽
𝑞 , as well as a specific column𝐶

𝐽
𝑞 of𝑇

𝐽
𝑞 ,

table join search is to find the target tables that can be joined with

𝑇
𝐽
𝑞 on 𝐶

𝐽
𝑞 , and we note the measure of the relevance score between

two columns as 𝑅(𝐶 𝐽
𝑞 ,𝐶𝑡 ), where 𝐶𝑡 is a column of a target table

𝑇𝑡 ∈ T . The higher the score, the more likely the two columns can

be joined ( In this case, we can say that the two columns or two

tables can be joined interchangeably), 𝑖 .𝑒 ., 𝑅(𝐶 𝐽
𝑞 ,𝐶𝑡 ) can also be

represented as 𝑅(𝐶 𝐽
𝑞 ,𝑇𝑡 ). Note that different methods have different

criteria to compute the score, like the number of overlaps and/or

semantic similarity. The formal definition is as follows.

Definition 1 (Top-𝑘 Table Join Search). Given T , a query table𝑇
𝐽
𝑞 ,

the specific column 𝐶
𝐽
𝑞 and a parameter 𝑘 , top-𝑘 table join search

aims to retrieve a subset T𝑞 ⊂ T , |T𝑞 | = 𝑘 such that ∀𝑇 ∈ T𝑞 and

∀𝑇 ′ ∈ T \ T𝑞 , 𝑅(𝐶 𝐽
𝑞 ,𝑇 ) > 𝑅(𝐶

𝐽
𝑞 ,𝑇

′).

Remark. Given a target table 𝑇𝑡 , there may exist multiple columns

that can be joined with 𝑇𝑞 . In this case, we take the one with the

highest score as the target column, 𝑖 .𝑒 ., 𝐶
𝐽
𝑡 = arg max

𝐶∈𝑇𝑡
𝑅(𝐶 𝐽

𝑞 ,𝐶).
Also, we focus on the two-way join rather thanmulti-way joins [15].

Table Union Search. Given a query table 𝑇𝑈𝑞 , table union search

aims at finding the top-𝑘 unionable tables from the data lake T . At

a high level, similar to table join search, table union search highly

relies on the unionbility of the columns, 𝑖 .𝑒 ., a pair of unionable

tables should have multiple pairs of columns that can be unioned.

Like table join search, column unionbility also takes the overlaps

and/or semantics between columns into consideration. To be spe-

cific, given a target table 𝑇𝑡 , we can measure the relevance of each

pair of columns, 𝑖 .𝑒 ., 𝑅(𝐶,𝐶′),𝐶 ∈ 𝑇𝑈𝑞 ,𝐶
′ ∈ 𝑇𝑡 , and compute a

table-level relevance score as 𝑅(𝑇𝑈𝑞 ,𝑇𝑡 ).

Definition 2 (Top-𝑘 Table Union Search). Given T and a query

table𝑇𝑈𝑞 , top-𝑘 table union search aims to retrieve a subset T𝑞 ⊂ T ,

|T𝑞 | = 𝑘 such that∀𝑇 ∈ T𝑞 and∀𝑇 ′ ∈ T \T𝑞 , 𝑅(𝑇𝑈𝑞 ,𝑇 ) > 𝑅(𝑇𝑈𝑞 ,𝑇 ′).

More specifically, given a query table with a user-specified col-

umn, table join search finds the target tables that can be joined with

the query table on the user-specified column.

Example 1 (Table join search.). As shown in Figure 1(a), given a
query table (𝑇1) and a specified column Corporation, Table𝑇2 in the
data lake is joinable with𝑇1, 𝑖 .𝑒 ., the first attribute of𝑇2 can be joined
with the specified column because i) the column names match and ii)
a number of cell values have fuzzy overlaps (𝑒.𝑔., Apple and Apple

Join Union
… … 

LSH Inv. Index HNSW

Embedding Data Lake 

Index Construction

Table Query

R(Cq, T )
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Figure 2: Table Discovery in Data Lake.

Inc.). Joining these two tables together produces a table with richer
features, which is beneficial when used to train a machine learning
model to for example predict the stock Price of the companies in the
table. On the other hand, although in 𝑇3, the column name and the
contents of its first attribute are semantically similar to the specified
column, it is not joinable because there is no overlapping value.

For table union search, given a query table, it aims to find target

tables that are unionable with the query.

Example 2 (Table union search.). As shown in Figure 1(b),
given a query table (𝑇4), 𝑇5 can be unioned with 𝑇4 because they
are all about the information of movies and two pairs of attributes
are highly correlated (𝑇4.Name 𝑣 .𝑠 . 𝑇5.Movie and 𝑇4.Rating 𝑣 .𝑠 .

𝑇5.Score). However, when it comes to 𝑇6, although 𝑇6 has three at-
tributes (𝑇6.City, 𝑇6.Date and 𝑇6.Rating) aligned respectively with
attributes (𝑇4.Venue, 𝑇4.Date and 𝑇4.Rating) of 𝑇4, 𝑇6 is not union-
able with𝑇4. This is because the two tables are not in the same context:
𝑇4 is about movies, while 𝑇6 is about restaurants.

Examples 1 & 2 show that effectively discovering joinable and

unionable tables faces multiple common challenges, including (1)

the (semantic) schema similarity of columns, (2) the overlap be-

tween columns, and (3) the contextual information across multiple

columns in a table. Moreover, as a data lake is typically large-scale,

designing efficient and scalable discovery algorithms is of high

complexity. Although many approaches have been proposed to

address the above problem from different perspectives, these ap-

proaches are yet to be thoroughly evaluated due to the lack of a

comprehensive benchmark.

Remark. Note we return the top-𝑘 results rather than asking users

to set a cut-off threshold w.r.t. the relevance score and returning

all tables that have a relevance score higher than this threshold.

This is because setting a threshold appropriate to the given query is

harder than setting the 𝑘 parameter. Therefore, almost all [3, 14, 17]

existing works focus on retrieving the top-𝑘 results.

2.2 Table Discovery Process
Most of the table discovery methods consist of the following three

modules: data lake embedding, index construction, and online table
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Table 1: Statistics of Data Lakes.

Data Lake #-Max/Min/Avg Col. #-Max/Min/Avg Row

OpenData 502 / 3 / 16.1 10,250,220 / 5 / 79,310.7

OpenData Large 502 / 3 / 21.0 39,014,091 / 5 / 112,359.9

WebTable 25 / 3 / 6.5 16,908 / 5 / 23.0

WebTable Large 25 / 3 / 6.8 16,908 / 5 / 23.5

query processing, as shown in Figure 2. The former two modules

are offline, which respectively encode the column/schema in the

data lake into a vector and index these vectors. Once an online

query table arrives, we first encode its column(s) and then use the

index to retrieve the top-𝑘 tables with the highest relevance score

from the data lake. Next, we illustrate each module respectively.

Embedding Data Lake. In T , original table columns are consis-

tently encoded as fixed-length vectors (as detailed in Section 2).

The vectors are mostly hash codes [18, 46] (𝑒.𝑔., generated by the

minhash function) or embeddings [17, 21, 44] (𝑒.𝑔., generated by

pre-trained language models) that are effective in finding columns

with similar semantics or high overlaps. However, methods like

Josie and InfoGather [41, 45] directly use the original cell values

of each column to search highly overlapping columns rather than

using vectors.

Index Construction. Almost all table discovery methods rely on

an index to search large table repositories. With column repre-

sentations, common choices for ANN indexes include Local Sensi-

tive Hashing (LSH) [3, 46] or Hierarchical Navigable Small World

(HNSW) [14, 17]. Alternatively, an inverted index [24, 41, 45] can

expedite finding highly overlapping columns by linking cell values

to containing columns. Here, colorful circles denote Column IDs

instead of vectors.

Online Table Discovery. Once a user issues a table 𝑇 𝐽
𝑞 for join

search, the search algorithm first represents 𝐶
𝐽
𝑞 as a vector. It then

uses the index to quickly identify the top-𝑘 columns (tables) with

high relevance scores, 𝑖 .𝑒 ., 𝑅(𝐶 𝐽
𝑞 ,𝑇𝑡 ).

The union search follows the same procedure. The only difference

is that given a table 𝑇𝑈𝑞 , the union search has to search over each

attribute in𝑇𝑈𝑞 and aggregate the results. More specifically, suppose

that 𝑇𝑈𝑞 has 𝑚 columns. For each column 𝐶𝑖 ∈ 𝑇𝑈𝑞 , 𝑖 ∈ [1,𝑚],
similar to the join search, we retrieve from the data lake a set

of columns that have high relevance scores with 𝐶𝑖 . Then, we

compute the union of all retrieved tables, 𝑖 .𝑒 ., ∪𝑚
𝑖=1
𝐶𝑖 . For each

table 𝑇𝑡 ∈ ∪𝑚
𝑖=1
𝐶𝑖 , the relevance score 𝑅(𝑇𝑈𝑞 ,𝑇𝑡 ) is computed using

techniques like maximum bipartite graph matching, considering

the column relevance between the two tables. Finally, the top-𝑘

tables with the highest relevance scores are returned.

3 BENCHMARK DESIGN
We first overview the process of building LakeBench, and introduce
our efforts on labeling the queries.

3.1 Benchmark Construction Process
As shown in Figure 3, we first collect the datasets. Then we con-

struct and label queries. Finally, we implement various algorithms

and analyze their performance from multiple perspectives.

T
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Figure 3: Overview of LakeBench Construction.

Datasets. We build 4 data lakes from two data sources: Open-

Data [1] and WebTable [2]. From each source, we create two data

lakes in different sizes. Table 1 summarizes the statistics of these

data lakes. We extract 64,698 tables from the Open Data portals in

Canada, the UK, the USA, and Singapore and derive OpenData Large.

For WebTable, we pre-process 16,670,064 tables into the data lake

after removing extremely small tables and null columns, producing

WebTable Large. Finally, we randomly sample 10% from OpenData

Large and 17% from WebTable Large to construct OpenData and

WebTable respectively.

Query Construction.We construct join & union search queries

in two ways.

Real queries. One way is to directly use real tables as queries, so we

extract𝑄 ⊂ T as a set of queries to simulate the table search needs

in the real world. Note that real queries show diverse characteris-

tics. Therefore, we further classify them into finer-grained query

categories and evaluate the performance of the search algorithms

in diverse scenarios (Section 5.3).

Synthetic queries. However, in the above real cases, table discov-

ery results are likely to be sparse – each query gets only several

joinable/unionable tables. Hence, all previous works construct syn-

thetic queries; and we do this similarly as follows. The basic idea is

to split large tables into multiple small ones. In Figure 3, we split

large tables at either row-level or column-level. Generally, splitting

at row-level mainly generates unionable tables, while splitting at

column-level mostly generates joinable tables. These small tables

are put into the data lake and served as queries. Next, we introduce

the more concrete process of constructing synthetic queries.

[Choose large tables:] We prefer large base tables with more rows

and columns to split. To achieve this, we will pick a table only if the

numbers of its row and columns are both larger than a threshold

(𝑖 .𝑒 ., for Opendata, we set it as 50; for Webtable, we set it as 20). We

then sort these tables based on the number of cells and select the

top-20% largest tables to split.

[Synthesize join queries:] To be joinable, a pair of tables should

contain at least one column on which they could join; and the

two tables should overlap substantially on the cell values of this

column. To achieve this, we first randomly select from a large table

a column as the joinable column, and split the large table vertically

into two sub-tables that share the selected column. Second, to create

the overlaps, we randomly select some rows shared between the

two sub-tables. Third, we separately choose a set of rows from the

two sub-tables; together with the overlapping rows, each set forms
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a new sub-table. The two new sub-tables thus can join with each

other and serve as join queries. Besides, followed Josie [45], we only

focus on non-numerical data as numerical values tend to generate

casual joins that lack meaningful significance.

[Synthesize union queries:] A pair of unionable tables typically is

expected to share some columns from the same domain. Conse-

quently, to synthesize queries from a large table, we first randomly

select multiple columns as the shared columns and then split the

large tables horizontally into multiple sub-tables. Second, in each

sub-table, together with the shared columns, we randomly select

several other columns as supplementary columns to produce a syn-

thetic union query. In this way, the query tables synthesized from

each sub-table are unionable because of these shared columns.

Labeling Queries. We design different labeling methods w.r.t.

queries constructed in different ways, as shown in Figure 3.

Labeling real queries. Given a query, to generate high-quality

ground truth, the ideal way is to ask the humans to examine each

table in T and see if it is joinable/unionable with the given query.

However, this is prohibitively expensive. So we leverage a table

retrieval method to return a set of candidate tables. Then we ask

the humans to manually verify these candidates.

Labeling synthetic queries. As shown in Figure 3, the ground truth

of synthetic queries mainly comes from two sources: (1) the tables

that are produced from the same big tables as the query table during

splitting; (2) some other tables that are derived from the original

tables joinable/unionable with the given query table or its original

table. It is straightforward to identify the first source, while we can

leverage the above method that labels real queries to identify the

second source.

3.2 Human Labeling
To label the ground truth of a query, we first generate a number of

candidates likely to be joinable/unioable with the query, and then

ask the experts to label them with the possibility to early stop.

Candidates Generation. For each synthetic or real query, we

design a search strategy to retrieve a set of candidate tables join-

able/unionable with a query, which will be manually examined by

human experts. The goal is two-fold: (1) to achieve a high recall,

𝑖 .𝑒 ., given a query, a comprehensive set of joinable/unionble tables

is included among the candidate tables; (2) to minimize the human

efforts.

Ensemble Retrieval. At a high level, to achieve a high recall, we

propose to leverage multiple typical table discovery methods to

retrieve a number of candidates and ensemble them as the final

candidate set. To ensure a high recall, we set a relatively large 𝐾 for

candidate generation and display them to the experts for labeling.

Early Stopping.However, given thousands of queries, asking human

experts to check all the above candidates is still rather expensive.

Therefore, we propose a simple but effective early stopping strategy

to reduce human efforts. Specifically, since the provided list of

candidates is ordered, it is reasonable to assume that if a candidate

is not unionable, its subsequent candidates are likely not unionable.

Therefore, we ask the experts to label along the ordered list, and

if among 10 successive tables, fewer than 20% (𝑖 .𝑒 ., 2 tables) are

unionable, they will stop and jump to the next query to label. We

Table 2: Statistics of Human Labeling.

Data Lake #-Join/Union Queries #-Experts Avg. Time

OpenData 3,171 / 3,095 25 31.6h / 36.1h

OpenData Large 4,762 / 4,580 25 47.6h / 53.4h

WebTable 5,824 / 5,487 25 25.9h / 30.5h

WebTable Large 7,428 / 6,812 25 33.0h / 37.9h

also build a platform to support the labeling process with a friendly

user interface.

Labeling Statistics.We hire 25 graduate students from the data-

base group in our university. All students are familiar with the table

discovery task. Table 2 summarizes the labeling statistics. For ex-

ample, for union queries of OpenData, we construct 2,171 synthetic

queries by splitting 60 large tables and extract 1,000 real tables

from the original data lake as real queries. So in total, we produce

3,171 queries. Subsequently, for union queries of OpenData Large,

we additionally select 40 tables from OpenData Large but not in

OpenData, which are then split into 1,091 synthetic queries. We

sample 500 more tables as real queries. Next, we detail the work of

human experts. Take the OpenData Large as an example, which has

4,762 queries. For each query, on average 30 candidate tables are

labeled by experts. Each expert spends approximately 47.6 hours on

labeling. In total, we consume about 7,500 human hours on labeling.

4 TABLE JOIN AND UNION METHODS
In this section, we illustrate approaches in the three categories,

which are classified based on the claims of the papers.

4.1 Table Join Search
According to [32], we further classify join search approaches into

two categories, namely set domain [45, 46] and natural language

domain [13, 14], according to their techniques.

Set domain. Josie [45] targets finding joinable tables via set sim-
ilarity search. Based on the intuition that two joinable columns

should have many overlapping values, given a query table 𝑇𝑞 and

query column 𝐶𝑞 , Josie considers 𝐶𝑞 as a set, and returns the 𝑘

columns that have the highest overlap with 𝐶𝑞 , measured as set

similarities. Josie builds an inverted index to optimize the search

speed. It maps distinct cell values to sets (columns, namely posting

lists) that contain the corresponding values. Then given a query

column, it uses the inverted index to search candidate columns with

overlapping values. It introduces a cost model to quickly eliminate

unqualified candidates. The time complexity of building the index

is O(C + R logR), relating to the number of distinct values in T ,

while the online time complexity is O(L𝑙𝑜𝑔L), which is influenced

by the length of posting list.

Similar to Josie, LSH Ensemble [46] also considers column set

overlap. However, instead of computing exact top-𝑘 columns, it

estimates overlap using the set containment score derived from

the MinHash LSH index. Columns exceeding a threshold score

are returned. After retrieving these columns, we further rank the

results based on the overlap with the query column, resulting in

the top-𝑘 output. To enhance efficiency, columns are initially par-

titioned based on their lengths, reducing the need for an online

query to compare with all lake columns. Second, several MinHash

LSH indexes are constructed for each partition. Both the offline and
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Table 3: Table Discovery Methods.

Methods Task Index Embedding Offline Complexity Online Complexity
Time Space Time Space

Josie [45] J Inv. index % O(C + R logR) O(R) O(L𝑙𝑜𝑔L) O(L)
LSH Ensemble [46] J LSH % O(NHV) O(DNHV) O(BVH) O(B)

Pexeso [13] J Inv. index ! O(R) O(R) O(logA logR) O(A)
DeepJoin [14] J HNSW ! O(N logN) O(DN) O(logN) O(N)
TUS [32] U LSH ! O(C + NHV) O(DNHV) O(𝑑3S) O(B𝑑2S)
D3L [3] U LSH ! O(C + NHV) O(DNHV) O(BE) O(B)

Santos [24] U Inv. index % O(𝑛2𝑚 | T |) O(𝑛3𝑚 | T |2) O(𝑛2𝑚) O(A)
Starmie [17] U HNSW ! O(N logN) O(DN) O(logN) O(N)
Frt12 [36] J & U N/A % O(N) O(N) O( | T | ·(B + O)3) O(O2)

InfoGather [41] J & U Inv. index % O(R + KN) O(R) O(BI logI) O(I)
Aurum [18] J & U LSH ! O(NHV) O(DNHV) O(BVH) O(B)

Table 4: Notations used in Table 3.

Notation Explanation

B #-Columns in the query table 𝑇𝑞

N #-Columns of all tables in T
C #-Cell values of all tables in T
R #-Distinct cell values of all tables in T

| T | #-Tables in T
X #-Tuples of all tables in T
A #-Cell values in query table 𝑇𝑞

L Length of posting list in Josie

H Bucket size for each hash table

V #-Hash tables

H #-Hash functions

P #-Partitions in LSH Ensemble

E #-Neighbors in D3L

D Dimension of embeddings

I #-Neighbors in InfoGather

S #-Tables retrieved by LSH index in TUS

𝑛 The largest #-columns in a table of T
𝑚 The largest #-rows in a table of T
O Average #-columns in candidate tables

online time complexities are linear to the number of columns in T
(𝑇𝑞 ).

Natural language domain. Rather than computing the overlaps, nat-

ural language domain methods consider the semantic similarity

between columns. These methods encode the columns, index these

columns, and search join pairs based on the index. Their differences

are on the encoding methods and the types of indexes. Pexeso [13]

first encodes the cell values into high-dimensional vectors using

fastText [23], which are then indexed with an inverted index and a

hierarchical grid. As a query 𝐶𝑞 comes, a block-and-verify strategy

is applied to efficiently compute the cosine similarity between the

vectors. The online time complexity is O(logA logR), which is

dominated by the number of distinct cell values in T , so it is hard

to scale this method to large data lakes.

Different from Pexeso, DeepJoin fine-tunes the pre-trained lan-

guage model DistilBERT [35] and MPNet [37]. It then feeds a pair

of columns into the models, outputs two vectors and computes

their cosine similarity. The difference between this similarity and

the actual similarity of this column pair is used as the loss to train

the model. Afterwards, DeepJoin embeds columns in T into vec-

tors through model inference and indexes them using HNSW [29].

When𝐶𝑞 comes, DeepJoin transforms it into a vector on the fly and

retrieves similar columns that are likely to be joinable through the

HNSW index. The complexity of this method is directly tied to the

construction and query of the HNSW index, as shown in Table 3.

Pros & Cons. The two categories of join search methods perform

differently in different cases. In the real world, data is likely to be

dirty, and thus a pair of cell values might not exactly match but in

fact point to the same entity (𝑒.𝑔., Apple and Apple Inc.), namely

fuzzy overlaps. In this case, natural language domain methods will

show advantages, because the embeddings they produce capture

the semantic similarity. However, if two columns share similar

domains but no (fuzzy) overlaps, natural language domain methods

are likely to suffer from many false positives.

4.2 Table Union Search
All methods of union search consider the semantic information of

columns or tables, and also we further classify them into column

independent [3, 32] and contextual approaches [17, 24] refer to [32].

Column independent methods. Given a query and a candidate table,

these methods form many pairs of columns, where each column in

a pair comes from a different table. Then these methods indepen-

dently evaluate whether each column pair is unionable, without

considering their correlation to any other columns.

More specifically, TUS [32] considers two tables to be unionable

if they have multiple columns (𝑖 .𝑒 ., attributes) falling into similar

domains. To find the unionable columns, it takes into account three

factors: value overlap, ontology similarity, and natural language

similarity, It first generates multiple LSH indexes to efficiently

search for similar tables in the lake. Then, TUS traverses LSH-

retrieved candidate tables, and uses the three factors to compute a

union score for each candidate and query table. The performance

bottleneck is in computing the natural language similarity because

it involves a time-consuming matrix inversion operation. Thus, the

online time complexity is𝑂 (𝑑3S) (𝑑 is the dimension of embedding

of a cell value), which is rather expensive for large data lakes.

Similarly, D3L [3] measures the similarity between two columns

from 5 aspects: attribute name, attribute extent, word-embedding

of attributes, format representation, and domain distribution. D3L

utilizes LSH–based indexes to efficiently search similar columns in

a data lake. The offline time (space) complexity of D3L is linear to

the number of cell values (columns) in all the tables.

Contextual methods consider the contextual information of multiple

columns within each table. Santos [24] uses a Knowledge Base (KB)

to build a semantic graph for the columns of a table, where each

node is a column, and the edge is the relationship deduced from

the KB. When a query table comes, its graph will be compared with

graphs (tables) in the data lake such that the column semantics are

considered. The offline space complexity of Santos is O(𝑛3𝑚 | T |2),
which is extremely high and thus not scalable to large data lakes.

(4) Starmie [17] uses pre-trained language models for union tables.

It uses a lightweight contrastive learning method to train column

encoders in an unsupervised way. The encoding of each column

also considers other columns within a table, thus capturing the

contextual semantics. It then encodes columns in the data lake as

vectors and builds an HNSW index to accelerate the search.

Pros & Cons. In general, contextual methods are superior to column-

independent methods, because to be unionable a pair of tables
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should share the same semantics (𝑒.𝑔., 𝑇4 and 𝑇5 in Figure 1 are

about movies). This can be captured by the contextual methods.

4.3 Methods for Table Join and Union Search
In general, schema matching methods can support join/union

search as they capture the similarity of schemas. We evaluate three

typical methods. The first two use traditional similarity-based meth-

ods, while the third incorporates machine learning techniques.

Frt12 [36] introduces a framework to measure the relatedness

of tables, which are then used for union or join search. For union,

Frt12 uses KB to identify similar attributes and entities between

the tables and computes a similarity score based on the overlap of

these elements. For join, Frt12 determines whether two tables have

complementary schemas, that is, if they have attributes that can

be combined through a join operation. Then Frt12 considers the

probability of complementary attributes appearing simultaneously

in the same table. In the online process, Frt12 has to examine all

tables in T , which is rather expensive on large data lakes.

InfoGather [41] uses a large corpus of HTML tables to augment

a given table, which can be regarded as table union or join search.

The key idea is to first organize tables in the data lake as a graph,

where nodes denote columns and edges correspond to potential

matches. Then given a query table, InfoGather finds tables that

can be unioned or joined using direct or indirect matching among

tables in the graph. The time complexity of the offline process is

high. The reason is that to build the graph, each node (column)

should consider its similarity with others. The number of columns

that a node should consider largely depends on the parameter K ,

and thus the complexity is dominated by KN . In practice, K is

always large to achieve acceptable accuracy, making InfoGather

rather expensive on large data lakes.

Aurum [18] supports both join and union search. First, the

schema of each column is encoded using word embeddings. Then,

all columns are organized as a graph using the LSH index, where

each node corresponds to a column and each edge connects two

nodes if they have similar embeddings. When a query table comes,

Aurum encodes all columns in the table into embeddings and finds

similar columns in the data lake with locality-sensitive hashing

(LSH). The nearby tables in the graph are also retrieved.

Pros & Cons. Overall, traditional schema matching methods do not

show superior effectiveness and efficiency because (1) they can-

not well capture semantic information and (2) their matching is

expensive, as unlike vector similarity search they do not have a

good index to use. Although Aurum uses embeddings to capture

semantics, it has limitations, because it only considers the schema,

while ignoring the cell values.

5 EVALUATION
In this section, we evaluate existing table discovery approaches

on LakeBench benchmark, and analyze the results. Our evaluation

aims to answer the following questions.

• Q1: How do different algorithms perform on the benchmark

in effectiveness?

• Q2: How efficient are these algorithms, especially on large

data lakes?

• Q3: What about the memory consumption of these algo-

rithms, especially on large data lakes?

• Q4: How do these algorithms perform on different cate-

gories of queries with different properties?

• Q5: Do these algorithms perform consistently across syn-

thetic and real queries?

• Q6: How do table pre-training based methods perform on

table discovery?

5.1 Setup
Metric. Following existing works [3, 24, 32], we use Precision@𝑘
(𝑃@𝑘) and Recall@𝑘 (𝑅@𝑘) to measure the effectiveness. Formally,

given a query table 𝑇𝑞 , we use T𝑞 to denote the set of 𝑘 tables

retrieved by a specific method, and use T𝑔 to denote the set of

ground truth unionable/joinable tables. Then, the 𝑃@𝑘 and 𝑅@𝑘 of

𝑇𝑞 are defined as 𝑃@𝑘 =
T𝑔∩T𝑞
𝑇𝑞

, 𝑅@𝑘 =
T𝑔∩T𝑞
𝑇𝑔

. For each method,

we report its average 𝑃@𝑘 and 𝑅@𝑘 of all queries.

Environments. We implement all experiments in Python and run

experiments on an Ubuntu Server with four Intel(R) Xeon(R) Gold

6148 2.40GHz CPUs having in total of 80 cores, two Nvidia Geforce

4090 GPUs, 1TB DDR4 main memory, and 6TB SSD. The same

environments make sure a fair comparison over different methods.

Settings. For the top-𝑘 based table discovery, we set 𝑘 = 20 for

WebTable and WebTable Large and 𝑘 = 50 for OpenData and Open-

Data Large. For candidate generation, we set 𝐾 as 100. For the

HNSW index, we set the number of neighbors of each node as 30.

For LSH Ensemble, we set the containment threshold as 0.7, and

the number of partitions (hash functions) as 8 (256). For Pexeso,

we set the distance threshold, the column joinability threshold, the

number of pivot vectors and the number of levels in a hierarchical

grid as 0.3, 0.4, 3 and 4 respectively. The dimension of embedding

generated by Starmie and DeepJoin are both 768. For Aurum, TUS

and LSH Ensemble, we utilize a minhash dimension of 128. For

D3L, Starmie, Santos and LSH Ensemble, we largely leverage their

open-sourced implementation, and for others, we implement them

based on the ideas of the original paper because of the lack of codes

or using different programming languages.

5.2 Overall Efficacy Comparison
Effectiveness (Q1). We measure the 𝑃@𝑘 and 𝑅@𝑘 of both union

and join search.

Union Search. Figure 4 and 5 report the results of 𝑃@𝑘 , 𝑅@𝑘 on the

four data lakes. Overall, traditional schema matching-based meth-

ods (𝑒.𝑔., InfoGather and Frt12) perform the worst because they

rely on the string similarity to compute the unionability among

columns without considering the semantics. Aurum, D3L, and TUS

outperform them because they all use word embeddings to capture

the semantics. D3L performs better because it considers more fac-

tors (𝑒.𝑔., attribute extent, format representation) than TUS and

Aurum to measure the unionability.

Contextual methods (𝑒.𝑔., Santos and Starmie) outperform all the

above methods because they take contextual information among

columns into consideration. Starmie performs the best because it

fine-tunes the pre-trained language model that produces better em-

beddings and more effectively captures the contextual information.
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Figure 4: Effectiveness on WebTable / WebTable Large for Union Queries.
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Figure 5: Effectiveness on OpenData / OpenData Large for Union Queries.
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Figure 6: Effectiveness on WebTable / WebTable Large for Join Queries.
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Figure 7: Effectiveness on OpenData / OpenData Large for Join Queries.

Overall, on all datasets, a larger𝑘 leads to a lower 𝑃@𝑘 but higher

𝑅@𝑘 , because returningmore tables has a larger chance to findmore

unionable tables, but may introduce more false positives. Besides,

even for the state-of-the-art methods (𝑒.𝑔., Starmie, DeepJoin), we

can observe that 𝑃@𝑘 always drops to a relatively low value at the

end. The reason is that for some queries, especially the real queries,

the number of ground truth tables is small, so the precision will be

low if 𝑘 is large (details will be discussed in Q5).

[Opportunity:] Choosing an appropriate 𝑘 is very challenging

because it is highly related to the characteristics of data lakes and

queries. However, an appropriate 𝑘 is rather critical because it offers

a good trade-off between precision and recall while saving the users’

efforts in examining the returned results.

Join Search. Figure 6 and Figure 7 report the effectiveness of the

join search methods.
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With reasons similar to union search, schema matching-based

methods do not perform well. Pexeso performs better because it

converts columns into embeddings, considering the semantic in-

formation. Set domain methods (𝑒.𝑔., Josie and LSH Ensemble)

outperform the above method because they identify the exact over-

laps among columns, while in reality, a large proportion of joinable

columns have exact overlaps. Josie performs better than LSH En-

semble, because Josie can identify exact top-𝑘 overlaps while LSH

Ensemble focuses on estimating the overlaps. Overall, DeepJoin

performs the best because it leverages the pre-trained language

model to capture the semantics better. In this way, besides the exact

overlap, it captures fuzzy overlaps like (Apple, Apple Inc.) as well,

thus outperforming Josie.

Summary I: For union search, semantic information, especially the

contextual information across multiple columns, matters a lot. For

join search, column overlap is a key factor to consider, while in

general a well-performing semantic-aware approach can capture

the overlaps as well.

Efficiency (Q2).Wemeasure the time of both offline index building

and online query processing.

Offline. For union search, we observe from Table 6 that onWebTable,

by the offline indexing time, we can see that the HNSW index is

more efficient to build than others. Among these methods, Info-

Gather is the slowest (15 days) because it has to consider a large

number of relationships between column pairs, leading to a high

time complexity. TUS are slow because they consider all the cell

values in the data lake. We observe a similar ranking on OpenData.

The key difference is Santos becomes the slowest because the largest

number of columns/rows in a table on OpenData becomes much

larger. Also, the HNSW-based index becomes faster because there

are fewer columns in OpenData. Note we do not report the result of

InfoGather on large data lakes, because it takes too long to finish. In

addition to the indexing time, it takes the natural language domain

methods extra time to generate the embeddings. For example, using

our two GPUs, this takes Starmie 10 hours.

For join search (Table 5), methods that construct the HNSW index

are still the most efficient, while InfoGather is still the slowest. LSH

Ensemble is not efficient enough because it needs to build multiple

LSH indexes. The performance on OpenData is similar.

Online.We can observe from Table 6 that on WebTable, by the on-

line efficiency, methods with the HNSW index are still the fastest

because HNSW uses a hierarchical graph structure to organize the

column embeddings. TUS is the slowest because it has a high com-

plexity of calculating natural language similarity, which involves

extremely time-consuming matrix inversion. Frt12 is not efficient

because it has to iterate every table of the data lake. We set a maxi-

mum time duration of 3 days and exclude the results of Frt12 and

TUS due to the fact that the online phase of these methods cannot

be completed within this timeframe. For join search on WebTable,

methods with the HNSW index are still the most efficient. Pexeso is

the slowest because it has a high time complexity O(logA logR),
where R is the number of distinct cell values, and thus we do not re-

port the result on large data lakes. On OpenData, we have a similar

observation.

Summary II: For efficiency, indexing matters the most in both online

and offline processes. Embedding-based methods show superiority

over other methods, because they not only consider semantics, but

also benefit from many well-designed ANN indexes. For online

efficiency, the HNSW-based index is no doubt the most efficient

because of its hierarchical graph structure. For offline, building the

HNSW-based index takes several hours, which is acceptable. Other

methods (𝑒.𝑔., LSH Ensemble) are more time-consuming, as they

use more optimizations to improve the effectiveness.

Memory Usage (Q3).We also report the memory usage in Table 5

and 6. We can observe that for union search methods, on WebTable

and Opendata, Santos consumes the largest memory because of its

high space complexity (O(𝑛3𝑚 | T |2)), where 𝑛(𝑚) is the largest

number of columns (rows) in a table from T and | T | is the number

of tables. It thus fails on the large data lakes. Next, D3L constructs

multiple LSH indexes to compute the column similarity, leading

to high memory usage on WebTable. However, on OpenData, the

memory usage is smaller because of the much smaller number of

columns in this data lake. The memory usage of Starmie is also

relatively large on WebTable because each node in the graph index

corresponds to a column embedding, and we have to load the entire

graph into the memory.

For join search methods, onWebTable, LSH Ensemble is the most

memory-thirsty because of using multiple LSH indexes. DeepJoin

and Starmie have relatively large memory usage on WebTable be-

cause of the large HNSW index, while on OpenData, their memory

usage is small because of the small number of columns. On the

other hand, the space complexity of Pexeso is highly correlated

to the number of distinct values, so it consumes more memory on

OpenData than on WebTable.

Summary III: HNSW-based index is not memory efficient, because

it has to load the entire graph into the memory, where nodes corre-

spond to the embeddings of all columns, and the edges represent

the relationships between the columns. Therefore, to fully explore

its high efficiency and effectiveness, users need to configure a high-

memory server.

[Opportunity:] In terms of effectiveness and computation effi-

ciency, the HNSW-based index is preferable although it is not very

memory efficient. In case users do not have a highmemorymachine,

product quantization [22] is a good alternative, as it is memory effi-

cient and typically shows better accuracy than LSH.

5.3 Different Query Categories (Q4)

We categorize a number of query-candidate pairs with ground

truth (whether they are joinable/unionable) based on different fac-

tors that make them unionable/joinable or not. In general, these

factors represent that how much semantic information should be

considered when determining the joinability/unionability of one

pair. Each category includes 100 pairs. Then, we apply different

types of algorithms over each category of queries, aiming to an-

swer the following question: whether there exists an algorithm that
performs well over all categories.
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Table 5: Efficiency and Memory Usage of Table Join Search.

Methods
WebTable WebTable Large OpenData OpenData Large

Offline Online Offline Online Offline Online Offline Online
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

Josie 3h 28G 0.9s 44.5G 17h 172G 3.29s 262G 13h 85G 0.34s 11.3G 3.4d 508G 1.16s 73G

LSH Ensemble 3.7h 268G 1.53s 289G 21.6h 851G 4.7s 872G 2.1h 4.9G 0.43s 6.7G 10h 28.3G 0.59s 32G

Pexeso 2.7h 33.9G 62s 49.5G – – – – 2.6h 114G 56.8s 130G – – – –

DeepJoin 16m 138G 0.37s 96G 1.9h 712G 0.49s 410G 6s 1.9G 0.13s 1.6G 48s 12.1G 0.29s 8.9G

Frt12 2.2h 2.3G 23.5s 0.4G – – – – 0.5h 4.3G 9.6s 0.36G – – – –

InfoGather 15d 59.2G 0.73s 44G – – – – 22.7h 128.3G 0.22s 156.2G – – – –

Aurum 12.5m 40G 0.15s 30.4G 0.5h 210G 0.2s 157G 9s 0.6G 0.09s 0.45G 1.3m 3.9G 0.45s 3.2G

Table 6: Efficiency and Memory Usage of Table Union Search.

Methods
WebTable WebTable Large OpenData OpenData Large

Offline Online Offline Online Offline Online Offline Online
Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem Time Mem

TUS 9.6h 57G 40.6s 142G – – – – 3.3d 45G 50.2s 127G – – – –

D3L 16h 300G 9.2s 280G 4.9d 600G 24.2s 350G 4.6d 55G 3.4s 55G 17.9d 94G 3.8s 116G

Starmie 12.5m 141G 0.3s 98G 2.1h 780G 0.33s 499G 7s 2.2G 0.1s 1.8G 1.1m 13.2G 0.15s 9.6G

Santos 1.1d 320G 2.5s 130G – – – – 6.3d 809G 40.7s 374G – – – –

Frt12 2.1h 2.1G 23.2s 0.2G – – – – 0.9h 3.6G 9.7s 0.3G – – – –

InfoGather 15d 59.2G 6.5s 46.3G – – – – 22.7h 128.3G 5.11s 174.2G – – – –

Aurum 12.5m 40G 0.16s 32.4G 1.5h 210G 0.24s 159G 9s 0.6G 0.1s 0.6G 1.3m 3.9G 0.49s 3.5G

Categories of join pairs. We construct three categories of query-

candidate pairs. Next, we use the examples in Figure 1 of Section 1

to introduce how these pairs are picked.

[𝐶
𝐽
1
: Exact overlap.] In this category, the specific column (𝑒.𝑔.,

NVIDIA, Tesla, Apple) of the query table has exact overlaps with a

column (𝑒.𝑔., Apple, Tesla, Google) of the candidate table. The pairs

in this category are all joinable (positive pairs).

[𝐶
𝐽
2
: Fuzzy overlap.] This category is more complicated than 𝐶

𝐽
1
,

because the two to-be-joined columns share many fuzzy overlap-

ping values. For example, in Figure 1, the first column of 𝑇1 (Corp:

NVIDIA, Tesla, Apple) has fuzzy overlaps with the first column of

𝑇2 (Corp: NVIDIA Corp., Apple Inc., Amazon). The pairs in this

category are all joinable (positive pairs).

[𝐶
𝐽
3
: Semantically similar but no overlap.] This is a hard negative

category in which each pair is not joinable. Using the first column

of𝑇1 (Corp: NVIDIA, Tesla, Apple) and the first column of𝑇3 (Corp:

Alibaba, Tencent, Baidu) as an example, although they are semanti-

cally similar, they are not joinable due to the lack of (fuzzy) overlaps.

However, many semantic-aware methods might mis-classify them

as joinable.

Categories of union pairs.We ask the experts to pick two categories

of pairs from their labeling results.

[𝐶𝑈
1
: Unionable but low column relevance scores.] As shown in Fig-

ure 1, although only two pairs of columns can be unioned,𝑇4 is still

unionable with 𝑇5 because they have similar table-level semantics.

We regard this as a hard positive case as some methods that con-

sider column-wise similarity independently will give low column

relevance scores, produce a low table-level score, and predict these

pairs as not unionable.

[𝐶𝑈
2
: High column relevance scores but not unionable.] In Figure 1,

although 3 out of 4 columns in 𝑇6 can be unioned with 𝑇4, they are

not unionable at table level because of the different semantics. This

category can be regarded as a hard negative case, because some

methods will give such pairs high column relevance scores, leading

to high table-level scores.

Metric. We use accuracy to measure the effectiveness of an al-

gorithm over a query category that contains only positive (join-

able/unionable) or negative (not joinable/unionable) pairs. Accuracy

is determined by the ratio of correctly classified pairs to the total

number of pairs. For a set of positive pairs, 𝐶
𝐽
𝑖
= (𝑇,𝑇 ′), correct

classification occurs when the top-𝑘 results for query 𝑇 include 𝑇 ′
.

Conversely, in a query category with exclusively negative pairs,

the classification is considered to be correct when the top-𝑘 results

for query 𝑇 do not contain 𝑇 ′
.

Observations for join pairs: We use DeepJoin, Josie and Aurum to

test the three join categories, and the results are shown in Table 7.

DeepJoin is a typical algorithm that considers column semantics,

while Josie uses exact overlaps between columns. Aurum represents

the schema matching-based methods.

We can observe that for𝐶
𝐽
1
, DeepJoin and Josie perform compet-

itively. The reason is that Josie performs well when there are many

exact overlaps between two columns, as it can precisely identify

exact overlaps. DeepJoin is comparable because significant overlaps

always indicate high semantic similarity, which can be well cap-

tured by DeepJoin. However, Josie may not always achieve the best

performance in this case with exact overlaps. For instance, given

a specific query column (𝑒.𝑔., Last Name: Washington, Lincoln,

Henry) which represents the last names of the humans, it exactly

overlaps with a candidate column (𝑒.𝑔., Avenue: Lincoln, Washing-

ton Ave., Madison Rd.) which instead represents street names. As

they are in different domains, the two columns are not joinable de-

spite they are overlapping. However, Josie may incorrectly identify

this as one of the top-𝑘 results because of the overlaps, but DeepJoin

can handle this case because it well considers the semantics.
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Table 7: Accuracy of Different Join Query Categories.

Join Methods Top-𝑘 𝐶
𝐽
1

𝐶
𝐽
2

𝐶
𝐽
3

DeepJoin

𝑘 = 10 51% 33% 78%

𝑘 = 20 81% 55.5% 63%

Josie

𝑘 = 10 50% 0% 100%

𝑘 = 20 81.5% 0% 100%

Aurum

𝑘 = 10 37% 8% 44%

𝑘 = 20 56% 13.5% 30%

For 𝐶
𝐽
2
, DeepJoin performs the best, as expected. This is because

DeepJoin explicitly considers the semantics, thus well capturing

the fuzzy overlaps between two columns. Josie does not perform

well because it only takes exact overlaps into account and cannot

capture the fuzzy overlaps. Aurum has poor performance because

it only captures the schema information.

For𝐶
𝐽
3
, Josie performs the best. For example, when 𝑘 = 20, its ac-

curacy is 100%, which indicates that none of these query-candidate

pairs in 𝐶3 belong to the top-20 of the queries. DeepJoin focuses

more on the column semantics, and thus many semantically similar

pairs without overlaps will be incorrectly identified as joinable, lead-

ing to a lower performance. Aurum does not perform well because

it cannot precisely capture the overlaps.

Summary IV: No method is always effective in all scenarios. The

main reason is that to be joinable, two columns should be seman-

tically similar but also have (fuzzy) overlaps. Although a well-

designed semantic-aware method in general works well, it may

fail when two columns share similar semantics but no overlaps.

[Opportunity:] A potential research direction is to design a strat-

egy that effectively distinguishes the fuzzy overlaps from seman-

tically similar but non-overlapping columns. Combining it with

exact overlaps might lead to a more accurate join search algorithm.

Observations for union pairs: We use Starmie and D3L to test the

two categories of queries as the representatives of two types of

methods: considering contextual semantics or column-independent

semantics. We also use Aurum to represent schema matching based

methods. The results are shown in Table 8. We observe that for

𝐶𝑈
1
, Starmie performs the best. For example, when setting 𝑘 = 20,

Starmie has an accuracy of 77.5%, outperforming D3L (46%). The

reason is that it fine-tunes a pre-trained language model, which

takes into account the contextual information among columns.

D3L does not perform well because it only considers each pair of

columns of two tables independently. For𝐶𝑈
2
, Starmie outperforms

D3L. The reason is that D3L computes the similarity between each

column pair individually. If many column pairs are unionable, its

table-level relevance score will be high. But the two tables might

not be unioned if they are in fact not in a similar context. Schema

matching based method does not perform well because it does not

well consider the semantics.

Table 8: Accuracy of Different Union Query Categories.

Union Methods Top-𝑘 𝐶𝑈
1

𝐶𝑈
2

Starmie

𝑘 = 10 34% 81%

𝑘 = 20 77.5% 76%

D3L

𝑘 = 10 19.5% 47%

𝑘 = 20 46% 34%

Aurum

𝑘 = 10 16% 43.5%

𝑘 = 20 41% 29%

Summary V: The method (𝑖 .𝑒 ., Starmie) considering contextual

information performs better on union search. The reason is that

different from join search, semantic information matters more than

the overlaps on union search. When an expert labels if two tables

are unionable, the similarity on the table-level semantics is the most

critical factor, which is well captured by contextual modeling.

5.4 Real Queries V.S. Synthetic Queries (Q5)
For real queries, only a few tables in the lake can be unioned or

joined with them. For example, on WebTable and OpenData, 80%

real queries have no more than 10 joinable/unionable queries. But

for synthetic tables, on average, each query has 30 unionable tables

on OpenData. We also observe that almost all algorithms perform

better on synthetic queries than on real queries. Because for syn-

thetic queries, the similarities between queries and the candidate

tables are relatively high, which makes it easier for algorithms to

identify these candidate tables.

Besides, we observe that different algorithms perform consis-

tently across real and synthetic queries. Taking union as an example

(Figure 9), methods that incorporate contextual semantics, such as

Starmie and Santos, outperform those focusing on independent col-

umn semantics (e.g. Aurum, TUS) as well as schemamatching-based

approaches (e.g. InfoGather, Frt12) on both types of queries.

Summary VI: The real queries typically have much fewer join-

able/unionable tables than the synthetic queries, thus harder to

discover from a big data lake due to this sparsity. Therefore, the

search algorithms tend to have a lower accuracy on these real

queries. However, the rankings of the algorithms are consistent on

real and synthetic queries.

5.5 Table Pre-training Methods (Q6)
We evaluate different table pre-trained models on union search, in-

cluding TABERT [42], TABBIE [21]. Similar to [29], we use them to

generate column embeddings, on which we compute the unionbility

score and discover top-𝑘 tables. For TABBIE and TABERT, we also

use their open-sourced implementation. TABERT is a pre-trained

language model that simultaneously captures the representations of

structured tables and natural language phrases. TABBIE introduces

a simple pre-training objective, namely identifying corrupt cells

from tabular data. Then, we compare them with Starmie, D3L and

InfoGather. In Figure 10, Starmie still performs the best, because

based on BERT [12], it further leverages the contrastive training

technique to fine-tune the model to better fit the table discovery
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Figure 8: Effectiveness of Real Union Queries.
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Figure 9: Effectiveness of Synthetic Union Queries.

2 4 6 8 10
k

0.3

0.5

0.7

0.9

P@
k

(a) P@k on OpenData

2 4 6 8 10
k

0.0
0.2
0.4
0.6
0.8

R@
k

(b) R@k on OpenData

Starmie SATO TABBIE TABERT D3L

Figure 10: Effectiveness of Table Pre-training Methods.

task. However, these pre-training based models outperform other

methods, because they can well capture the semantic information.

Summary VII: In general, pre-training based methods achieve good

effectiveness because they are able to produce more informative

column representations. Fine-tuning the pre-trained model (𝑖 .𝑒 .,

Starmie) can further improve the performance.

[Opportunity:] Although Starmie, which fine-tunes a pre-trained

BERT model for the data discovery tasks, in general performs the

best, its effectiveness (𝑅@𝑘 is always smaller than 80%) still has

a relatively large space to improve. Therefore, designing a better

fine-tuning strategy or fine-tuning the larger language models like

LLAMA2 [38] is a promising direction to explore.

6 RELATEDWORK
Existing released datasets & queries. TUS [32] is the first one to
define the table union search problem and propose an LSH-based

method to solve it. It releases the datasets and queries used in ex-

periments, which contain 5,000 tables collected from OpenData.

They construct 1,000 queries, all of which are synthetic queries ob-
tained through splitting large tables. Santos [24] improves the table

union search strategy by considering the relationships between the

columns. To evaluate their method, it labels 80 queries based on the

column-to-column relations – a relatively small number of queries.

The scale of its dataset is also limited – containing only 10,100 ta-

bles. Josie [45] discovers joinable tables by searching column pairs

with exact overlaps. Josie uses two data lakes for evaluation. One

is the same with TUS, and the other is sampled from WebTable.

It picks 1,000 query columns from each data lake to evaluate the

efficiency of its similarity search algorithm. Hence its queries are

not very useful in evaluating the effectiveness of other methods

that take semantics into consideration. Valentine [25] evaluates

how schema matching techniques perform in table discovery tasks.

The evaluation is to match pairs of tables within existing datasets.

Valentine creates 540 synthetic queries, which only support the

evaluation of schema matching approaches. Different from above

works, LakeBench builds a benchmark that offers multiple large-

scale data lakes and diverse real & synthetic queries to thoroughly

evaluate both table join and union search methods. In addition, an

unpublished work [33] leverages the large language model (LLM)

to generate data and queries for table union search. However, it pro-
duces a relatively small dataset with only 1,050 tables and covers a

limited number of search methods.

Table discovery for ML. To address the data scarcity problem,

recently, researchers have studied to acquire data from external

resources (𝑒.𝑔., data lake) to enrich the training set, to improve

the model performance. At a high level, for tabular data, existing

methods can be categorized into enriching features [8, 26, 28] and

tuples [7, 27, 43], which can respectively leverage the table join and

union search as a pre-processing step.

Keyword-based search. In the realm of keyword-based search

for table discovery in data lakes, [4] introduces Octopus, a system

that uses keyword-based search techniques to integrate structured

data from the web. It describes several algorithms and operators

that automate the data integration process, including the Search

operator which takes a keyword query as input and returns a ranked

list of table clusters. [34] presents a structured search engine that

utilizes the vast amount of tables available on the web to provide

multi-column table results in response to keyword queries.

7 CONCLUSION
In this paper, we construct a comprehensive benchmark for joinable

and unionable table discovery. We build 4 data lakes and construct

both synthesized and real queries. Additionally, we make great

efforts to label the ground truth of thousands of queries. Finally,

we sufficiently compare the effectiveness and efficiency of multiple

table discovery algorithms and provide meaningful insights.

ACKNOWLEDGMENTS
This paper is supported by the NSFC (62102215, U23B2019,

61932004, 62225203, U21A20516, U23A20297, U2001211), CCF-

Huawei Populus Grove Fund (CCF-HuaweiDB202306), the Na-

tional Key R&D Program of China(2022YFB2702100), the DITDP

(JCKY2021211B017), the NSF(DBI-2327954). Chengliang Chai is the

corresponding author.

1936



REFERENCES
[1] [n.d.]. OpenData. https://open.canada.ca/.

[2] [n.d.]. WebTable. https://webdatacommons.org/webtables/.

[3] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-

stantinou. 2020. Dataset Discovery in Data Lakes. In 36th IEEE International

Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.

IEEE, 709–720.

[4] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. 2009. Data

Integration for the Relational Web. Proc. VLDB Endow. 2, 1 (2009), 1090–1101.

https://doi.org/10.14778/1687627.1687750

[5] Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel Mad-

den. 2020. Human-in-the-loop Outlier Detection. In Proceedings of the 2020

International Conference on Management of Data, SIGMOD Conference 2020,

online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel

Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.

Ngo (Eds.). ACM, 19–33. https://doi.org/10.1145/3318464.3389772

[6] Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu

Luo, and Guoliang Li. 2023. GoodCore: Data-effective and Data-efficient Machine

Learning through Coreset Selection over Incomplete Data. Proc. ACM Manag.

Data 1, 2 (2023), 157:1–157:27. https://doi.org/10.1145/3589302

[7] Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selective

Data Acquisition in the Wild for Model Charging. Proc. VLDB Endow. 15, 7

(2022), 1466–1478. https://www.vldb.org/pvldb/vol15/p1466-li.pdf

[8] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez,

Tim Kraska, and David R. Karger. 2020. ARDA: Automatic Relational Data

Augmentation for Machine Learning. Proc. VLDB Endow. 13, 9 (2020), 1373–

1387. https://doi.org/10.14778/3397230.3397235

[9] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael

Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad

Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In 8th Biennial

Conference on Innovative Data Systems Research, CIDR 2017, Chaminade, CA,

USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org. http://cidrdb.

org/cidr2017/papers/p44-deng-cidr17.pdf

[10] Yuhao Deng, Chengliang Chai, Lei Cao, Nan Tang, Jiayi Wang, Ju Fan, Ye Yuan,

and Guoren Wang. 2024. MisDetect: Iterative Mislabel Detection using Early

Loss. Proc. VLDB Endow. 17, 6 (2024), 1159–1172. https://www.vldb.org/pvldb/

vol17/p1159-chai.pdf

[11] Yuhao Deng, Qiyan Deng, Chengliang Chai, Lei Cao, Nan Tang, Ju Fan, Jiayi

Wang, Ye Yuan, and Guoren Wang. 2024. IDE: A System for Iterative Mislabel

Detection. In Companion of the 2024 International Conference on Management

of Data, SIGMOD/PODS 2024, Santiago, Chile, June 9-15, 2024. ACM.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and

Short Papers). Association for Computational Linguistics, 4171–4186. https:

//doi.org/10.18653/V1/N19-1423

[13] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. 2021.

Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-

Based Approach. In 37th IEEE International Conference on Data Engineering,

ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 456–467.

[14] Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi

Oyamada. 2022. DeepJoin: Joinable Table Discovery with Pre-trained Language

Models. CoRR abs/2212.07588 (2022).

[15] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022.

MATE: Multi-Attribute Table Extraction. Proc. VLDB Endow. 15, 8 (2022), 1684–

1696. https://doi.org/10.14778/3529337.3529353

[16] Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in

Data Lakes: State-of-the-art and Future Directions. In Companion of the 2023

International Conference onManagement of Data, SIGMOD/PODS 2023, Seattle,

WA, USA, June 18-23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan,

and Sihem Amer-Yahia (Eds.). ACM, 69–75. https://doi.org/10.1145/3555041.

3589409

[17] Grace Fan, JinWang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-

aware Dataset Discovery from Data Lakes with Contextualized Column-based

Representation Learning. Proc. VLDB Endow. 16, 7 (2023), 1726–1739.

[18] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel

Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System.

In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris,

France, April 16-19, 2018. IEEE Computer Society, 1001–1012.

[19] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neok-

lis Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Goods: Organiz-

ing Google’s Datasets. In Proceedings of the 2016 International Conference on

Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June

26 - July 01, 2016. ACM, 795–806. https://doi.org/10.1145/2882903.2903730

[20] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis

Polyzotis, Sudip Roy, and Steven Euijong Whang. 2016. Managing Google’s data

lake: an overview of the Goods system. IEEE Data Eng. Bull. 39, 3 (2016), 5–14.

http://sites.computer.org/debull/A16sept/p5.pdf

[21] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TAB-

BIE: Pretrained Representations of Tabular Data. In Proceedings of the

2021 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, NAACL-HLT 2021,

Online, June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettle-

moyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy

Chakraborty, and Yichao Zhou (Eds.). Association for Computational Linguistics,

3446–3456. https://doi.org/10.18653/V1/2021.NAACL-MAIN.270

[22] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization

for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),

117–128. https://doi.org/10.1109/TPAMI.2010.57

[23] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomás Mikolov. 2017. Bag

of Tricks for Efficient Text Classification. In Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics,

EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 2: Short Papers, Mirella

Lapata, Phil Blunsom, and Alexander Koller (Eds.). Association for Computa-

tional Linguistics, 427–431. https://doi.org/10.18653/V1/E17-2068

[24] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-

bauer, Renée J. Miller, and Mirek Riedewald. 2022. SANTOS: Relationship-based

Semantic Table Union Search. CoRR abs/2209.13589 (2022).

[25] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry

Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Katsi-

fodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset Discovery.

In 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania,

Greece, April 19-22, 2021. IEEE, 468–479. https://doi.org/10.1109/ICDE51399.

2021.00047

[26] Arun Kumar, Jeffrey F. Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016.

To Join or Not to Join?: Thinking Twice about Joins before Feature Selection.

In Proceedings of the 2016 International Conference on Management of Data,

SIGMODConference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. ACM,

19–34. https://doi.org/10.1145/2882903.2882952

[27] Yifan Li, Xiaohui Yu, and Nick Koudas. 2021. Data Acquisition for Improving

Machine Learning Models. Proc. VLDB Endow. 14, 10 (2021), 1832–1844. https:

//doi.org/10.14778/3467861.3467872

[28] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, andNan Tang. 2022.

Feature Augmentation with Reinforcement Learning. In 38th IEEE International

Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May

9-12, 2022. IEEE, 3360–3372. https://doi.org/10.1109/ICDE53745.2022.00317

[29] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search UsingHierarchical Navigable SmallWorld Graphs. IEEE

Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836. https://doi.org/10.1109/

TPAMI.2018.2889473

[30] Renée J. Miller, Fatemeh Nargesian, Erkang Zhu, Christina Christodoulakis,

Ken Q. Pu, and Periklis Andritsos. 2018. Making Open Data Transparent: Data

Discovery on Open Data. IEEE Data Eng. Bull. 41, 2 (2018), 59–70. http://sites.

computer.org/debull/A18june/p59.pdf

[31] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Aro-

cena. 2019. Data Lake Management: Challenges and Opportunities. Proc. VLDB

Endow. 12, 12 (2019), 1986–1989. https://doi.org/10.14778/3352063.3352116

[32] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table

Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825.

[33] Koyena Pal, AamodKhatiwada, Roee Shraga, and Renée J. Miller. 2023. Generative

Benchmark Creation for Table Union Search. CoRR abs/2308.03883 (2023). https:

//doi.org/10.48550/arXiv.2308.03883 arXiv:2308.03883

[34] Rakesh Pimplikar and Sunita Sarawagi. 2012. Answering Table Queries on

the Web using Column Keywords. Proc. VLDB Endow. 5, 10 (2012), 908–919.

https://doi.org/10.14778/2336664.2336665

[35] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-

tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. CoRR

abs/1910.01108 (2019). arXiv:1910.01108 http://arxiv.org/abs/1910.01108

[36] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei

Wu, Reynold Xin, and Cong Yu. 2012. Finding related tables. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, SIGMOD

2012, Scottsdale, AZ, USA,May 20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T.

Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 817–828.

[37] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. MPNet:

Masked and Permuted Pre-training for Language Understanding. In Advances

in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,

virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina

Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/

hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html

[38] Hugo Touvron, Louis Martin, and Kevin Stone et al. 2023. Llama 2: Open

Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023). https:

//doi.org/10.48550/ARXIV.2307.09288 arXiv:2307.09288

1937

https://open.canada.ca/
https://webdatacommons.org/webtables/
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.1145/3318464.3389772
https://doi.org/10.1145/3589302
https://www.vldb.org/pvldb/vol15/p1466-li.pdf
https://doi.org/10.14778/3397230.3397235
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p44-deng-cidr17.pdf
https://www.vldb.org/pvldb/vol17/p1159-chai.pdf
https://www.vldb.org/pvldb/vol17/p1159-chai.pdf
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.14778/3529337.3529353
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.1145/3555041.3589409
https://doi.org/10.1145/2882903.2903730
http://sites.computer.org/debull/A16sept/p5.pdf
https://doi.org/10.18653/V1/2021.NAACL-MAIN.270
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.18653/V1/E17-2068
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1109/ICDE51399.2021.00047
https://doi.org/10.1145/2882903.2882952
https://doi.org/10.14778/3467861.3467872
https://doi.org/10.14778/3467861.3467872
https://doi.org/10.1109/ICDE53745.2022.00317
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
http://sites.computer.org/debull/A18june/p59.pdf
http://sites.computer.org/debull/A18june/p59.pdf
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.48550/arXiv.2308.03883
https://doi.org/10.48550/arXiv.2308.03883
https://doi.org/10.14778/2336664.2336665
http://arxiv.org/abs/1910.01108
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c3a690be93aa602ee2dc0ccab5b7b67e-Abstract.html
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288


[39] Jiayi Wang, Chengliang Chai, Nan Tang, Jiabin Liu, and Guoliang Li. 2022. Core-

sets over Multiple Tables for Feature-rich and Data-efficient Machine Learning.

Proc. VLDB Endow. 16, 1 (2022), 64–76. https://doi.org/10.14778/3561261.3561267

[40] Pei Wang, Ryan Shea, Jiannan Wang, and Eugene Wu. 2019. Progressive

Deep Web Crawling Through Keyword Queries For Data Enrichment. In

Proceedings of the 2019 International Conference on Management of Data,

SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.

ACM, 229–246. https://doi.org/10.1145/3299869.3319899

[41] Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri.

2012. InfoGather: entity augmentation and attribute discovery by holistic

matching with web tables. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May

20-24, 2012, K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and

Ariel Fuxman (Eds.). ACM, 97–108.

[42] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.

TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In

Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie

Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics,

8413–8426. https://doi.org/10.18653/V1/2020.ACL-MAIN.745

[43] Jinsung Yoon, Sercan Ömer Arik, and Tomas Pfister. 2020. Data Valua-

tion using Reinforcement Learning. In Proceedings of the 37th International

Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event

(Proceedings of Machine Learning Research), Vol. 119. PMLR, 10842–10851.

http://proceedings.mlr.press/v119/yoon20a.html

[44] Dan Zhang, Yoshihiko Suhara, Jinfeng Li, Madelon Hulsebos, Çagatay Demiralp,

and Wang-Chiew Tan. 2020. Sato: Contextual Semantic Type Detection in Tables.

Proc. VLDB Endow. 13, 11 (2020), 1835–1848. http://www.vldb.org/pvldb/vol13/

p1835-zhang.pdf

[45] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:

Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

Proceedings of the 2019 International Conference on Management of Data,

SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019,

Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and

Tim Kraska (Eds.). ACM, 847–864.

[46] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH

Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016), 1185–

1196.

1938

https://doi.org/10.14778/3561261.3561267
https://doi.org/10.1145/3299869.3319899
https://doi.org/10.18653/V1/2020.ACL-MAIN.745
http://proceedings.mlr.press/v119/yoon20a.html
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf
http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf

	Abstract
	1 Introduction
	2 preliminary
	2.1 Problem Definition
	2.2 Table Discovery Process

	3 Benchmark Design
	3.1 Benchmark Construction Process
	3.2 Human Labeling

	4 Table Join and Union Methods
	4.1 Table Join Search
	4.2 Table Union Search
	4.3 Methods for Table Join and Union Search

	5 Evaluation
	5.1 Setup
	5.2 Overall Efficacy Comparison
	5.3 Different Query Categories (Q4)
	5.4 Real Queries V.S. Synthetic Queries (Q5)
	5.5 Table Pre-training Methods (Q6)

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

